
Extending the SDSI / SPKI model
through federation webs*

Altair Olivo Santin1,2, Joni da Silva Fraga1, Carlos Maziero2

1 Federal University of Santa Catarina – DAS/CTC/UFSC
C.P. 476, CEP 88040-900 – Florianópolis – Brazil

{santin, fraga}@das.ufsc.br
2 Pontifical Catholic University of Paraná – PPGIA/CCET/PUCPR
R. Imaculada Conceição 1155, CEP 80215-901 – Curitiba – Brazil

{santin, maziero}@ppgia.pucpr.br

Abstract. Classic security systems use a trust model centered in the
authentication procedure, which depends on a naming service. Even when
using a Public Key Infrastructure as X.509, such systems are not easily
scalable and can become single failure points or performance bottlenecks.
Newer systems, with trust paradigm focused on the client and based on
authorization chains, as SDSI/SPKI, are much more scalable. However, they
offer some difficulty on locating the chain linking the client to a given server.
This paper defines extensions to the SDSI/SPKI authorization and
authentication model, which allow the client to build new chains in order to
link it to a server when the corresponding path does not exist.

1. Introduction

In the classic view of authentication and authorization in distributed systems, the
naming service centralizes the authentication procedure, restricting its action to the
local naming domain. On the other hand, authorization mechanisms are generally
implemented in a distributed way. This model, usually adopted in corporate
networks, grows in complexity when applied to the whole Internet. In order to
overcome the scalability limitations, it is necessary to define inter-domains trust
relationships, allowing the coverage of a global naming space. Under such
circumstances, the management of these relationships may become a difficult task.

Public Key Infrastructures (PKI) offer means to carry out authentication on a
global context. The X.509 PKI, for example, adopts a global naming system (X.500),
which is based on a hierarchical trust model formed by Certification Authorities
(CA). In this model, the authentication chains start from a root CA and lead to a
principal (a user, for example). Although the X.509 PKI is widely used, its global
model faces difficulties on adjusting to each country’s legislation, and can also be

* This project has been partially supported by the Brazilian Research Council – CNPq, under

the grant 552175/2001-3.

difficult to use due to its complex and inflexible scheme. In other words, trust models
based on a centralized entity (names/authentication service), besides representing
critical points regarding faults and vulnerability, may impose restrictions to
performance and system’s scalability on large-scale environments [1].

Internet applications must be developed taking into account authentication and
authorization models in which the trust relationships can be established on a flexible,
scalable, and distributed way. The Pretty Good Privacy (PGP) mechanism, employed
to cipher and authenticate computer files and e-mail [2], adopts a structure for key
and certificate management based on a web of trust. When compared to the X.509
hierarchies, the PGP web of trust – built up on an arbitrary way – is quite flexible
and very well adapted to the World Wide Web features. However, choosing such
pondered based models leads to difficulties for making trust decisions, as multiple
signatures can be demanded in a single certificate for assuring credibility.

On egalitarian trust models – which have the main purpose of adapting
authentication and authorization models to the distributed worldwide network
environment – i.e. the Internet – the trust management concept has been proposed
mainly as a focused paradigm for authorization [3]. The trust management unifies
the concepts of security policies, identification, access controls, and authorization.

Two different approaches are found in the technical literature that can follow this
concept. In the first one, the trust management is set using a language for
authorization and credentials description, and an engine that defines the compliance
checker module. PolicyMaker and KeyNote [4] are systems that use this approach.
The concept of trust management can also be implemented using a standardized
information structure that allows the description of both credentials stating
authorization and security policies; the Simple Distributed Security Infrastructure /
Simple Public Key Infrastructure (SDSI/SPKI) is a good example of this approach.

The SDSI/SPKI infrastructure has been motivated by the complexity of the X.509
global naming scheme. SDSI [5] is a security infrastructure which main purpose is to
make the building of secure distributed systems easier. SPKI [6] is the final result of
concentrated efforts on a project of a simple and well-defined authorization model.
As they have complementary purposes, SPKI and SDSI proposals are combined
together, resulting in a unique base for authentication and authorization in
distributed applications.

The main difficulty in SDSI/SPKI is to find an authorization chain that certifies a
given principal (client) is granted permission to access an object or a service in the
distributed system. Several architectures and algorithms have been proposed to help
a client to search a certificate chain. However, none of these proposals offers
alternatives to the client when a search for a certificate chain is unsuccessful (i.e. no
certificate chain is found between the client and the server).

