
E-voting

14	 Published	by	the	ieee	ComPuter	soCiety							■						1540-7993/08/$25.00	©	2008	ieee							■						ieee	seCurity	&	PrivaCy

a	three-ballot-based	
secure	electronic		
voting	system

Regivaldo g.
Costa

Brazilian
Parliament

altaiR o.
santin, and
CaRlos a.
MazieRo

Pontifical
Catholic
University of
Paraná

This article presents a secure electronic voting system

integrated in a single architecture—one that addresses

vote receipts, uniqueness and materialization of the

vote, and voter privacy and anonymity. Our prototype,

built using Web services and Election Markup Language,

shows the proposal’s viability.

T oday, there’s a wide understanding that tradi-
tional voting systems should be computerized
to reduce the vote counting time, provide ev-
idence that a vote is being correctly account-

ed, reduce fraud, remove errors in filling out ballots,
and improve system usability for people with special
needs.1 In fact, E-voting are increasingly replacing tra-
ditional paper-based systems. This raises several secu-
rity issues, given that democratic principles depend on
the electoral process’s integrity. Providing security to
voting systems isn’t trivial. Beyond the classic security
properties (integrity, confidentiality, and availability),
other properties need to be ensured. Some e-voting
system requirements seem contradictory, like ensur-
ing voter authenticity and vote anonymity, providing
a vote-counting proof while preventing vote trade,
allowing voting via the Internet but avoiding voter
coercion, guaranteeing the uniqueness of the vote in
decentralized voting, allowing vote automation while
providing vote materialization, and ensuring audit-
ability in a software or hardware environment that
could malfunction.

Existing systems use complex mechanisms to en-
sure e-voting security requirements, such as using vi-
sual cryptography to provide voting receipts,2 a shared
key to decrypt a vote using homomorphic encryp-
tion,3 and mix networks to create anonymous chan-
nels to ensure anonymity for the voter and the vote.4

Alternatively, we present a proposal based on classic
cryptography techniques,5 using the standard public key
cryptosystem and scattering the entities and separating
their responsibilities to avoid critical security points.
Our proposal goes beyond the classic security properties

by considering
voting receipts,
voter coercion, vote trade, vote materialization, vot-
ing process auditability, and voter anonymity and
authenticity. Our architecture also considers the par-
ticipation of election representatives to improve elec-
tion transparency and ensure the respect of democratic
principles. We built a proof-of-concept prototype us-
ing Web services and the Election Markup Language
(EML, a proposed standard for election data6) to show
the proposal’s viability.

Voting system requirements
Each country defines a set of specific laws to guide
its voting system, to establish its organization, and
to ensure its impartiality, integrity, and democratic
principles. Elections based in an e-voting system
must comply with the laws and rules for voting sys-
tems, and also fulfill the following requirements (as
discussed elsewhere5,7,8):

Confidentiality. The vote should be kept confidential
from its verification and confirmation by the voter
until the counting phase. Also, partial counting
should not be possible.
Integrity. Final vote counting must exactly represent
the number of voters (vote uniqueness) and their in-
tent (quality of the vote).
Availability. An e-voting system should guarantee
voting service availability and respect to its security
requirements during the entire election process.
Authenticity. Voter authenticity must be verified at
two distinct phases: at voter registration and just be-

•

•

•

•

E-voting

	 www.computer.org/security/							■						ieee	seCurity	&	PrivaCy	 15	

fore the voting procedure; the system should pro-
vide means to prevent voter impersonation.
Anonymity. The vote must remain anonymous dur-
ing the voting process; afterward, there should be no
way to associate a vote to its voter, or vice-versa.
Vote receipts. In an e-voting system, vote counting
is done computationally—not under the direct ob-
servation of poll watchers. Therefore, vote receipts
are needed, to allow voters check if their votes were
correctly counted while preventing practices like
voter coercion and vote trading.
No vote trading. No voter should have access to mate-
rial evidence that certifies to other people the qual-
ity of his or her vote.
No voter coercion. No party should have means to im-
pose on voters to vote against their intent.
Uniqueness. Voters should be able to vote only once
in the same election.
Auditability. A voting system must provide an au-
dit trail of the entire voting process for detecting
fraud, software or hardware malfunction, or human
operation errors. However, such information can’t
keep information that compromises other security
requirements.
Usability. An e-voting system should be user-friend-
ly, offering visual, touch, and audio resources that
allow the voter to vote quickly without help from
others.

