
Va

Abstract — The decentralization of corporate policy
administration aiming to maintain the unified management of
user permissions is a hard task. The heterogeneity and
complexity of corporate environments burdens the security
administrator with writing equally complex policies. This paper
proposes an architecture based on Web Services, policy
provisioning, and authorization certificates, to build up a loosely
coupled unified administrative control for corporate
environments. A certificate-based permission management
scheme is used to derive new policies in the local domains of each
branch. These new policies will update the corporate repository
which, in turn, will configure the corresponding policies in the
local domains of each branch. The Web Services technology
provides the underlying protocols for the development of a
prototype which shows the feasibility of our proposal.

Index Terms — Policy Management, Web Services Security,
Authorization Certificates.

I. INTRODUCTION

HE Service Oriented Architecture (SOA) is a model that
has shown fast acceptance in corporation environments,

since enterprises envisage the integration of their computer
systems and providing services through the Internet.

Centralized corporation policy management facilitates the
imposition of rules in distributed environments, but in some
cases it is unfeasible for corporate administrators to define
specific rules for a large number of local resources in remote
branches. Normally, the strategy adopted is to delegate the
management of branches’ resources to local administrators,
but how to ensure that corporate policies have been applied
correctly?

Cooperation amongst corporation branches in a project, for
instance, requires access to resources located at different
company sites. In such a case, project members need to work
temporarily at other company sites. This requires an access
control model that supports flexible policy configuration.

Access control policies based on provisioning provide
flexibility in policy configuration, reducing the tight coupling
among branches and a main site. However, a synchronization
mechanism is required to maintain the branches’ policy
repositories consistent.

One approach to achieve a loosely coupled architecture is to
decentralize security administration, but this strategy requires
increased message exchanging among the entities that enforce
the security controls in corporation environment. The main
disadvantage of this approach is the higher network overhead.

One way to facilitate policy management in distributed and
heterogeneous systems is the adoption of SOA standards,
which contribute to loose coupling among the entities of the
architecture. One of the most well-known and adopted
technologies to implement SOA nowadays is Web Services

(WS). In spite of offering interface independence, such
implementations of SOA employ security mechanisms that
impose a tight dependence among their policy control entities.

WS standardize the information exchanges among their
entities in order to cope with eventual corporation platform
heterogeneity. However, WS inherits policy control
mechanisms from traditional security architectures. Thus,
relationships among distributed entities of the policy control
architectures depend on trusted third parties – normally,
domain authentication services that are not easily scalable.

Our proposal is twofold. First, provisioning security
policies lowers the coupling among policy-related entities in
the architecture, reducing network overhead and making it
easier to cope with component and communication failures. At
the same time, asynchronous policy updates are still possible,
thus retaining the main advantage of traditional policy control
architectures. Second, our scheme allows branch security
guardians to derive policies for local resources in accordance
to the corporation policy scheme, using certificate-based
authorization. An important benefit is that these derived
policies can be automatically and securely incorporated to
corporate policy repositories, thus alleviating the need for
manual intervention in policy management.

The remaining of this paper is organized as follows: Section
II reviews Web Services and some security specifications
related to our proposal. Section III describes the main policy
control architectures. Section IV presents the proposal. Section
V presents an example scenario. Section VI shows the
prototype and its evaluation. Section VII discusses related
work. Finally, Section VIII draws some conclusions.

II.WEB SERVICES

The main goal of the Service Oriented Architecture (SOA) is
to provide a model by which services that carry out a given
task can be made available by a standard, loosely coupled, and
interoperable way, in order to supply a demand [1].

Web Services technology tries to implement SOA in the
best possible way [2]. A service can be implemented in any
specific programming language. The service interface
description can be published in a UDDI directory (Universal
Description Discovery and Integration) to allow access for
others [3]. The interfaces description must be written in
WSDL (Web Services Description Language) [4]. In Web
Services, the entities interact using SOAP messages (Simple
Object Access Protocol) [5], normally, on top of HTTP
(Hypertext Transport Protocol) with data serialization based
on XML (Extensible Markup Language) [6].

Web Services adopt a set of specifications to provide
end-to-end security and platform-neutral message exchanges.

Policy Control Management for Web Services
Arlindo L. Marcon Jr.1, Altair O. Santin1, Luiz A. de Paula Lima Jr.1, Rafael R. Obelheiro2, Maicon Stihler1

1Pontifical Catholic University of Paraná / Graduate Program in Computer Science
2State University of Santa Catarina / Department of Computer Science

(almjr, santin, laplima, stihler)@ppgia.pucpr.br; rro@joinville.udesc.br

T

49978-1-4244-3487-9/09/$25.00 c© 2009 IEEE

The specifications more closely related to our proposal are
discussed below.

WS-Security adds extensions to SOAP messages providing
support for signature and encryption (i.e., XML
Signature/Encryption) and for the representation of security
credentials (e.g., SAML assertions) [7]. The Security Token
Service (STS) assures the validity of a security credential or
promotes the translation between different credentials.