This work presents a new approach for using trust chains for authentication and
authorization in large scale distributed systems. The SDSI/SPKI trust model is
extended through the federations notion, in order to simplify certificate
management, as well as to establish new trust relationships in large scale systems.
Federations define domains in which there exist trust relationships among principals,
providing mechanisms that allow principals to compose global trust relationships.

Therefore, in the absence of a given authorization chain, principals can locate
certificates in the federation web and then negotiate the concession of privileges in
order to establish a new authorization chain.

This paper is structured as follows: section 2 shortly summarizes SDSI/SPKI;
section 3 introduces the proposed extensions to the SDSI/SPKI model; section 4
explains how new authorization chains can be established; section 5 details the
prototype implementation; section 6 summarizes related works, and finally section 7
outlines some conclusions.

2. Overview of SDSI/SPKI

The SDSI/SPKI defines an egalitarian trust model: principals are public keys that
can sign and issue certificates – similarly to a Certification Authority (CA) on an
X.509 PKI environment. In the current version of SDSI/SPKI, two different types of
certificates are defined: one for names and the other for authorization.

A name certificate links names to public keys, or even to other names. The names
described on a name certificate are meaningful only within the naming space of the
certificate issuer. The concatenation of the public key of the certificate issuer with a
local name represents a SDSI/SPKI unique global identifier. A certificate is always
signed with the private key of the issuer. The SDSI/SPKI names and naming chains
are used only to ease searching the real principal identifiers: the public keys. When
names need to be resolved, the naming chain must be examined in order to reach the
corresponding public key. The procedure of resolving the naming chain to reach the
real certificate name is called “naming chain reduction” .

The SDSI/SPKI authorization certificates link authorizations to a name, to a
special group of principals – called threshold subjects – or to a public key. Through
these certificates, the issuer can delegate access permissions to other principals
(other public keys) in the system.

The SDSI/SPKI authorization certificates can be used for two different purposes.
If the delegation bit is off (delegation not allowed), the received privileges cannot be
delegated (forwarded). In such case, the subject (principal) should keep the
authorization certificate considering it as “private” , i.e. only that principal can use it.
If the delegation bit is on (delegation allowed), the subject is holding a “public”
authorization certificate, enabling it to delegate (grant) access privileges, which
means, keeping them for private use, passing them on to a third party – either as a
whole or partially – or both [7].

For the access control procedures, the granted rights through consecutive
delegations (authorization chains) must be “reduced / summarized” to only one
certificate containing the intersection of all the privileges granted to that subject, in a
procedure called “authorization chain reduction” .

Fig. 1 shows the authorization flow on the SDSI/SPKI trust model. Through the
delegation of privileges from the application server, authorization chains are built,
ensuring trust paths between the server and the clients. In the Fig. 1, clients A and
B, after receiving the certificates, will have authorization chains allowing them to

access the server. The authorization chains are usually built arbitrarily. The privilege
owner must keep the corresponding certificate and present it to the server when
accessing the protected resource. Based on this, one can state that the trust model
adopted by SDSI/SPKI is focused on the client.

 Caption:

SEL F: Reserved word, used only in ACLs issued by the authorization chain checker PK x : x public key identi fication

A pplication Server

 Server S

A CL ´s r epository

(PK B_CLI ENT , PK A_CLI ENT ,
“ delegation not allowed”

, “ author ization” ,
“ t ime restr ict ions”)

(PK S_SERVER , PK B_CLI ENT
, “ delegation allowed” ,

“ author ization” ,
“ t ime r est r ict ions”)

(“SEL F” , PK B_CLI ENT ,
“delegation al lowed” ,

“ author ization” , “ t ime
rest r ict ions”)

signed request + authorization
cer t if icate chain

 subject

 issuer

Cl ient A

L ocal cer t i f icate
r epository

Client B

L ocal cer t i ficate
reposi tor y

Fig. 1. SDSI/SPKI authorization flow (trust model focused on the client)

3. A Trust Model Proposal Based on SDSI/SPKI Extensions

This section presents the proposal of an extension to the SDSI/SPKI trust model,
which allows building new authorization chains. The proposed trust model is based
on the concept of a federation, which emphasizes the grouping of principals with
common interests. The purpose of a federation is to assist its members on reducing
principal names and on building new authorization chains, through the federation’s
Certificate Manager (CM).

