
PPolicy Management Architecture Based on
Provisioning Model and Authorization Certificates

Arlindo L. Marcon Junior, Altair O. Santin, Luiz A. de Paula Lima Jr, Maicon Stihler
Pontifical Catholic University of Paraná – Graduate Program in Computer Science

Curitiba – Paraná – Brazil
(almjr, santin, laplima, stihler)@ppgia.pucpr.br

ABSTRACT
The unified management of user rights and access control policies
in a corporation with many units is not easy to implement.
Moreover, most of the distributed access control systems are
complex and heterogeneous, making it hard to maintain a unified
control over all fine grained policies employed by each unit. This
paper proposes a unified administration of policies for corporation
environments by applying a management scheme based on
authorization certificates. These certificates allow the derivation
of new fine grained policies in the domain of each unit, assuring
that no corporation policies will be violated. These new policies
update automatically the corporation repository, preserving the
unified management of user rights, and then update the
corresponding policy repository of each unit. Our proposal
provides a real loosely coupled policy management scheme using
a serverless public key infrastructure and the Web Services
technology. The prototype shows the proposal viability.

Categories and Subject Descriptors
D.4.6 (Operating Systems): Security and Protection – access
controls, authentication, cryptographic controls.

General Terms
Management, Security.

Keywords
Policy Management, Policy Provisioning, Authorization
Certificates and Web Services Security.

1. INTRODUCTION
The expansion of communication networks allows geographically
separated corporations to envisage both the integration of their
computer systems and the provision of services through the
Internet. Nowadays, interactions involving entities such as
corporations, cooperating partners or customers are becoming
everyday occurrences. In such a scenario, traditional assumptions
for establishing and managing rights and enforcing access control
rules are no longer viable. The entities need to authenticate and
trust each other in order to exchange sensitive information and to
share and access resources.

Therefore, in order to cope with the heterogeneity of platforms
some standardization may be required to deal with information
exchange, management of rights, establishment of trust
relationships and so on.
Web Services (WS) have been quickly adopted by the corporate
world. However, WS inherit policy control mechanisms from the
traditional security architectures. Therefore, they depend strongly
on providers (servers) in the corporation’s domain and on
centralized access control mechanisms. Additionally, relationships
among the distributed entities depend on a trusted third party –
normally a unique domain authentication service.
Although global administration of corporation policies facilitates
the imposition of rules to the distributed environment, it is often
hard for the corporation administrators to define specific rules for
a large number of local resources located at the corporation units.
It would be unfeasible to force a policy administrator to write fine
grained policy rules applicable to many different subjects in order
to maintain the consistency of the corporation policies. Typically,
the adopted strategy is to delegate the management of local
resources to a local administrator, at the cost of no guarantees of
the correct enforcement of corporation’s headquarters policies.
Cooperation amongst corporation units in a project requires access
to resources located at different company sites. Moreover, a
project member may need to work temporarily at different sites of
the same company. This requires an access control model that
permits both pre-established and dynamic policies configuration at
the unit’s provider. Appling a bootstrap method for pre-
configuring (provisioning) policies at units’ providers, it becomes
possible to decrease the dependence of the corporation security
entities, but a synchronization mechanism is required to maintain
the consistence of these policies.
Certificates can be applied to manage access rights, reducing the
dependency of a central authorization server and decreasing the
number of messages exchanged between the entities of the
architecture. Nevertheless, the processing delay for securing an
application based on certificates is high.
This paper proposes a unified administration of corporation
policies for service oriented environments. Moreover, the
management of access rights is based on certificates and pre-
configured policies providing autonomy to the corporation’s units
and decentralizing securely the administration of rights without
violating the corporation policies. In other words, a principal that
wants to access a corporate unit’s local resource, for example,
should simply present a certificate to the local guardian of that
resource and will obtain access authorization automatically. The
granting of local rights must be derived from the set of rights
assigned through authorization certificates received from the
corporation’s headquarters. This scheme avoids violations of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

1594

headquarters policies. Additionally, such local granting procedure
will update the repository of corporation policies, without
requiring any intervention from security administrators.
The remainder of this paper is organized as follows. Section 2
addresses some security issues regarding Web Services. Section 3
briefly introduces provisioning and authorization certificates.
Section 4 presents our proposal, while Section 5 describes an
example scenario. Section 6 discusses related work. Finally,
conclusions are drawn in Section 7.