WS-Trust extends WS-Security through a request-reply
message model to transport credentials in a secure way [8].
Credentials are obtained from an STS, and are used to achieve
intra- and inter-domains trust relationships.

The XML Key Management Service (XKMS) is a resource
that aids clients to store and retrieve cryptographic keys [9].
XKMS hides the particular details in the management of each
key infrastructure (e.g., X.509) by adopting a neutral scheme
to operate with key storage and retrieval.

The Service Provisioning Markup Language (SPML)
defines standard operations for the configuration of distributed
objects [10].

The Security Assertion Markup Language (SAML) can be
used for information transportation in a standard format that
other Web Services may trust, based in pre-established
relationships [11]. SAML defines three types of expressions
(e.g., authentication, attributes, and authorization) which may
be created by a trusted third party (e.g., STS) and inserted in
an assertion that will be associated to a client.

The eXtensible Access Control Markup Language
(XACML) defines a XML-based language for expressing
access control policies and a server-based architecture for their
evaluation [12]. XACML uses the Policy Enforcement Point
(PEP) and the Policy Decision Point (PDP) entities, defining a
context for their intercommunication.

III. POLICY CONTROL ARCHITECTURES

In this section a server-based and a certificate-based policy
control architecture are shown.

A. Server-Based Policy Control Architectures

Server-based policy control architectures are based on two
main entities: a reference monitor and a guardian. A Policy
Decision Point (PDP) acts as a reference monitor, being
responsible for deciding to either allow or deny accesses. A
Policy Enforcement Point (PEP) acts as a guardian, honoring
the PDP decision by either releasing or blocking accesses to a
resource. In such architecture, a Context Handler
intermediates the intercommunication between PDP and PEP,
in order to maintain the messages they exchange in a standard
format. The Policy Administration Point (PAP) stores the
policies for the PDP evaluation.

Depending on how the aforementioned entities interact, two
distinct control models, namely outsourcing and provisioning,
may be employed [13].

Outsourcing Model
In the outsourcing model (pull operation mode), every request
to access a resource sent by a client (event 1, Fig. 1) is

intercepted by the PEP and then forwarded to the PDP (event
2). After that, the PDP makes a decision (event 5) based on
authorization policies, retrieved from its Policy Administration
Point (PAP, event 3), on the identity of the client, and on the
requested resource. Next, the decision is sent back to the PEP
(event 6) for it either to allow (event 6.2) or to block (event
6.1) the requested access.

In this model, the PEP has always to query the PDP in order
to have the authorization policy evaluated. This approach is
applied in the traditional access control architecture usually
adopted by Web Services.

Fig. 1. Outsourcing Model

Provisioning Model
In the provisioning model (push operation mode), at
initialization time, the PEP sends a message to the PDP (event
1, Fig. 2) to inform its features in order to get the
corresponding policies. All retrieved policies (event 2) are
stored in a Local Policy Administration Point (LPAP, event
4); local means in PEP domain. Therefore, the authorization
policy evaluation can be done locally by a Local PDP (LPDP,
event 11). According to such evaluation, the access request
(event 7) is either allowed (event 12.2) or denied (event 12.1).

 Fig. 2. Provisioning Model

In this model, there is no need for continuous message
exchange between PEP and PDP. However, asynchronous
interactions between PEP and PDP can still occur at any time.
Such interactions can be caused by policy insertion, some
update at the PDP policy repository (PAP) or by the arrival of
policy evaluation requests at the LPDP whose corresponding
policies are not present in LPAP.

Synchronizing policies
The provisioning model requires policy repository

50 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

synchronization to maintain the LPAP updated with respect to
PAP, i.e., when an update is done in PAP it needs to be
replicated to LPAP. According to RFC 3084, COPS-PR
(Common Open Policy Service protocol for support of Policy
Provisioning) is used as protocol to the perform policies
synchronization in provisioning approach. Thus, COPS-PR
establishes a TCP connection and uses keep-alive messages to
monitor the availability of the intercommunication channel,
allowing LPAP [14] to be updated when necessary. COPS-PR
applies Basic Encoding Rules (BER) to encode the message
being transported; BER also is applied to save the policies in
the Policy Information Base.

B. Certificate-Based Policy Control Architecture

The Simple Distributed Security Infrastructure (SDSI) [15]
associated to Simple Public Key Infrastructure (SPKI) [16]
provide a flexible authorization scheme to build secure and
scalable distributed systems.

In SPKI/SDSI principals are public keys, and it is based on
authorization rather than authentication. A principal could be a
client (permissions grantee) or a server (permissions grantor).
Permissions are granted by delegation from one principal to
another, forming a chain of authorization certificates – the
subject of one certificate becomes the issuer of the next
certificate in a chain (Fig. 3). The digital signature on
certificates guarantees the authenticity of delegations.