Our proposal fulfills such properties, as we’ll see in
the following sections. It also provides vote material-
ization—the system is able to materially reproduce the
quality of each vote, allowing manual vote recount-
ing, if requested.

The architecture
Given that today’s E-voting aren’t yet mature, re-
searchers are still proposing new paper-based systems.
Such systems introduce properties not present in con-
ventional ones, such as vote receipts.

Our fully computerized architecture adopts the
three-ballot scheme from a paper-based voting sys-
tem proposed in other work.9 That scheme uses three
equal ballots for each vote, with each one having a
unique numeric identifier. The voter checks off his
or her candidates in two ballots; for all the other can-
didates, just one check is needed, on one of the three
ballots, randomly. This way, the candidates voted for
will have two marks in the three ballots set, while
all the other candidates will have just one mark each.
Subsequently, one ballot chosen at random by the
voter is copied as a vote receipt. The three ballots are
then stored. After the election, the electoral authority
publishes all copied ballots to let voters verify whether
their votes were accounted for.

Figure 1 presents an overview of our proposed ar-

•

•

•

•

•

•

• chitecture. We built it using the following entities: a
registration agent, a voting console, a voting manager,
an electronic ballot box, and an electronic election
bulletin board.

To vote, voters present themselves to the registra-
tion agent to get a credential that qualifies them to vote
(event 1 in Figure 1). The registration agent interacts
with the voting manager to obtain the corresponding
ballot IDs (BIDs; event 2) and uses them to build cre-
dentials that are returned to the voters. Later, after au-
thentication (event 3), voters use the voting console to
vote (event 4), and the voting manager stores the votes
in the electronic ballot box (event 5) while the voting
console gives a voting receipt back to each voter (event
6). When the election finishes, the electoral authority
and election representatives start the counting phase
(event 7), counting the votes and publishing the receipts
in the electronic election bulletin board (event 8).

Our architecture considers the voters, the election
representatives, and an electoral authority as actors. In
a general election, election representatives can be per-
sons from the civil society and political parties, who
are responsible for watching the voting process. The
electoral authority manages the electoral process and
enforces the voting rules and laws.

The voting process consists of three phases: voter
registration, the voting itself, and vote storage and
counting.

The registration phase
The registration agent is responsible for voters’ admis-
sion and qualification during the registration phase,

Electronic election
bulletin board

8Electoral
authority

Electronic ballot box

7

7

54

2

Registration agent

1

Public key
infrastructure

Voting
manager

3

6

Voting receipt device Physical ballot box

Voter

Voting
console

Election
representatives

Figure 1. Overview of the proposed architecture. It uses classic

cryptography techniques and a standard public key cryptosystem to

ensure its security properties. Also, the architecture entities are scattered to

separate their responsibilities, avoiding critical security points.

E-voting

16	 ieee	seCurity	&	PrivaCy							■						may/June	2008

depicted in Figure 2. Its tasks include receiving voters
at the polling station and requesting their identifica-
tion (either by biometry or another mechanism) to
verify if they are able to vote. If so, voters receive cre-
dentials that enable them to the next phase (voting).

During the agent’s initialization (boot), it starts a
voters/ballots ID repository (VBR) using data from a
repository of voters that the electoral authority main-
tains. The registration agent also requests b BIDs from
the voting manager (events B1 and B2 in Figure 2) and
stores them locally in the VBR (event B4); b can be
defined by each electoral authority. The voting man-
ager logs the supplied BIDs to the registration agent
in a local repository for BIDs and ballots (BIR; event
B3). This initialization procedure makes the sequence
of voters accessing the registration agent unpredictable
(for the voting manager) so as to prevent voter ano-
nymity violations.

Once the registration phase starts, voters should
identify themselves to the registration agent (event 1,
Figure 2), who then verifies whether the voter can vote
(event 2), querying the VBR. If so, it takes three ran-
dom ballot IDs out of the b ballot IDs present in VBR,
signs them (compounding a credential), and returns
them to the voter (event 3). At the same time, it updates
the repository of voters (event 4) to register that the
voter was qualified to vote to assure vote uniqueness.