2. WEB SERVICES
Web Services adopt a set of specifications to provide platform
neutral message exchanges and end-to-end security.
WS-Security [1] aggregates extensions to Simple Object Access
Protocol (SOAP) messages providing support for timestamp,
signature and encryption and for representing security credentials
(e.g. assertions of SAML, Security Assertion Markup Language).
The Security Token Service (STS) assures the validity of a
security credential or promotes the translation between them.
WS-Trust [2] extends the WS-Security using a request-reply
message model for the transportation of credentials in a secure
way. Credentials are obtained from the STS and are used to
achieve intra and inter-domains trust relationships.
WS-Policy [3] and WS-SecurityPolicy [4] define the security
context and the minimal requirements for a secure interaction
between Web Services.
The XML Key Management Service (XKMS) is a service to assist
the clients to store and retrieve their keys [5]. The XKMS
conceals from the programmer the particular details in the
management of each infrastructure (e.g. SPKI/SDSI) by the
adoption a neutral scheme to operate with store/retrieve of keys.
The Service Provisioning Markup Language (SPML) defines a set
of standard operations for the pre-configuration of distributed
objects [6], i.e. the Web Services are preset with policies that will
regulate the client actions during the services access.
The SAML specifies the transportation of information in a
standard format trusted by other Web Services, considering there
are pre-established relationships. SAML [7] defines three types of
expressions (authentication, attributes, and authorization) which
are created by a trusted third party (e.g., STS) and inserted into an
assertion that will be associated to a principal.

Subject PEP

Context
HandlerPDP

PAP

Resource

PIP

Access
Request

Request / Response
Context

Evaluate
Request

Policies

Query
Attributes

Resource
Access

Figure 1. XACML Architecture [8]

The Extensible Access Control Markup Language (XACML)
defines a XML-based language to write access control policies
and a server-based architecture for their evaluation [8]. XACML
applies the Policy Enforcement Point (PEP) and the Policy
Decision Point (PDP) entities, defining a request-response context
for a standard communication between them (event

Request/Response Context, Figure 1). In such architecture, the
Context Handler is an entity that retrieves additional information
(e.g., subject and resource attributes) from the Policy Information
Point (PIP) whenever needed (event Query Attributes). Moreover,
the Context Handler intermediates the communication between
PDP and PEP in order to maintain the messages that they
exchange in a standard format. The PAP (Policy Administration
Point) stores and retrieves all policies (event Policies) for the PDP
evaluation in a standard format (event Evaluate Request).

3. PROVISIONING MODEL AND
AUTHORIZATION CERTIFICATES
Using the provisioning access control model, the PEP sends a
message to the PDP at initialization time, informing its features
and it gets back the corresponding policies regarding the resources
it manages. All retrieved policies from PDP’s PAP are stored in a
PEP’s LPAP (Local PAP). In this way, the authorization policy
can be evaluated locally by the LPDP (Local PDP). According to
such evaluation, the access request can be either released or
blocked by PEP.
The provisioning model is more autonomous than the traditional
security architectures, because the PEP does not depend on an
external entity (PDP) to evaluate an access request.
An egalitarian model is adopted both in SDSI (Simple Distributed
Security Infrastructure) and SPKI (Simple Public Key
Infrastructure). This means that that any principal (user) may
issue authorization certificates. Rights are granted by delegation
from a principal to another one, creating a chain of certificates. A
principal (subject) of an authorization certificate becomes the
principal issuer of the next certificate in the chain. The digital
signature used on certificates ensures the authenticity of rights
delegation and avoids authorization forgery.
An SPKI/SDSI example of authorization certificate coded in
S-Expression [9] is shown in Figure 2. Rows 2 to 8 define the
certificate issuer (rights’ grantor), whilst rows 6 to 8 identify the
public key that represents the issuer. Rows 9 and 10 contain the
subject of the certificate (rights’ grantee). Row 11 indicates that
the certificate can be delegated. Row 12 contains the authorization
granted by the certificate. In this case, the subject has writing
rights for all files in the directory developer at
www.corporation.com. In Figure 2, only the main pieces of the
authorization certificate are shown.

