A pull-based e-mail architecture

Edson Kageyama
Graduate Program in
Computer Science
PUCPR
Curitiba PR, Brazil

edson@ppgia.pucpr.br

ABSTRACT

Conventional e-mail systems are prone to problems that im-
pact their scalability and dependability. E-mail systems op-
erate following a “push-based” approach: the sender side
server pushes the e-mails it wants to send to the correspond-
ing receivers’ servers. This approach can impose process-
ing and storage overhead on the receiver side. This paper
presents an e-mail architecture in which messages are sent
directly from senders to receivers using a “pull-based” ap-
proach. The sender stores locally all e-mails it intends to
send, and notify their receivers using a global, distributed
notification service. Receivers can then retrieve such notifi-
cations and decide if they want to receive the corresponding
e-mails. If so, e-mails can be retrieved directly from their
senders. This proposal is inspired from file sharing peer-to-
peer systems, in which users locate and retrieve the contents
they are looking for. A prototype was built to show the fea-
sibility of the proposal.

Categories and Subject Descriptors

C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems, Dis-
tributed Applications

General Terms
Reliability, Security

Keywords

E-mail, Peer-to-peer, Distributed systems

1. INTRODUCTION

Internet e-mail has become an extremely pervasive com-
munication tool, due to its low cost, asynchronous operation
and ability to easily transport different types of digital con-
tent. However, protocols for sending and receiving e-mails
were designed to be simple, mainly because their initial use

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’08 March 16-20, 2008, Fortaleza, Ceara, Brazil

Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Carlos Maziero
Graduate Program in
Computer Science
PUCPR
Curitiba PR, Brazil

maziero@ppgia.pucpr.br

468

Altair Santin
Graduate Program in
Computer Science
PUCPR
Curitiba PR, Brazil

santin@ppgia.pucpr.br

was restricted to the academic community and the e-mail
servers’ processing capacity was limited. With the wide-
spreading use of e-mail, some users started using this system
to propagate malicious content, as virus, spams, and scams.
Moreover, the increase in the use of e-mail systems led to
the necessity of technologies capable to support this service
in a more secure, reliable, and scalable manner.

Traditional e-mail systems operate following a “push-
based” approach: the sender’s e-mail server pushes the
e-mails she wants to send to the corresponding receivers’
servers. The receiver server should then accept the e-mail
and deliver it to its destination mailbox. The receiver server
can implement mechanisms to avoid receiving spam, like e-
mail content analysis [19] and server white lists [7]. However,
most techniques impose processing and storage overhead on
the receiver side.

This article presents a distributed e-mail architecture in
which e-mail is transported according to a “pull-based” ap-
proach, directly from senders to receivers. The sender stores
locally all e-mail it intends to send, and notifies their re-
ceivers using a notification service built using a distributed
hash table [17]. Receivers can then retrieve such notifica-
tions and decide if they want to receive the corresponding
e-mails. If so, e-mails can be retrieved directly from their
senders.

This article is structured as follows: section 2 reviews the
conventional e-mail structure and the main threats to e-mail
services; section 3 reviews some related work on peer-to-peer
based e-mail systems; section 4 presents the architecture de-
veloped in this project; section 5 presents some prototype
implementation details; finally, section 6 concludes the pa-
per, discussing open problems and outlining perspectives.

2. THE E-MAIL SERVICE

The Internet e-mail architecture, as defined in [10], con-
tains agents that act as senders and receivers of mail mes-
sages. The Mail User Agent (MUA) is the program used
by the end user for reading and writing e-mails. The
Mail Transport Agent (MTA) is responsible for receiving e-
mails from the MUAs, forwarding them to their destinations
(other MTASs), receiving e-mail from other MTAs, and keep-
ing mailboxes for local users.

MUAs and MTAs use the Simple Mail Transfer Protocol
(SMTP) [10] to forward e-mail to their destination servers.
MUAs can use protocols like POP [14] and IMAP [3] for
accessing their MTAs, to retrieve the e-mails stored on their
mailboxes. E-mails are formatted according to [6, 16].

E-mail systems were initially designed to be simple, as

their usage was restricted to the academic community. This
simple and straightforward structure was responsible for the
e-mail popularity. On the Internet, e-mail systems gained
importance and visibility, showing limitations and fragilities
not initially considered, like privacy (e-mails are transferred
in clear text format), sender authentication (SMTP does
not provide effective mechanisms to authenticate senders,
allowing e-mail forgery), and efficiency (e-mails can carry
large attachments, but are sent and stored uncompressed).