To keep b BIDs in its voters/ballots ID repository,
the registration agent requires three new BIDs from
the voting manager (event 5), which chooses three
new BIDs (event 6), and ciphers each one separately
using the voting console’s public key. Next, the vot-
ing manager sends them back to the registration agent
(event 7), and logs the BIDs in the local BIR reposi-
tory (event 8).

If the voting system uses biometric authentication

(event 1 in Figure 2), a template of the voter’s fin-
gerprint is obtained by the Biometric Device (BD),
ciphered using the voting console’s public key, and
attached to the credential (event 3). Such a scheme
guarantees the voter’s authenticity and prevents fraud
related to impersonation during the voting phase.

The random BIDs that the registration agent
sends in event 3 (Figure 2) consist of three IDs that
the voter will use during the voting process. The
registration agent doesn’t know them because, as
mentioned, BIDs are ciphered using the voting con-
sole’s public key. Therefore, the registration agent
performs a blind signature10,11 on the BIDs compos-
ing the voter’s credential.

Interactions with the public key infrastructure
(events I and II) include procedures for signature au-
thenticity verification given that all the transactions be-
tween entities in the entire process are digitally signed.

The voting phase
The voting console interacts with the voter during
the voting phase (Figure 3). Therefore, all messag-
es from the voting console to the voting manager
result from interactions between the voter and the
voting console.

If the voting system adopted biometric authen-
tication during voter registration, the voting con-
sole receives the voter’s biometric template, decrypts
it, and verifies its authenticity (event I, Figure 3)
through the registration agent’s digital signature.
Then, the voting console requests a voter’s finger-
print using a biometric device. Verification consists
of comparing the template obtained from the de-
vice with the template coming from the registration
agent. No information about the voter’s biometric
identification is sent to the voting manager, ensuring

Electoral
authority

(repository)

Registration agent

1

Public key
infrastructure

Voting manager

Voter

Voters/ballots
ID repository

Enabled voters

Voldent

2 Vrfy(Voter)

B4: Store(BIDs)

4 Audit(Voter)

Ballot/BID
repository6 ReadBIDs

B3: Audit(BIDs)
7 Resp(BIDs)

B2: BootResp(BIDs)

5 ReqBIDs

B1: BootReqBIDs(b)

8 Audit(BIDs)

3 EnableCred

boot

boot

(I)

(II)

Biometric device

Figure 2. Overview of the registration phase. During this phase, a registration agent manages the admission and qualification of voters

in the system and applies a blind signature scheme on the credentials provided to voters. Such a scheme ensures voter anonymity,

preventing the binding between voters and their credentials, even if the registration agent is compromised.

E-voting

	 www.computer.org/security/							■						ieee	seCurity	&	PrivaCy	 17	

the voter’s anonymity. The biometric authentication
avoids voter impersonation.

After authenticating the voter, the voting console
validates the registration agent signature in the vot-
er’s credential through the public key infrastructure.
It also deciphers the three BIDs sent by the voting
manager through the registration agent. The voting
console always takes the first BID from the credential,
names it as RID (Receipt Ballot ID), and sends it to
the voting manager (event 1).

The voting manager verifies the voting console’s
signature (event II, Figure 3) and queries its BIR to
check if the RID is valid and wasn’t used before (event
2) to prevent a reply attack.12,13 If the RID is valid
and the voter hasn’t yet voted, the voting manager re-
trieves the ballot with eligible candidates signed by
the electoral authority from BIR. The voting man-
ager then replicates the ballot to build a set with three
equal ballots.

The manager logs the RID supplied in event 1
to track the voter’s activity during the voting phase.
However, it doesn’t know any voter’s identity—that’s
known only by the registration agent during the reg-
istration phase. After that, the RID number is the sole
identity of an authentic voter in the system.

For each candidate, the voting manager puts an initial
mark in one randomly chosen ballot in the three ballots
set (ballot 3 for candidate A, ballot 2 for candidate B,
ballot 1 for candidate C, and ballot 1 for candidate D,

for instance). After that, the voting manager sends the
marked ballots to the voting console (event 3).

This initial ballot marking that the voting man-
ager performs simplifies the voting procedure in the
voting console, thus improving the usability of the
three-ballot scheme. Because the voting manager al-
ready randomly marked all candidates once each in
the three ballots set, voters need only to put an addi-
tional random mark (in an unmarked ballot) for each
candidate they intend to vote for (for example, Ballot
3 for candidate D in Figure 3). As noted earlier, each
candidate that’s marked only once in the set of three
ballots isn’t voted on; the vote assignment is indicated
by two marks in the three ballots set. 9 The voting
console can also provide resources to ease the voting
procedure, such as candidate photographs, candidate
search, a touch-screen interface, Braille code, and
speech synthesis of the screen contents.