1. (cert
2. (issuer
3. (public-key
4. (rsa-pkcs1-md5
5. (e #11#)
6. (n |ALNdAXftavTBG2zHV7BEV59gntNlxtJYqfWIi2kTcFIgIPSjKlHleyi9s
7. 5dDcQbVNMzjRjF+z8TrICEn9Msy0vXB00WYRtw/7aH2WAZx+x8erOWR+yn
8. 1CTRLS/68IWB6Wc1x8hiPycMbiICAbSYjHC/ghq2mwCZO7VQXJENzYr45|))))
9. (subject
10. (object-hash (hash md5 |vN6ySKWE9K6T6cP9U5wntA==|)))
11. (propagate)
12. (tag (http://www.corporation.com/developer (* set write))))

Figure 2. SPKI/SDSI Authorization Certificate

4. THE ARCHITECTURE
The main goal of this work is to provide the decentralization of
policy administration and management of access rights,
maintaining the unified control in the corporation’s headquarters.
Let us assume the corporation is composed of different units
located in distinct countries. A unit can be a provider or a client,
and a user can be client of several providers belonging to the same
corporation.

1595

The decentralization of policiy management is achieved through
the delegation of rights through authorization certificates.
Administrators of local providers can only derive rights from the
chain of authorization certificates delegated by the corporation’s
administrator. The rights granted by the local administrator are
used to automatically create new policies and to update the
repository of policies in the corporation’s headquarters. The
provisioning (preset) of policies is used to store them in the
repositories of each provider.
Figure 3 shows an overview of the proposed policy control
architecture. The Corporation PAPCo (Policy Administration
Point) maintains all the policies for all system resources, i.e. the
PAPCo is the only policy repository that is subject to
administrative updates (Management event). The LPAPPr (Local
PAPPr) stores a local copy of all policies specifically applied to the
resources that Provider´s PEPPr controls (Provisioning event).

Figure 3. Overview of proposed architecture

The public key infrastructure, which is independent of the
underlying technology, supports the delegation of rights via a
chain of authorization certificates (Credential event). This chain
allows keeping track of who delegates rights to whom. Moreover,
the corporation administrator specifies which rights can be
delegated to others. Such procedure prevents violations in rights
granting in the provider’s domain, which may compromise the
corporation policy rules. Chains of authorization certificates grant
rights to users (principals) without the need of administrators’
intervention. Also, a properly authorized principal may forward
rights to other principals.
When a principal sends a chain of authorization certificates
together with an access request (Access Request event) to a
guardian (Provider’s PEPPr), the latter forwards it (Validate
Credential event) to a Credentials and Tokens Manager (CTMPr).
The CTMPr is responsible for reducing (converting) the chain to a
single certificate.
Based on the reduced (single) certificate, a specific authorization
credential is created and sent to the mechanism implementing the
PEPPr. Additionally, such reduced certificate automatically
updates the PAPCo (New Policy event) as an administrative action
that produces specific policies to each resource and user
(principal). The LPAPPr is updated on demand (Provisioning
event), in order to keep its consistency with the corporation
policies stored in PAPCo.If for some reason the LPAPPr cannot be
updated, a pendency is generated via a notification sent to the
Corporation Administration of Credentials and Policies (CACP).

Such scheme favors decentralization of policy administration and,
at the same time, favors the synchronization of repositories.
By using certificates, it is possible to create mutual trust
relationships between the CTMs. The Trust Relationship (Figure
3) is based on mutually issued CTMs credentials. Such trust
relationships were used for administrative purposes, mainly to
allow the granting of rights between administrators (e.g. CTMCo to
CTMCl). In other words, for the administrator of CTMCo to be able
to grant rights to CMTCl, it is necessary to establish a mutual Trust
Relationship. Such a procedure is the only way a principal can
securely know the public key of another principal, given that a
serverless public key infrastructure has been used. Trust
relationships are considered administrative needs, because the
administrators of CTM do not use delegated rights. Normally,
such rights are partially forwarded (delegated) to users within a
Client Domain (Credential event).
The transposition of provider domains is easily obtained using
authorization certificates, i.e., clients from diverse corporation’s
domains (sites) can obtain access to corporation providers without
the need of an account either on the headquarters or on the
provider side. The authorization certificates carry all the attributes
needed to evaluate an access request. The service provider is not
required to contact authorities in the client domain to obtain
additional attributes, thus the provider can take an authorization
decision based only in the chain of certificates.