Due to such fragilities, problems like spam, scam, and
virus propagation compromise the security, performance, ro-
bustness, and usability of the current e-mail systems. Sev-
eral techniques can be used to improve current e-mail sys-
tems, like white/black lists [7, 8], content filtering [19], and
sender authentication mechanisms [1, 11, 21, 23].

3. PEER-TO-PEER AND E-MAIL

Peer-to-peer (p2p) systems present some advantages over
traditional client/server systems, like more flexibility and
scalability, and smaller costs. Primary p2p use was in anony-
mous file sharing over the Internet, but other application
domains are appearing, like audio/video streaming, instant
messaging, and distributed storage.

In the p2p approach, participants (peers) acts as clients
and servers for the service being provided. Peers interact
among each other in order to announce resources, to locate
resources, and to retrieve/use them. Peer-to-peer systems
can use a central server to maintain resource location and
authentication services; others are decentralized and define
“super-peers” in order to carry out resource location algo-
rithms. Some are unstructured topology, while others pro-
vide a predefined topology to ease resource location [2].

A Distributed Hash Table, or DHT [17], is a special kind of
decentralized p2p service that stores [key, value] pairs. This
service is generally provided by a large amount of peers,
allowing to store and retrieve information reliably and effi-
ciently. Some DHT systems associate a password p and a
validity time ¢ to each entry: p protects the entry against
unauthorized removals, and ¢ allows the DHT itself to purge
old entries. DHTs are used to build more complex services,
like resource lookup, distributed file systems, and naming
systems. Examples of DHT implementations include Chord
[20] and Pastry [18].

Some studies were done about using the p2p approach to
improve e-mail systems. In [9], the authors use a DHT for
storing user certificates, e-mails and even mailboxes. For
sending an e-mail, an User Agent (UA) retrieves the re-
ceiver certificate from the DHT, encrypts the e-mail body
using the receiver’s public key and stores it back on the
DHT. It also stores the encrypted message headers in the
DHT, using the receiver’s e-mail address as the key. On the
other side, the receiver UA uses its e-mail address to lookup
for new message headers in the DHT; after decrypting the
header, the UA uses the message ID as a key to retrieve the
corresponding message body.

The ePOST system[13] implements an e-mail system on
top of a p2p storage infrastructure called POST [12], which
is built on top of the Pastry DHT [18]. In ePOST, each
participant contributes to the DHT service and to the dis-
tributed e-mail storage. E-mails and metadata are en-
crypted and redundantly stored in the DHT. The local agent
acts as a SMTP/IMAP server for the user’s MUA, allow-
ing her to use any conventional e-mail client. Each e-mail

469

component (header, main body, attachments) is stored sep-
arately; thus, a large file sent as attachment to several des-
tinations is stored only once in the DHT. E-mail delivery is
done through a notification service called Scribe: the sender
posts a notification to each receiver, containing the message
header and references to the message body and attachments.

The work presented in [22] uses an hybrid p2p model, com-
posed by communities and a central server, which provides
authentication and peer location services. Each community
comprises a set of nodes and a super-node. The super-node
can act as a conventional MTA: all messages in a commu-
nity are sent to its super-node, which can deliver them to
local destinations (nodes in the same community) or forward
them to other super-nodes, for remote delivery. In another
operation mode, the super-nodes can route only the send-
ing requests among peers, letting the e-mail transfers occur
directly among them. If a super-node fails, its community
elects another super-node; a recovery mechanism is provided
to allow the new super-peer to rebuild the state of the previ-
ous one. Finally, broker nodes can be used to send messages
to conventional e-mail servers.

There are other approaches for using p2p to improve e-
mail systems. In [4], the authors implement a p2p system
among e-mail servers, to share information about spam mes-
sages each one receives. This collective knowledge can im-
prove the spam filtering done by each server.

To our knowledge, all systems proposed rely on pushing
e-mails to a local server (super-node or local SMTP server),
to a remote storage (DHT or remote SMTP server), or di-
rectly to the destination nodes. Consequently, the storage
overhead does not impact the sender itself, but others. Also,
spam/virus filtering should be done by the receivers, after
receiving the e-mail. Finally, current DHT implementations
have small limits on the size of the information that can be
stored under each key, preventing the transfer of large mes-
sages. The next section proposes an architecture in which
e-mails are stored in the sender side until they are pulled out
by their destination nodes, if they accept to receive them.

4. A PULL-BASED P2P E-MAIL SYSTEM

This article presents a p2p e-mail architecture in which
messages are transported according to a “pull-based” ap-
proach, directly from senders to receivers. The system is
composed by a set of peers, each one acting on behalf of
an user. Concerning the message flow, the system follows
an unstructured approach, in which all peers have the same
features. The e-mails are exchanged directly between the
peers, there are no central authentication or storage servers.
A DHT service is used to forward notifications from senders
to receivers, and to store some control information.