After the voter votes, the voting console provides
facilities to ease vote verification (as a vote summary)
and asks the voter to choose a ballot to keep as a vot-
ing receipt. The voting console assigns the chosen bal-
lot with the RID and assigns the two other ballots
the two remaining BIDs received from the registra-
tion agent with the voter’s credential. Then the voting
console makes a backup copy of the three ballots.

The voting console encrypts each of the three
ballots, in random order, using a distinct public key,
the ones from election representatives—each one re-

Public key
infrastructure

Voter

Signed ballots

4 SubBallot(setOfBallots)

Ballot/BID
repository

3 RespBallot(setOfBallots)

2 Vrfy(RID)

7 Audit(RID)

8 Ack

Biometric
device

Voting console

Vote
repository1

Vote
repository2

Vote
repository3

Electronic ballot box

Voting
manager

5 Store(B1, B2, B3) 6 Ack

(III)

(II)

(I)

Electoral
authority

(repository)

9

Receipt storage devices

Enable

Physical
ballot
box

Ballot 1 Ballot 2 Ballot 3

Candidate A

Candidate B

Candidate C

Candidate D

Candidate A

Candidate B

Candidate C

Candidate D

Candidate A

Candidate B

Candidate C

Candidate D

Template ballot
Candidate A
Candidate B
Candidate C
Candidate D

1 ReqBallot(RID)
Ballot 1Candidate A

Candidate B
Candidate C
Candidate D

Ballot 1

Ballot 2

Ballot 3

Candidate A

Candidate B

Candidate C

Candidate D

Candidate A

Candidate B

Candidate C

Candidate D

Candidate A

Candidate B

Candidate C

Candidate D

Figure 3. The voting phase. The central entities during the voting phase are the voting manager and the voting console. The voting

manager is responsible for the coordination aspects of the voting phase, authenticating the voters, providing the ballots for filling

out, and storing the votes. The voting console builds the voter interface, verifies the voter qualification, makes possible the vote

materialization, and generates the vote receipts.

E-voting

18	 ieee	seCurity	&	PrivaCy							■						may/June	2008

sponsible for one vote repository: VR1, VR2, and
VR3. The voting console then sends the encrypted
ballots to the voting manager (event 4), which re-
ceives them, signs them, and sends each one to a dis-
tinct repository (event 5). Each electronic ballot box,
when receiving a ciphered ballot, validates the voting
manager’s signature (event III), stores it at random (by
applying a hash function to it), and replies with an
acknowledge message if the storage succeeded (event
6). To indicate that the three ballots finished the vot-
ing phase, the voting manager updates its BIR, mark-
ing the corresponding RID as used (event 7). Storing
ballots at random in three distinct repositories avoids
keeping relationships among the three ballots, assur-
ing the vote’s secrecy.

The voting manager informs the voting console
that the votes are stored in the electronic ballot boxes
(event 8). The voting console then takes its backup
copy of the vote (three ballots), encrypts the two bal-
lots that aren’t bound to RID (named here the un-
bound ballots) using the electoral authority’s public
key, and puts them in storage provided by the voter
(such as a smart card) or a printer. A clear-text copy
of the RID ballot is also stored in the receipt storage
device (event 9) to serve as a voting receipt. Alterna-
tively, a summarized ballot with no IDs in a printer-
friendly layout that contains only the voted candidate
could be printed and stored in a physical ballot box
attached to the voting console (event 9). That printed
ballot can be used for manual recounting if the elec-
tion results are contested.

Using a physical ballot box could bring problems
because printers can fail and the voter could spend
time verifying the printed vote. For vote material-
ization, we recommend using a persistent storage. To
provide a vote backup, unbound encrypted ballots can
be encrypted using the electoral authority public key,

re-encrypted using the voter’s public key, and sent to a
repository along with the receipt ballot in clear text.