5. APPLICATION SCENARIO
The administration of access control policies is not an easy task,
especially within an environment having employees of several
different ranks and many departments distributed across several
corporation units. Additionally, access control systems are
heterogeneous, since they must fulfill unit-specific requirements.
At the bootstrap phase, the provisioning is carried out employing
SPML. The Provider PEPPr sends a message to PDPCo (event 1,
Figure 4) asking for the configuration of its policy repository. The
PDPCo, in its turn, retrieves the corresponding policies stored in
the PAPCo (event 2) and send it to the LPAPPr (event 3).

Figure 4. Policy Provisioning

According to the SPML (Figure 4), the proposed architecture
(Figure 3) should be viewed as described below. The PDPCo
represents the PSP (Provisioning Service Provider), while the
PAPCo – the repository of XACML policies – acts as a PSO
(Provisioning Service Object). The PEPPr represents the RA
(Requesting Authority), and the LPAPPr represents the PST
(Provisioning Service Target). The PST stores all the provisioned
policies. The provisioning of all policies is only executed at the

1596

PEPPr bootstrap. PDPCo can administer many PEPPr (each one in a
specific corporation unit, for instance) and each PEPPr can manage
many different resources.
Trust Relationships established between the Credentials and
Tokens Manager (CTMs, Figure 3) are based on SPKI/SDSI
mutual CTM group inclusion. In other words, each CTM inserts
the other CTM in its local SPKI/SDSI group and issues a
certificate denoting group membership (a SDSI name certificate).
The group membership serves as the basis to ensure that an entity
which triggers a message can be trusted.
In a typical scenario, a principal issue an access request for a
given resource at any given time. The Context Handler attached to
PEPPr, is responsible for forwarding this request to the LPDPPr
which queries LPAPPr. If the LPDPPr does not find any policy that
applies to that resource, then it is not possible evaluated the access
requests locally. That is, to get access to a resource, a principal
should be inserted in the policy rules of the LPAPPr. In this case,
the LPDPPr notifies the PEPPr that it is not able to evaluate the
request.
The PEPPr, in its turn, offers an alternative to the user, i.e. the user
may obtain the required rights through a chain of authorization
certificates. Thus, employing the challenge-response protocol
[10], the PEPPr sends back to the user (principal) a message
containing a WS-Policy document informing which rights are
required to get access to the resource.
A user on the client’s domain gets authentication from the CTMCl
through the digital signature of a request containing the target
resource (event 1 in Figure 5). Assuming that the CTMCl is the
administrator of a department, for instance, then the rights coded
in the authorization certificate can be delegated. Thus, if the
required rights to access the resource are locally available on a
chain, the CTMCl delegates it to user. If not, the CTMCl acquires
the rights for the user through the Trust Relationship (event 2).

Figure 5. Getting SPKI/SDSI Credential

When the authorization chain is finally obtained, the CTMCl sends
it back to the user, which sends both the request and the
certificates to the PEPPr (event 3). The PEPPr forwards the chain of
certificates to the CTMPr (event 4) in order to obtain the SAML
assertion. After that, the CTMPr sends the chain to the XKMS,
which reduces the SPKI/SDSI certificate chain and sends back a
single certificate to CTMPr.
The CTMPr generates an SAML assertive (native credential in
Web Services) based on the rights extracted from the single
certificate and marshals it in a WS-Trust reply message (event 5,
Figure 5). The CTMPr sends back a SAML assertion to the PEPPr,

which releases the access to the resource (event 7, Figure 5)
according to the expressions holding in the unmarshalled assertion
(event 6). The SAML assertion contains the authorization and
attributes expressions.
In addition to providing the SAML assertion, even though it is
still based on the reduced certificate, the CTMPr generates an
XACML policy coded in an SAML message that will be sent to
the PAPCo for update purposes (event 8). This procedure is done
in accordance with the SAML 2.0 profile of XACML v2.0 [11].
The PAPCo stores a local copy of the received policy and sends a
policy update message addressed to the LPAPPr through the
SPML infrastructure (Figure 4). This automatic policy creation
procedure is equivalent to a policy insertion action performed by a
human administrator.