By joining a federation, principals get access to the federation facilities and new
trust relationships among these principals can be established. In this sense, the
SDSI/SPKI trust model is extended by adding a Certificate Manager. The CM offers
a certificate search alternative, either for name reduction or for creating new
authorization chains.

Fed er at ion
X C M

Pu bl ic cer t i f i cat e
r eposi t or y Pub l ic cer t i f icat e

st or age

Pu bl i c cer t i f icat e
aut or i zat ion

sear chi ng D elegation
request

A p p li cat ion Ser ver

 Server S

A C L ´s
r eposi t or y

Client A

L ocal cer t i f i cat e
r eposi t or y

signed r eq u est + authorizat ion
cer t i f icat e ch ain

Client B

L ocal cer t i f icat e
r ep osi t or y

Fig. 2. SDSI/SPKI extended trust model

Fig. 2 shows the CM integrated to the SDSI/SPKI classic model. It ensures that
client B stores its public certificates in the federation certificate repository. Through
a search on the CM repository, client A – which has no access to the server S – can

identify a principal (client B) in the federation holding such privilege. Client A can
then negotiate with client B in order to receive this privilege.

The presence of a client at distinct federations allows this client to easily access
the public authorization certificates held by members of those federations. However,
the number of federations a client must join in order to have an acceptable visibility
in the worldwide network can also be considered a scalability problem. The
scalability requirements are achieved in the proposed model by associating
federations. The certificate managers can be associated to each other, linking those
that can better represent the needs of their members. Such associations are done
through trust relationships constituting federation webs (Fig. 3). This approach frees
clients and servers from joining a considerable number of federations to achieve
global scope.

Fig. 3 illustrates how the entities constituting a federation web are organized.
Client authorization certificates (private and public) are stored in a local repository
under the responsibility of an agent that represents this principal in its local domain.
Clients make name certificates issued by their corresponding principals and their
public authorization certificates available in the CMs of the federations they belong.
The certificates available through CMs are used in the search of potential issuers of
delegable permissions.

X’s
member

Y’s
member

 Server S

Application
Server

ACL´s repository

Y’s
member

X’s
member

 Client B

B’s Agent

Local certi ficate
repository

Principal

Federations web Associated

 Server T

Application
Server

ACL´s repository

 Federation X
CM

Public cert if icate
repository

 Client A

A’s Agent

Local certi ficate
repository

Principal

 Federation Y
CM

Public cert if icate
repository

Fig. 3. Federation web overview

One can notice that there is no centralization or hierarchical arrangement in the
proposal. The federation webs are arbitrarily formed, and do not play any active role
in the authorization chains. In other words, they just carry out support roles in the
authorization procedures.

A federation is basically composed of three entities: clients, servers, and certificate
manager, which will be explained in the following topics.

3.1 Cer tificate Manager

The main purpose of the certificate manager is to facilitate the interaction between
clients and servers. A certificate manager only serves the principals that belong to its

own federation. The public keys of its members constitute a SDSI group. As the CM
does not actively participate on any authorization chain, therefore it is not seen as a
principal – it is basically a repository of public certificates.

In order to any ordinary principal participate in a federation, an endorsement in
the form of a threshold certificate is demanded from it [8]. The threshold certificate
signature depends on “k–out of–n” federation members. Each federation defines the
number of members (k) that must sign the endorsement request. When joining a
federation, the principal’s name certificate is included in the federation repository.
The federation’s certificate manager will store name certificates in order to make
ease principal identification (section 3.3). To every new member joining the
federation, a name certificate stating SDSI group inclusion is issued, for membership
proving purposes.

The creation of associations among federations (federation webs) is also
interpreted as membership inclusion in the SDSI groups of each federation involved.
In this case, the new member (the other federation) is recognized as a group defined
and administered within another naming space, according to the definition of SDSI
groups [5].

Therefore, the certificate manager should manage the information related to the
members and associations of its own federation. This manager has the ability to
include or exclude members and associations to other federations, observing any
interest conflicts. Procedures for storing and retrieving name and authorization
certificates are made available to federation members through standard interfaces
offered by the federation’s CM.

3.2 Clients and Application Servers

The client represents the principal who creates name certificates, propagates the
authorization certificates by delegation, takes part in threshold certificates, requests
access, and composes new chains.