The goal of this double encryption is to guarantee
that votes remain inviolable, protected by voters’ pub-
lic keys, and that voters can’t trade their votes, thanks
to encryption in the electoral authority’s public key. If
needed, a voter can meet the electoral authority and
together they can decrypt the vote using their respec-
tive private keys, print a summary of it, and put it in
a physical ballot box. This approach could overcome
printing problems and verification delays arising dur-
ing voting but preserve vote secrecy.

The vote storage and counting phase
The electronic ballot box is responsible for storing the
ballots sent by the voting manager and for comput-
ing the vote counting. The electronic ballot box con-
sists of three vote repositories (VR) and a counting
unit. The counting unit manages the vote counting
and sends the results to an electronic election bulle-
tin board for publication. Each vote repository (VR1,
VR2, VR3) is under the responsibility of an election
representative. Figure 4 depicts this phase.

As ballots are encrypted using the election repre-
sentative’s public keys, the counting unit starts count-
ing votes on a VR when the corresponding election
representative provides her private key. This happens
only after the election finishes under the coordina-
tion of the election authority. Election representatives’
private keys are valid only for the current election and
are informed to the counting unit on secured physi-
cal media like a smart card (event 1, Figure 4). This
scheme is adopted to avoid partial counting.

After the counting phase is enabled, the counting
unit sends messages requiring all ballots stored in the
three repositories (event 2). Each repository contain-
ing ballots replies to the messages (event 3).

3 Ballots

VR1

VR2

VR3

Votes
repositories

Public key infrastructure

(II)

(I)

Electronic
election
bulletin
board

2 ReqBallot

Electronic
ballot box

4 PartialCounting

5 Ack

1 EnableCountBR Election
representatives

Counting
unit

Figure 4. Overview of the vote counting phase. Here, the votes are counted and published in a bulletin board. The election

representatives should provide their credential to allow the counting to proceed once the election phase finishes. Altogether with the

vote tabulations, vote receipt IDs are also published, allowing each voter to check if his or her vote was correctly counted.

E-voting

	 www.computer.org/security/							■						ieee	seCurity	&	PrivaCy	 19	

The electronic election bulletin board receives vote
totals for each candidate from the electronic ballot
box. Once counting starts, partial bulletins are auto-
matically sent to the election bulletin board database.
Summary reports can be published in a Web page. For
instance, partial bulletins can be computed at several
levels, like polling stations, districts, cities, and states.
To confirm that the election bulletin board received
and stored the election bulletins and vote receipt list
correctly, it replies to the counting unit with an ac-
knowledge message (event 5).

The list of RIDs provided by the voting manag-
er gives the information the counting unit needs to
identify votes that should be published on the elec-
tion bulletin board. Voters will check those votes
against their receipts to ensure that their votes were
correctly counted.

Interactions with the public key infrastructure
(events I and II, Figure 4) include digital signature
verification, given that all the transactions between
entities are signed.

Implementation
We developed a proof-of-concept prototype using
Web services (www.w3.org/TR/ws-arch) and EML
(www.oasis-open.org/committees/election). Web ser-
vices provide standard services and security while
EML provides standard XML schemes to define vot-
ing data structures.

EML schemes are organized according to three
phases: pre-election, election, and post-election. Our
prototype uses several EML schemes for each phase.
In pre-election, it uses EML schemes 210, 220, and
230 for eligible candidates, and 310 and 330 for en-
abled voters. We didn’t detail the pre-election phase
in our proposed architecture.

We developed the prototype modules using Apache
Tomcat to run Java Servlets and Java Server Pages
(tomcat.apache.org) and Apache Axis to provide SOAP
(Simple Object Access Protocol) support, for commu-
nication among system entities. The Apache Rampart
module (ws.apache.org/axis2) for Axis provides support
to WS security (www.oasis-open.org/committees/

Registration agent
(RA)

Credential
controller

Database
manager

Fingerprint
template generator

Voter registration
controller

System
logger

Cryptography
control interface

Authentication
controller

Ballot/BID
manager

RA interaction
manager

Axis

Voting manager
(VM)

Ballot/BID
manager

Database
manager

Fingerprint
template checker

Voting manager
controller

System
logger

Cryptography
control interface

Authentication
controller

Ballot
manager

VC interaction
manager

Electronic election
bulletin board

Electronic
ballot box

Apache Tomcat

System
logger

Cryptography
control interface

Vote counting
publication
manager

Database
manager

System
logger

Cryptography
control interface

Counting unit
manager

Vote repository
manager

Database
manager

XKMS (XML key management infrastructure)

Transport layer (HTTP)

Rampart

Identi�cation, voting checking,
and persistent storage

Voting
console (VC)

Axis
TLS/SSL

Axis
Rampart

Voter

Axis
Rampart

Apache Tomcat Apache Tomcat Apache Tomcat

Figure 5. Prototype architecture. The prototype is composed by four Web Services modules and an embeddable XML database. Each

Web service implements a distinct entity of the voting system. The user interface is offered through a Web page.