A peer is a daemon that acts as an SMTP/IMAP server
for its local client. Message format respects the RFC2822
specifications [16], allowing users to use standard client soft-
ware (MUA) for e-mail handling. Each peer p2pMTA has
four storage areas: a spool area, to store messages sent by the
local MUA; an inbozx area, in which it deposes messages to
be read by the local MUA; a publicly accessible outboz area,
holding messages to be pulled by receivers using HT'TP; and
a key cache area, to store public PGP keys of known peers.
PGP keys [23] are used for encrypting messages and notifi-
cations, to guarantee their integrity and privacy. Peers or-
ganize themselves in groups, to improve message availability
(see section 4.5).

Figure 1 shows an overview of this architecture; next sec-
tions detail how messages are transferred, and the mecha-
nisms used for ensuring message privacy, integrity, and avail-
ability.

————— » notifications
—>» e-mails

Gl

45| p2pMTA

pP2pMTA

[
(=
>

A

p2pMTA [<€---FDHT]
e e
p2pMTA
i T \“

AE :
E

Eanaall

—>

—

Easall

p2pMTA

MUA MUA

Figure 1: Architecture overview

4.1 Assumptions
We assume that the DHT provides three basic services:

e put(x,u,p,t): register an entry defined by a key z, a
value v, a password p, and a validity time ¢; the DHT
supports key collisions: two or more values can be
stored under the same key x;

e get(z): retrieves all entries e; = [z, v;] in which z; = x;

e del(z,v,p): deletes an entry defined by [z, v], protected
by a password p.

It should be noticed that password p only protects the
entry against del operations, but does not forbid get oper-
ations. We consider that the DHT infrastructure purges all
entries whose validity time was expired, according to [17].

Peer e-mail addresses have the format name@group, where
name define the peer identity and group is the group of peers
to which it belongs.

We assume that each peer has a pair of public/private
PGP keys; its public key k is publicly available to the other
peers, while its corresponding private key k' is securely kept
by the peer. All hash operations are done using the SHA1
algorithm [5].

4.2 Starting an e-mail peer

When it starts, each peer ¢ posts a peer descriptor d; in
the DHT, using its e-mail address as key. The descriptor
d; value contains the IP/port of the peer’s outbox. The
password p is chosen by the peer, and the validity time ¢ is
arbitrarily set as one day. This descriptor should be kept
in the DHT by the peer, which renews or updates it when
needed. If the peer leaves the network without removing
its descriptor, the validity time ¢ will ensure that it will be
eventually purged from the DHT.

4.3 Sending and receiving an e-mail

The steps needed to transfer an e-mail m; from a sender
peer S to a receiver peer R are explained in the following;
they are also presented in figure 2:

470

1. m; is sent by the client MUA to its local peer S using
SMTP; the message is stored in the spool area of S;

. S retrieves k, from its key cache, or from R, using
the URL http://4p :port /pubkey (ip and port are
obtained from d,). If no key is found, an error is raised;

. m; is encrypted using k,: mj = k.{m;}, and a SHA1
hash h; is generated from mj: h; = SH A1 (m;);

. mj is then stored in S’s outboz, using h; as its file
name;

. S posts a send notification ns; to R in the DHT, us-
ing ns:peer@group as key (where peer@group is R’s
address). The ms; value contains some m,; headers
(sender@group, subject, date, size, name/type/size of
attachments), h;, and the DHT entry password p; (a
random value); ns; value is encrypted using k.. The
validity time ¢ is arbitrarily set to one week. ns; is
also copied locally in S.

. Periodically, R searches for ns entries in the DHT; each
ns; is decrypted using its private key k.., to retrieve the
message headers, the hash h;, and the password p;.

. For each ns;, R creates a message n; in the local inbox
area, using the m; headers and an empty body;

. The IMAP client at R retrieves all inbox messages and
presents them to the user;

. If the user decides to open n;, R retrieves m; using
the URL http://%ip : port /outbox/h; (ip and port are
obtained from d); m; is then decrypted using k.. to
obtain m;. Otherwise, if the user deletes an e-mail
without reading it, the corresponding inbox entry is
deleted.

10. After m; being retrieved or n, deleted, ns; is deleted

from the DHT, and a receive notification nr; is posted,

using nr:peer@group as key (where peer@group is S’s

address). nr; value is the hash h;, and the same p;

from ns; is used to protect the DHT entry.