The storage and retrieval of certificates in the client naming space is responsibility
of the client’s agent (Fig. 3). This agent is a program that manages the certificates
available at the local repository. These tasks include checking and effecting
signatures, searching for certificate chains, negotiating permission grants, issuing
new authorization certificates, and maintaining local names consistency. The agent
must be instantiated during the client’s lifetime; it interacts with the client through a
binding to its operational interface.

The application server implements the service objects, which are protected by
SPKI ACLs kept by a guardian. In order to perform delegations and negotiations to
propagate permissions, the server can also make use of an agent. In the certificates
reduction procedure, the server can issue authorization certificates to clients that
present new delegation chains and/or include the public keys of these clients in the
guardian’s ACLs.

3.3 Authentication, Author ization, and Auditing in the Model

In the SDSI/SPKI principals’ authentication, the identification is not performed
using names, but public keys, and the authentication is done through digital
signatures. In order to check the digital signature on the destination, the principal’s
public key must arrive there securely. As there is no public key distribution entity in
the SDSI/SPKI infrastructure, the public keys demanded by an authentication
procedure are available through authorization certificate chains.

Mutual authentication is achieved with SDSI/SPKI on an authorization chain
basis. The client making a request to a server must sign it and send it along with the
authorization chain that grants the required access privileges. The authorization
chain sequence associated to a request is checked by the resource guardian upon its
arrival. When this verification is successful, the guardian uses the last key in the
authorization chain (the client’s key) to check the digital signature on the request.
Having this check been successful, then client’s authenticity is verified.

Every authorization certificate carries the public key of the principal signing that
certificate in the issuer field. Therefore, to authenticate a server (always expressed as
a public key starting an authorization chain), the client should require the server’s
name certificate, retrieved from a federation web. After that, the client uses the
certificate’s public key for validating the server’s signature in the authorization
chain. When all the mentioned procedures are successfully done, the server identity
can be assured.

All accesses by public keys to the server are locally logged, and these log records
can be used for auditing purposes. If needed, the search of the corresponding name
certificate can be performed on the federation web to identify the principal
corresponding to the public key that performed a given access.

The entire mentioned authentication and authorization scheme described in this
section is in compliance with the SDSI/SPKI specifications.

4. Creation of New Authorization Chains on the Proposed Model

There are several related experiences regarding procedures for searching SDSI/SPKI
certificates [9,10,11,12]. However, in all these approaches, if a certificate chain is not
found, the search is finished reporting an exception (fault), and the client is unable to
perform the desired access. This work, through the federation notion, proposes a
schema that enables a client to locate a certificate holding the needed authorization
in a federation web. Later on, the client can negotiate with the privilege holder such
grant to build an authorization chain that makes possible the desired access.

The scenario detailed bellow will consider the situation depicted in Figure 3. At
first, an authorization certificate is stored in the CM of federation X, after been
propagated from the server S to the client A (A is a member of the federation X). In
Figure 4, the messages exchanges are depicted for the case in which the chain
between the client B and the server S does not exist.

The client B, member of federation Y, starts by requesting an access to server S
(message m1 in Fig. 4). Server S replies by sending a challenge message back to B.
In this message (m2), server S informs the ACL protecting the requested object and
asks from client B to prove its authorization for the requested access. In this case,
SDSI/SPKI ACL data is effective to accelerate the searching process.

Client
A

Federation
X CM

S
E
R
V
E
R

S

C
L
I
E
N
T

B

m3: search (“ certificate chain ”)

m4: return (“ search.null, certificate associated”)

m5: search (“ certificate chain ”)

m6: return (“ certificate chain ”)

m7: negotiation (“ start ”)

m8: negotiation (“ requirements ”)

m9: negotiation (“ attributes ”)

m10: granting (“ privilegies ”)

m1: request (“ w/chain ”)

m2: challenge (“ object.ACL ”)

m11: response (“ request, certificate chain
”)

Federation
Y CM

Fig. 4. Messages exchanges in the authorization chain compounding

Having the ACL, B’s agent performs a local search for an authorization chain
allowing the requested access that links client B to server S. This search must
retrieve all the authorization chains that include the required permission, and have
the requested server as the issuer. Supposing that the local search turns to be
unsuccessful, B’s agent asks the CM of the federation it belongs (Y) to search for
authorization certificates holding the required rights for accessing server S (m3).