E-voting

20	 ieee	seCurity	&	PrivaCy							■						may/June	2008

wss). Figure 5 shows the main modules of the proto-
type developed as Apache TomCat applications.

During the voting phase, the logging system re-
cords all relevant actions of each entity using the Tom-
Cat logging facility. However, relevant information in
the voting system involving registration, voting, and
counting phases (according to the EML 480 scheme)
is stored in a database. We adopted an Oracle data-
base (www.oracle.com/database/berkeley-db/xml) for
each repository and XML XPath/XQuery for data-
base operations.

The cryptography control interface uses Apache
Rampart to send XML-encrypted and -signed mes-
sages to verify signatures using the XML Key Man-
agement System (XKMS, www.w3.org/TR/xkms).
The Open XKMS (sourceforge.net/projects/xkms)
implementation was used in the prototype.

The trust relationship among entities is based in
a locally maintained list of trusted public keys given
that the Apache Rahas (WS-Trust) and STS (Secure
Token Service) facilities aren’t yet available.

In Figure 5, the authentication controller of regis-
tration agent, the fingerprint template generator, the
authentication controller of voting manager, and the
fingerprint template checker communicate directly
with voters, getting and verifying their identifica-
tion, which is stored according to the EML 420 and
430 schemes.

The BID manager, along with the credential con-
troller, provides voting credentials; the voter registra-
tion manager implements the core of the registration
agent. Using the scheme defined in EML 410, the BID
manager generates the BIDs, and the ballot manager
makes the initial candidate marks in each three-ballot
set; the voting manager controller and the voting
console interaction manager constitute the core of the
voting manager.

The voting console implementation is a Web page
running a JSP voting application for the voter.

During the post-election (counting) phase, the vote
repository manager and the counting unit (the core of
the electronic ballot box) provide vote counting bul-
letins sent for publication in the electronic election
bulletin board. EML 510 defines the counting format,
whereas EML 520 defines the publication formats. Se-
cure Web pages provide electronic election bulletin
board public access.

If voter coercion and vote trading are real risks, we
suggest the voting console be placed in a kiosk under
external vigilance during the election process. Like in
conventional elections, the voter should use the vot-
ing console alone.

Design diversity
We believe an e-voting system should be implemented
using standard interfaces and design diversity. Indeed,

a well-known entity must define the requirements
and interfaces for the e-voting system based on well-
known standards. The use of standards enables devel-
opers to design and implement software components
compliant to a system specification.

A homologation process determines which soft-
ware is compatible with the adopted standards. Thus,
one can select approved software to dynamically build
the electronic voting system without depending on a
single vendor or specific technology.

For instance, on Election Day, each entity mod-
ule could be deployed from one component chosen at
random from a set of previously homologated compo-
nents. The same strategy can be applied to all system
components, providing better resistance against soft-
ware fault and tampering.

Several efforts have tried to define computer elec-
tion standards. For example, the IEEE P-1583 voting
equipment standard focuses on the development of
voting machines like the direct recording electronic
(DRE) ones. The IEEE P-1622 voting systems elec-
tronic data interchange defines formats and protocols
for election data exchange.

W e believe that our proposal should be deployed
in a real environment, to evaluate its behavior

in a large-scale experiment. In such an environment,
it will be possible to better evaluate its usability, flex-
ibility, and scalability.

As our proposal is structured as distributed com-
ponents interacting through Web services, it can be
used to support elections in a large geographical area
with small deployment costs. If vote trading and voter
coercion aren’t considered a problem, or if reliable
mechanisms can be used to avoid them, our proposal
can be also used to support Internet-based elections.

Finally, although we explained our architecture in
terms of general elections, it could be used as well for
other kinds of elections, in corporate, academic, and
other contexts.