5.1 Prototype Implementation
The prototype was implemented in Java integrating the following
projects: OpenSPML (www.openspml.org), OpenSAML and
SAML 2.0 Profile for XACML v2 (www.opensaml.org), and
SUN XACML (sunxacml.sourceforge.net). The TomCat server
(tomcat.apche.org), the SOAP engine Axis2 (ws.apache.org/
axis2), the Rampart module for WS-Security and WS-Trust
support, and the Apache Neethi for WS-Policy support
(ws.apache.org/commons/neethi) from Apache Software
Foundation were equally used.
The repositories of policies used Oracle Berkeley Data Base XML
(www.oracle.com), and the SPKI/SDSI APIs implemented by
Morcos [12].
Figure 6 shows the main tags of an XACML policy generated
from a reduced chain of SPKI/SDSI certificates. Row 5 shows the
policy subject (principal SPKI/SDSI) and row 10 indicates the
target resource. Considering that the certificate chain is valid, row
14 uses default value “Permit”, otherwise the policy would not be
generated. Row 17 defines the authorized operation. Since there is
only one XACML policy generated from each reduced certificate
chain, we adopted the “first-applicable” XACML rule
combination algorithm (row 1).

1. <Policy PolicyId="WritePolicy" RuleCombiningAlgId="first-applicable">
2. <Target>
3. <Subjects> <Subject> <SubjectMatch MatchId="function:string-equal">
4. <AttributeValue DataType="string">
5. vN6ySKWE9K6T6cP9U5wntA==
6. </AttributeValue>
7. </SubjectMatch> </Subject> </Subjects>
8. <Resources> <Resource> <ResourceMatch MatchId="function:anyURI-equal">
9. <AttributeValue DataType="anyURI">
10. http://www.corporation.com/developer
11. </AttributeValue>
12. </ResourceMatch> </Resource> </Resources>
13. </Target>
14. <Rule RuleId="WriteRule" Effect="Permit">
15. <Target> <Actions> <Action> <ActionMatch MatchId="function:string-equal">
16. <AttributeValue DataType="string">
17. write
18. </AttributeValue>
19. </ActionMatch> </Action> </Actions> </Target>
20. </Rule>
21. </Policy>

Figure 6. XACML policy based on Figure 2

SPKI/SDSI authorization certificates carrying more than one
access right for the same principal and referencing the same
resource can generate XACML policy rules with more than one
<Action> tag (rows 15 to 19). In Figure 6, the policy validity
condition supplied by SPKI/SDSI certificate and some other none
essential XML tags were omitted to facilitate the understanding.

1597

It is important to notice that the scenario explored in this paper
can be extended to more complex ones.

5.2 Prototype Evaluation
The evaluation was done over the scenario presented in Section 5.
Our goal was to observe time consumption in the main entities of
the proposed architecture against the total time of a request.
On the local evaluation (provisioning model), the PEPPr spent
13% of the RTC (Response Time for the Client) dealing with
XML messages and enforcing the decisions received from the
LPDPPr, which spent 2% of the RTC.
On the evaluation using only SPKI/SDSI certificates, the PEPPr
spent 20% of the RTC for marshalling/unmarshalling messages
(chain with 2 certificates) and enforcing the resulting SAML
assertion. The CTMPr spent an amount of 60% of the RTC – 40%
of which for validating the chain of certificates and creating
XACML policies, and 5% for generating SAML assertion. The
remainder time (15%) is spent on internal
marshalling/unmarshalling of messages on the CTMPr.
The usage o SPKI/SDSI has shown that with the use of
authorization certificates is computationally more costly than
provisioning. However, one should notice that SPKI/SDSI is only
applied to create a policy that does not exist, without human
interference. From that point on, the provisioning is always
applied in the subsequent evaluation of the same access request.