The attributes considered in the search are the required permissions and the public
key of server S. In the case considered in Fig. 4, the search does not result in any
authorization chain. In this situation, the CM of federation Y returns to client B, as a
result of the search, the certificates belonging to members of the associated
federations (Federation X, in Fig. 3), so that it can keep on searching (m4 message).
Having the associated certificates, the client extends its search on the other
federation’s CMs (belonging to the federations web). Message m5 corresponds to the
queries on federation X in the considered example. In the message m6, client B
receives as return from the X’s CM a chain – the authorization certificate with the
access permission between client A and server S. Then client B sends to the rights
holder (A) the delegation right request (message m7). The delegation of permissions
can be carried out in a simple way – because both the client and the rights holder are
sharing the same federation, for example. However, depending on the application
semantics, more complex negotiations may be demanded. The Fig. 4 represents this
situation: the requested rights holder notifies client B about a set of requirements for
the permission concession (message m8). The client gathers the demanded
requirements and sends them to client A (message m9). Once the application
requirements are satisfied, the rights holder issues a certificate granting permissions
to client B and sends it on message m10. By this last message, the chain
compounding process is concluded and client B can answer the challenge proposed
by server S in the response message m11.

4.1 Example: Internet Commerce Application

In this section is depicted an example scenario to overview the usage of federation
webs, which synthesizes the proposed schema. This scenario is built upon a
Web-based e-commerce application, and involves access privileges location and
negotiation. One should notice that the proposed schema is quite general and can be
applied to distinct situations.

In order to simplify the presentation, let’s consider a credit card institution (CC)
and a banking institution (BK), having some business agreement allowing each other
easy financial transactions. Based on this agreement, the CC representative grants to
the BK representative the right to “allow purchase” – in this case, the bank
representative can allow purchases if payments are to be charged to credit cards
issued by the credit card institution. The BK representative, whenever receives an
authorization certificate with the delegation flag on, stores it on the CM of the
federation FB.

 F B ’ s member
F CC ’ s associated

3

1 2

F CCs’ member
F B ’ s associated

 Server S

I nternet Commer ce
si te ser ver

A CL ´s r eposi tor y

9

R
e
q
u
e
s
t

C
h
a
l
l
e
n
g
e

F B ’ s member
F CC ’ s associated

Publ ic cer t i ficate st or age

F CC’ s member
F B ’ s associated

Public cer t i f icate storage

R
e
s
p
o
n
s
e

 Representat ive CC

CC’ s Agent

Pr incipal

L ocal cer t i f icate
r eposi tor y

l

5

6

7

8

 Representat ive BK

BK’ s Agent

Pr incipal

L ocal cer t i f icate
r eposi tor y

l

 Cl ient B

B’ s Agent

Pr incipal

L ocal cer t i f icat e
r eposit or y

l

A ssociated

 F ederation
F CC CM

Public
cer t i f icate r eposi tor y

 F ederation
F B CM

Public
cer t i f icate r eposi tor y

4

Federations
web

signed r equest + auhor izat ion
cer t i f icate chain

Fig. 5. Scenario for purchases in the Internet using of the federation web

Table 1 describes the messages (numbered in Fig. 5) exchanged between entities
in order to implement the purchase transactions in the e-commerce site.

Table 1. Messages exchanged in Fig. 5 scenario

Step Actions
1 Client B navigates through the web pages offered by the e-commerce server S. After

selecting some items to purchase, client B proceeds to checkout.
2 Server S sends back to the client a message containing the purchase bill and a

challenge: the “allow purchase” privilege holder is the CC representative.

Step Actions
3 Client B queries its local repository and finds no chains linking it to the CC

representative. Then, client B sends the chain query to the CM of federation FB.
4 CM of federation FB makes a search in their repository and finds the required chain. It

sends back to client B the chain between the server S and the BK representative.
5 Client B requests to BK representative the delegation of privilege “allow purchase” .
6 BK representative notifies client B that delegating the requested privilege requires

paying the bill using one of the payment options offered by BK.
7 B client pays the bill using one of the options offered by BK.
8 BK representative delegates the “allow purchase” privilege to client B.
9 Client B sends the authorization chain to server S, along with the request (in a response

message) and the server concludes the purchase transaction.

In order to monitor the “allow purchase” privilege delegations, the CC

representative receives a copy of all paid purchase bills from the e-commerce site.
In the scenario described here, no authorization chains existed linking the CC

representative to client B. However, the mechanisms proposed by the federation web
model allowed to dynamically and automatically creating the requested authorization
chain, in order to complete the purchase operation on the e-commerce site. Of
course, if the chain holding the requested authorization was not found in the CM of
federation FB, the search would continue on the associated federations until an
appropriate chain was found.