11. Periodically, S searches for nr entries for its pending

messages; for each nr;, it removes the DHT entry and

the corresponding files from its outbox.

In this approach the storage overhead remains at the
sender side. A spammer trying to send thousands of mes-
sages will consume its own storage space until the receivers
decide to get them, to delete them, or to ignore them. An-
other positive aspect of this approach: a message already
sent by the user (MUA) can be canceled, if the receiver did
not yet receive it.

4.4 Multiple receivers

The steps shown in the last section present the system
behavior in a simple case, in which a peer send a message to
a single receiver. Now, a multiple-receiver message transfer
scenario is depicted. This scenario is frequent in mailing
lists, for instance. The changes in the previous scenario
when sending a message m; to several receivers R, are:

Figure 2: Sending/receiving an e-mail

e m,; should be encrypted with the public key k. of each
receiver R,. PGP does this easily: it cyphers m; using
a random session key ks (m; = ks{m;}), then cyphers
ks using k, of each R, to get cyphered keys kc (kc, =
k. {ks}VR;); all ke, are then appended to mj;

e Next, S should post a ns, for each receiver R;;

e Only when all ns, are replied with nr, or are expired,
m; files stored in S can be removed.

It is easy to see that the message is stored only once, even
if the message has several receivers.

4.5 Peer groups

In a conventional e-mail system, the mail server acts as
a temporary storage for e-mails, if their destination servers
are offline. Our architecture proposal has no e-mail servers
or intermediate temporary storage areas. This could cause
problems, because sender and receiver should be both on-
line to allow an e-mail to be transferred. To circumvent this
restriction, peers are organized in peer groups.

Peers in a group replicate the contents of their outboxes,
in order to provide higher availability of the e-mails awaiting
to be retrieved by their receivers. A peer group is formed
by peers that have some trust in each other. Each group
has a name gname and a descriptor gd; registered in the
DHT under a group:gname key. The descriptor value con-
tains a list of the group members’ addresses. For each group,
a special peer called group master is responsible for regis-
tering and maintaining its group descriptor. Currently, the
group master is manually defined, as well as group members;
more sophisticated techniques for building and maintaining
groups are being investigated.

The outbox replication procedure is fairly simple: a
given peer in a group retrieves lists of messages con-
tained in each other peers’ outboxes, from their URLs
http://ip :port /outbox/msglist. Then it compares the
list contents with the e-mails present in its local outbox;
e-mails no more in the list should be deleted, because they
were deleted by their owner; e-mails not in the outbox should
be retrieved, to be replicated.

During a message transfer, if the sender peer S is offline,
the receiver peer R can retrieve the sender group descriptor,

471

in order to know other peers where the message m; may be
replicated. It will then try to retrieve the message from one
of them (step 9 in section 4.3).

4.6 Garbage Collection

There are a fair amount of information being stored locally
(at each peer) and in the DHT. This information should be
deleted when no more needed:

e All DHT entries have validity times associated to
them; when the entry age surpasses its validity time,
the DHT infrastructure removes it, transparently [17].

e E-mails stored in the sender’s outbox are deleted when
(a) the receiver retrieved it and posted a corresponding
receive notification; or (b) when the validity time of the
corresponding entry in the DHT finishes.

e E-mails replicated among the group members are
deleted during the replication procedure, if their own-
ers deleted them from their respective outboxes.

S. PROTOTYPE

A prototype of this architecture was built, in order to show
its feasibility. The prototype was built using the follow-
ing COTS components: the OpenDHT infrastructure [17],
which is a deployment of the Bamboo DHT implementation
over the PlanetLab distributed platform [15]; the GnuPG
package, an open source implementation of the OpenPGP
standard; Lighttpd, a lightweight open source HT'TP server;
the JES - Java E-mail SMTP server; the Binc IMAP server;
and the Mozilla Thunderbird e-mail client.

The prototype is fully functional, providing all services
defined in the previous sections. Now, experiments are being
carried out to estimate (a) the costs to transfer a message
from a sender to a receiver, (b) the local storage costs in each
peer, (c) the traffic generated by the replication mechanism.
We intend to compared these costs with the corresponding
costs in a conventional SMTP infrastructure. First results
show that a slight reduction of the traffic and storage was
obtained, mainly because GnuPG compresses the messages
before encrypting them. So, all the messages transferred are
compressed and encrypted. Also, the system scalability and
its dependency on the DHT scalability should be evaluated.