References
M. Byrne, K. Greene, and S. Everett, “Usability of
Voting Systems: Baseline Data for Paper, Punch Cards,
and Lever Machines,” CHI 2007 Proc., Politics & Activ-
ism, ACM Press, vol. 1, 1997, pp. 171–180.
M. Naor and A. Shamir, “Visual Cryptography,” Ad-
vances in Cryptology, Eurocrypt 94, Springer, vol. 950,
1995, pp. 1–12.
J. Benaloh and D. Tuinstra, “Receipt-Free Secret-
 Ballot Elections,” Proc. 26th Ann. ACM Symp. Theory of
Computing, 1994, ACM Press, pp. 544–553.
D. Chaum, “Untraceable Electronic Mail, Return Ad-
dresses and Digital Pseudonyms,” Comm. ACM, vol.
24, no. 2, 1981, pp. 84–88.

1.

2.

3.

4.

E-voting

	 www.computer.org/security/							■						ieee	seCurity	&	PrivaCy	 21	

B. Schneier, Applied Cryptography, 2nd ed., John Wiley
& Sons, 1996, pp. 125–133.
Oasis, “The Case for Using Election Markup Language
(EML),” white paper, Oasis Election and Voter Services
TC, 2007; www.oasis-open.org/committees/election.
R. Mercuri, Electronic Vote Tabulation Checks and Bal-
ances, doctoral dissertation, Dept. of Computer and In-
formation Systems, Univ. of Pennsylvania, 2001.
P. Neumann, “Security Criteria for Electronic Voting,”
Proc. 16th Nat’l Computer Security Conf., US Nat’l Inst.
of Standards and Technology; www.csl.sri.com/users/
neumann/ncs93.html.
R. Rivest and W. Smith, “Three Voting Protocols:
ThreeBallot, VAV, and Twin,” Usenix/Accurate Electronic
Voting Technology Workshop, 16th Usenix Security Symp.,
2007; http://people.csail.mit.edu/rivest/RivestSmith
-ThreeVotingProtocolsThreeBallotVAVAndTwin.pdf.
D. Chaum, “Blind Signatures for Untraceable Pay-
ments,” Advances in Cryptology (Crypto 82), Plenum,
1982, pp. 199–204.
A. Fujioka, T. Okamoto, and K. Ohta, “A Practical Se-
cret Voting Scheme for Large-Scale Elections,” Advanc-
es in Cryptology (Auscrypt 92), LNCS, vol. 718, 1993,
pp. 244–251.
L. Norden, “The Machinery of Democracy: Voting
System Security, Accessibility, Usability, and Cost,”
Brennan Report, The Brennan Center for Justice,
2006.
D. Jefferson et al., “Analyzing Internet Voting Secu-
rity,” Comm. ACM, vol. 47, no. 10, 2004, pp. 59–64.

Altair O. Santin is an associate professor at the Pontifical

Catholic University of Paraná State. His research interests

include security in distributed systems, access control, and

public key infrastructure. Santin has a PhD in electrical en-

gineering from the Federal University of Santa Catarina, in

Brazil. He is a member of the IEEE Computer Society, the ACM,

and the Brazilian Computer Society. Contact him at santin@

ppgia.pucpr.br.

Regivaldo G. Costa is a security analyst of the Brazilian

Parliament’s Electronic Voting System Division, Chamber of

Deputies. His research interests include network security and

management, distributed systems, and grid computing. Costa

has a Master’s Degree student in distributed systems research

at the graduate program in computer science of the Pontifical

Catholic University of Paraná State. Contact him at regivaldo.

costa@camara.gov.br.

Carlos A. Maziero is a full professor at the Pontifical Catholic

University of Paraná State. His research interests include secu-

rity and resource management in operating systems. Maziero

has a PhD in computer science from IRISA (University of Rennes

I) in France. He is a member of the ACM, the Brazilian Com-

puter Society, and is the Brazilian delegate at the IFIP Technical

Committee TC11. Contact him at maziero@ppgia.pucpr.br.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Lower nonmember rate of
$29 for S&P magazine!

Watch for our upcoming issues!

July/Aug.: RFID
Sept./Oct.: Virtualization
Nov./Dec.: Process Control Security
Jan./Feb. 2009:
 Monoculture/Diversity
Mar./Apr. 2009:
 Digital Forensics

www.computer.org/
services/nonmem/spbnr

Subscribe now!