For the scenario described in Fig. 5, it should be noticed that the ACL of the
server does not have an entry for client B allowing it to access the services.
Therefore, it is no longer required to register the clients on the server ACL to allow
their access to the services. Consequently, all clients’ private information is stored
only in those institutions with which they have strict relationships. In the example
above, the client can pay for the purchase not only if it is a credit card customer – but
also being only an ordinary bank customer. By doing so, no credit card numbers or
other client-related information is transmitted through the network. Also, client
information is stored only by its banking institution.

5. Architecture Implementation Aspects

The SDSI/SPKI infrastructure and the policies applied in the model (previously
described in sections 3 and 4) are totally independent from the adopted technology.
In this sense, the tools used in the prototype (Fig. 6) have been highly influenced by
the model usage in the Internet – environment assumed as the context of this work.

The motivation on adopting CORBA as middleware is to take advantage of the
services provided by that platform, mainly in aspects related to object lookup (name
resolution) and secure remote access invocation. SSL (Secure Socket Layer) was
adopted for remote communications. In order to establish a secure communication
channel between a client and a server (holding SSL integrity and confidentially
properties), mutual authentication for the principals (client and server) is required.

However, SPKI uses keys as principals, instead of names. To solve this, a function
was developed to translate SDSI/SPKI into SSL name certificates.

The SDSI/SPKI integration with the distributed object middleware (shown in Fig.
7) was done using CORBASec at application level (CORBASec Level 2) [13].

Client
JVM

TCP / IP

TLS / SSL

ORB / CORBASec
Server
JVM

SDSI / SPKI Infrastructure
Authorization / Authentication Policies

HTTP, FTP, ...

Fig. 6. Prototype model architecture

Security Level 2 is not helpful in structuring security functions at application
level. However, in order to make use of the CORBA security model, a minimum set
of objects at the ORB level has been kept. The following session objects were
maintained: PrincipalAuthenticator, SecurityManager and Credentials (Fig. 7).

Local
certificate
repository

ORB Core

ServerClient

S S LS S L

ACL’s
repository

ACL

Principal
Authenticator

Secur ity
Manager

credent ials
Principal

Authenticator

SDSI / SPKI
(Access Decision)

SDSI / SPKI
Resolver

Secur ity
Manager

credent ials

<XML> <XML>

ORB
Services

ORB
Services

Federations
web

Public
cer tificate
repository

Federation F

CM

Public
cer tificate
repository

Federation F

CM

Public
cer tificate
repository

Federation F

CM

Public
cer tificate
reposi tory

Federation F

CM

Fig. 7. CORBA-SPKI integration prototype overview

Fig. 7 shows other implementation details. The CM public certificate repository is
implemented using Apache Xindice (which stores XML native data) [14]. The CM is
implemented as an extension module of the Apache server [15]. All messages
exchanged between members and CM is written in XML. The SDSI/SPKI
certificates, originally coded as S-expressions, are translated into XML in our
prototype for portability and standardization reasons [16]. The SDSI/SPKI resolver
object shown in Fig. 7 is a partial implementation of the client’s agent, covering
chain searching and digital signature management. Finally, the reference monitor
(guardian) is implemented by the SDSI/SPKI Access Decision object. The client and

server integration onto the prototype environment was greatly facilitated by using
plug-ins and applets in the application deployment.

6. Related Work

In [9], the DNS service was used for storing and retrieving SDSI/SPKI certificates.
In that proposal, DNS extensions added by RFC 2065 have been used to allow the
storage of certificate records by using entities that store identification and
authorization certificates in DNS databases. In addition, the search algorithms
include some filtering of the certificates being retrieved.

The work [10] views the network built by the propagation of SDSI/SPKI
authorization certificates as an oriented graph. It also assumes that, in typical
corporate environments, such graph is hourglass-shaped. This is due to the fact that
there is much more client and server keys than intermediary keys. Therefore, starting
from these premises, the author uses the DFS forward and DFS backward
algorithms, and their combination, to perform fast searches in a database having
only one intermediary. Experiments using the distributed search algorithms proposed
in [10] are reported in [11]. This work also analyses some improvements in the DFS
forward algorithm.