6. CONCLUSION

In this paper we presented an alternative architecture for
e-mail distribution over the Internet. In this architecture,
the e-mails are stored in the sender side; senders post noti-
fications in a global notification service provided by a dis-
tributed hash table (DHT). Receivers periodically query the
DHT for new notifications; they can then retrieve the cor-
responding e-mails directly from the senders, or just ignore
them. Our architecture got its inspiration from file sharing
peer-to-peer systems, in which users locate the resources of
their interest and retrieve only the files they choose. Also,
messages are replicated among peers in order to improve
their availability.

The main contribution of this architecture is to leave the
storage overhead on the sender side; in this context, a spam-
mer would fill its own outbox (and the outboxes of its group
members) instead of receivers’ ones. Also, if a receiver de-
cides to not receive an e-mail, it will not be transferred from
the sender, saving its bandwidth.

The architecture was implemented in a prototype using
COTS components. Now we are carrying out experiments
in order to compare it to the conventional approach, and to
estimate its scalability and robustness.

There are some issues to be solved, and improvements
that could be done in this proposal. First, peers should be
reachable through HTTP (or other transport protocol), be-
cause receivers will retrieve their e-mails using it; this can
be a problem for peers behind a firewall or NAT router.
Also, the integration of this system to conventional e-mail
systems should be investigated; a possible solution for this
issue is to use relay peers that would create a bridge be-
tween both environments. In our prototype, the peer group
is manually defined and static; other methods for defining
and evolving peer groups should be investigated. Finally, as
each e-mail is replicated among the sender group members,
the receiver could retrieve parts of it (fragments) from each
group member, to improve retrieval speed; this approach is
already used in p2p file sharing services.

7. REFERENCES

[1] E. Allman, J. Callas, M. Delany, M. Libbey,

J. Fenton, and M. Thomas. DomainKeys identified

mail (DKIM) signatures. IETF RFC-4871, 2007.

S. Androutsellis-Theotokis and D. Spinellis. A survey

of peer-to-peer content distribution technologies. ACM

Computing Surveys, 36(4), 2004.

M . Crispin. Internet message access protocol version

4 revl. IETF RFC-3501, 2003.

E. Damiani, S. Vimercati, S. Paraboschi, and

P. Samarati. P2P-based collaborative spam detection

and filtering. In IEEE Peer-to-Peer Computing, 2004.

[5] D. Eastlake and P. Jones. US secure hash algorithm 1
(SHA1). IETF RFC-3174, 2001.

2]

(3]

(4]

472

[6] N. Freed and N. Borenstein. Multipurpose internet
mail extensions (MIME) part one: Format of internet
message bodies. IETF RFC-2045, 1996.

R. J. Hall. How to avoid unwanted email.
Communications of the ACM, 41(3), 1998.

J. Jung and E. Sit. An Empirical Study of Spam
Traffic and the Use of DNS Black Lists. In ACM
Internet Measurement Conference, 2004.

J. Kangasharju, K. Ross, and D. Turner. Secure and
resilient peer-to-peer e-mail design and
implementation. In JEEE P2P Computing, 2003.

J. Klensin. Simple mail transfer protocol. IETF
RFC-2821, 2001.

J. Lyon and M. Wong. Sender ID: Authenticating
e-mail. IETF RFC-4406, 2006.

A. Mislove and A. Post. POST: A secure, resilient,
cooperative messaging system. In USENIX HotOS,
2003.

A. Mislove, A. Post, A. Haeberlen, and P. Druschel.
Experiences in building and operating ePOST, a
reliable peer-to-peer application. In ACM EuroSys,
2006.

J. Myers and M. Rose. Post office protocol - version 3.
IETF RFC-1939, 2001.

L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir.
Experiences implementing PlanetLab. In USENIX
OSDI, 2006.

P. Resnick. Internet message format. IETF RFC-2822,
2001.

S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,

S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu.
OpenDHT:': a public DHT service and its uses. In
ACM SIGCOMM, 2005.

A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In ACM/IFIP/USENIX
Middleware, 2001.

M. Sahami, S. Dumais, D. Heckerman, and

E. Horvitz. A bayesian approach to filtering junk
E-mail. In AAAI’'98 Workshop on Learning for Text
Categorization, 1998.

1. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM
SIGCOMM, 2001.

M. Wong and W. Schlitt. Sender policy framework
(SPF) for authorizing use of domains in e-mail,
version 1. IETF RFC-4408, 2006.

[22] Y. Zhao, S. Zhou, and A. Zhou. E-mail services on
hybrid p2p networks. In Grid and Cooperative
Computing Conference, 2004.

P. Zimmermann. The Official PGP User’s Guide. The
MIT Press, 1995.

[7]

(8]

23]