6. Related Work
The architecture presented in [13] proposes the use of a trusted
intermediary that should be responsible for dealing with distinct
security technologies. The mediator retrieves attributes from the
client domain and exchanges SPKI/SDSI and X.509 credentials
for SAML assertions to obtain interoperability. However, the
proposal induces a tight dependency among the architectural
entities, which is contrary to the desired loose coupling of Web
Services.
The work in [14] proposes an access control system based on
attributes which can cross security domains, enabling easy
interactions of heterogeneous systems. The proposed model
provides access to Web Services based on a signed digital
credential, and additional attributes provided by trusted
authorities. The proposed approach is based on the traditional WS
security. Thus, this proposal suffers of the same strong coupling
problem of the previous work.

7. Conclusion
This paper presented a proposal to maintain the unified control of
access rights and access control policies to be applied within a
corporate environment, using a scheme for distributed policy
writing, evaluation and enforcement. In fact, policies are written
on demand in each provider domain, without the intervention of
the administrator, and they are automatically and securely updated
on the PAPCO.
The proposed approach is compliant with the server-based model
of Web Services. Nevertheless, it does not depend on an
infrastructure based on authentication and authorization servers to
cross security domains, thus favoring loose coupling among the
architectural entities.
The architecture defined requires less message exchanging than
traditional security commonly applied to Web services, being
more appropriate to deal with the local autonomy of the provider.

The architecture tolerates a possible unavailability of the CACP,
in the corporation’s headquarters, since a local copy of the
policies applicable to each provider is preset during the bootstrap
phase. Moreover, in the case the local policies do not contain rules
for a certain principal, the SPKI/SDSI certificate chain can grant
rights to principals even if the CACP is inactive. This approach is
distinct from the traditional ones that, in such cases, would simply
deny the request.

The prototype implementation based on SPKI/SDSI and
provisioning, deals with the requirement of loose coupling of
Web Services. Besides, it gives operational autonomy and reduced
the dependence on messages exchanges between the architectural
entities. Additionally, this combination shows that it is possible to
reduce the human and computational costs involved in policy
management while improving Web Services security.

8. REFERENCES
[1] OASIS. Web Services Security: SOAP Message Security

1.1 - WS-Security v 1.1. Access: Sep. 2007. Available at:
http://www.oasis-open.org/specs/index.php#wssv1.1.

[2] OASIS. WS-Trust 1.3 Access: Sep. 2007. Available at:
http://www.oasis-open.org/specs/index.php#wstrustv1.3.

[3] W3C. Web Services Policy Access: April 2008. Available
at: http://www.w3.org/TR/ws-policy/.

[4] OASIS. WS-SecurityPolicy v 1.2. Access: Jan. 2008.
Available at: http://www.oasis-open.org/specs/
index.php#wssecpolv1.2.

[5] W3C. XML Key Management Specification - XKMS v 2.0.
Access: Sep. 2007. Available at: http://www.w3.org/TR/
xkms2/.

[6] OASIS. Service Provisioning Markup Language - SPML v
2. Access: Sep. 2007. Available at: http://www.oasis-
open.org/specs/index.php#spmlv2.0.

[7] OASIS. Assertions and Protocols for the OASIS Security
Assertion Markup Language - SAML v 2.0. Access: Sep.
2007. Available at: http://www.oasis-open.org/specs/
index.php#samlv2.0.

[8] OASIS. eXtensible Access Control Markup Language -
XACML v 2.0. Access: Sep. 2007. Available at:
http://www.oasis-open.org/specs/index.php#xacmlv2.0.

[9] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory. RFC 2693, 1999.

[10] NIST. Entity Authentication Using Public Key
Cryptography. FIPS PUB 196. Access: Sep. 2007. Available
at: http://csrc.nist.gov/publications/fips/fips196/fips196.pdf.

[11] OASIS. SAML 2.0 profile of XACML v2.0 Access: Sep.
2007. Available at: http://www.oasis-open.org/specs/
index.php#samlv2.0.

[12] A. Morcos, "A Java Implementation of Simple Distributed
Security Infrastructure," in EECS. Master Dissertation.
Massachusetts Institute of Technology, 1998.

[13] E. R. Mello and J. S. Fraga, "Mediation of Trust across Web
Services," in ICWS’05. IEEE, 2005.

[14] S. Hai-bo and H. Fan, "An Attribute-Based Access Control
Model for Web Services," in proceedings of PDCAT'06,
IEEE, 2006.

1598