One can notice that the previously described works have been conceived for
preliminary versions of SDSI/SPKI, in which some aspects of the model still had not
been solved. Some premises assumed at that time are now considered obsolete, no
longer complying with the RFC 2693 specifications. However, these papers have
valuable contributions in terms of system architecture.

According to [17], SDSI/SPKI local names can be viewed as distributed groups of
principals for name resolution. Based on this assumption, the author proposes
algorithms based on logic programming, supposed to be more efficient in chain
search when compared to conventional implementations. As the main purpose of the
paper was to define search algorithms based on logic programming, a new
architecture has not been proposed. Nevertheless, the interpretation of local names as
distributed groups can be considered a significant contribution.

The chain search algorithms suggested by [12] and aspects considered there are
deeper refinements of RFC 2693 recommendations. It also presents an
implementation of the SPKI current version, quite rich in content, although no
architectural propositions for distributed systems have been developed.

7. Conclusion

This paper proposed architectural extensions to the SDSI/SPKI authorization and
authentication model, allowing the client to build new chains to link it to a server,
when the corresponding path does not exist. The proposal is centered on the notion
of federations and on entities called Certificate Managers. The role of certificate

managers is to help in the construction of authorization chains, through a repository
searching facility, for locating privileges needed by access. As the certificate
manager does not participate in the authorization chains, the proposed model can be
considered fully decentralized. Thus, the manager does not centralize nor turns
hierarchical the relationship between clients and servers, neither it constitutes a
critical point regarding to faults, vulnerability or performance.

Adopting the federation web model frees the server from user account
management. It also frees the client from the traditional account creation procedures
in order to have access to a server – even in a global context.

The proposed model presents a support to certificate management that allows the
creation of new authorization chains. This facility is not observed in any other
proposal presented in the technical literature. The proposed scheme is quite flexible
and dynamic, even considering that in some cases the number of messages
exchanged to create a new chain can be expressive.

References

1. Horst, F. W., Lischka, M.: Modular Authorization. Proceedings of ACM SACMAT (2001)
2. Garfinkel, S.: PGP:Pretty Good Privacy. O’Reilly & Associates, Inc (1995)
3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. Proceedings of the

17th IEEE Symposium on Security and Privacy (1996)
4. Blaze, M., Feigenbaum, J., Lacy, J.: The KeyNote Trust Management System, Version 2.

IETF-RFC2704 (1999)
5. Lampson, B., Rivest, R. L.: A Simple Distributed Security Infrastructure (1996). URL

http://theory.lcs.mit.edu/~cis/sdsi.html, Last access on Jun, 2003.
6. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI Certificate

Theory. IETF-RFC2693 (1999)
7. Gasser, M., Mcdermott, E.: An Architecture for Practical Delegation in a Distributed

System. Proceedings of the IEEE Symposium on Security and Privacy (1990)
8. Aura, T.: On the Structure of Delegation Networks. Proceedings of IEEE CSFW (1998)
9. Nikander, P., Viljanen, L.: Storing and Retrieving Internet Certificates. Proceedings of 3th

Nordic Workshop on Secure IT Systems (1998)
10.Aura, T.: Fast Access Control Decisions from Delegation Certificate Databases.

Proceedings of 3th Australian Conference on Information Security and Privacy (1998)
11.Ajmani, S.: A trusted Execution Platform for Multiparty Computation. Master thesis, Dep.

of Electrical Engineering and Computer Science, MIT (2000)
12.Clarke, D. E.: SPKI/SDSI HTTP Server Certificate Chain Discovery in SPKI/SDSI. Master

dissertation, Dep. Electrical Engineering and Computer Science of MIT (2001)
13.OMG – Object Management Group: Security Service Specification, v1.8 (2002). URL

http://www.omg.org/cgi-bin/doc?formal/02-03-11.pdf. Last access on Jun, 2003.
14.Staken, K.: Xindice Developers Guide 0.7.1 (2002). URL

http://xml.apache.org/xindice/guide-developer.html. Last access on Jun, 2003.
15.Thau, R.: Design Considerations for the Apache API (2002). URL

http://modules.apache.org/reference. Last access on Jun, 2003.
16.Terreros, X. S. L., Ribes, J-M. M.: SPKI-XML Certificate Structure (2002). URL

http://www.oasis-open.org/cover/xml-spki.html. Last access on Jun, 2003.
17.Li, N.: Local Names in SPKI/SDSI. Proceedings of the IEEE CSFW (2000).