SPKI/SDSI is serverless, meaning the certificates are stored
by the client (subject of the certificate – Fig. 3) and they are
issued by server (issuer of the certificate – Fig. 3). The
permissions are coded in the tag field of certificate. As an
example, in Fig. 3 – cert (1), the Public-Key-A is granting to
Public-Key-B the permissions (update and execute) in the path
www.branch.com/researcher. The field propagate means the
permissions coded in the certificate may be granted by the
subject to another principal. The validity (i.e.: not-before and
not-after) and digital signature fields of the certificate are not
shown in Fig. 3.

Fig. 3. Authorization certificates chain (sequence)

A certificate chain can be reduced to a single certificate that
summarizes the corresponding granted permissions. To do so,
the sequence of issuer and subject of each certificate in the
chain is checked and an intersection among all certificates is
done in the tag and validity date fields. Also, the propagate
field must be present in all certificates, otherwise the not
propagated certificates finishes the sequence. Therefore, the
sequence of certificates in Fig. 3 can be reduced to
Public-Key-A granting the execute permission to Public-Key-C
on the path www.branch.com/researcher.

In order to facilitate the handling of clients’ identification,
SPKI/SDSI employ name certificates, which associate a local

name with a principal’s public key. Local names apply only to
the namespace of each principal, and can be used in lieu of a
public key.

IV. PROPOSED ARCHITECTURE

The proposed corporation architecture is composed by one
corporate and several branch domains. The corporate domain
comprises the administrative part of the corporation and the
branch domains are composed by resource providers and
clients.

The main goal of this proposal is to apply web services to
provide the decentralization of corporation policy
administration while maintaining its unified corporate policy
management. Decentralization is achieved by provisioning of
policies and the unified management is carrying out through
SPKI/SDSI authorization certificates. The policies in the
corporate domain repository (PAP) are used to provision the
policies in the branches’ repositories (LPAP). The policies in
PAP can be stored by the corporate domain administrator or
generated by a STS from a sequence of SPKI/SDSI certificates
sent to PEP in a branch domain.

PAP maintains all the policies for branch resources, while
LPAP (Local PAP) stores a local copy of the policies only
applied to resources that a given PEP specifically controls.
Administrative updates (events up1 and up2, Fig. 4) only are
possible in the PAP repository. LPAP can receive updates
only from PAP.

In the provisioning of branch policies, according to the
SPML specification, the PDP represents the PSP (Provisioning
Service Provider), whereas the PAP repository that stores all
the corporation’s policies represents the PSOs (Provisioning
Service Objects). The PEP denotes the RA (Requesting
Authority) and the LPAP represents the PST (Provisioning
Service Target) that stores the provisioned policies.

In other words, the PEP requests the policies to PDP (event
reqpp, Fig. 4), which in turn invokes SPML to retrieve policies
from PAP and store them in LPAP (event pp). The
provisioning of all branch policies is executed only at the PEP
bootstrap, after that only updates are sent to LPAP, trigged by
an alert message addressed to PEP. Based on the alert message
the PEP requests the updates to PDP and the process follows
as explained. If, for some reason, the LPAP cannot be
updated, a notification of update pendency is generated by
PSP to the corporate administrator (event np, Fig. 4).

SPML employs XML, which is standardized and an
expressive language. Also the XML encoding, used to
transport data across the network, is better than Basic
Encoding Rules [17].

The proposed architecture can evaluate policies using the
outsourcing (based on PDP, events av and ev2, Fig. 4) or
provisioning (based on LPDP, event ev1) approaches. The PEP
enforces the authorization decision (event ac) independently
of whether the decision was done either locally (by LPDP) or
remotely (through the PDP). In fact, the outsourcing approach
is supported only for compatibility purposes. In other words, if
the PEP works with policy provisioning, the proposed
architecture can configure its LPAP with the adequate

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 51

policies. Otherwise, PEP can request to corporate PDP the
evaluation of a policy. In fact, it can be assumed that only
small branches with few resources, e.g. a regional office, will
use the outsourcing approach.

As mentioned before, the architecture aims to reduce the
administrative burden in the handling of policies. To do so in
the proposed corporation environment, the first step is to
establish Inter-Domain Trust Relationships (IDTR, Fig. 4).
Thus, IDTR are trust relationships used for administrative
purposes, mainly to accomplish permission granting between
administrators.

IDTRs are established between STSs and are based on
SPKI/SDSI mutual STS group (domain) inclusion, i.e., each
STS inserts the partner STS in its local group and issues a
name certificate denoting group membership. Group
membership provides the basis to ensure that an entity can be
trusted by others. In the proposal the IDTR is the only way for
a principal to know the public key of another principal with
certainty, since there are not Certificate Authorities in
SPKI/SDSI.

The certificate-based permissions granting is done through
the IDTR trust relationship between the STS in corporate and
client domain. The administrator of STS2 (provider) delegates

permissions to the administrator of STS1 (corporate), that in its
turn grants permissions to STS3 (client administrator). An
administrator that is grantee of permissions always delegates
them to the principals in its domain (event DR3, Fig. 4), i.e.,
the administrator never enjoys the permission granted by a
certificate. Client administrators can only derive permissions
from those coded in the chain of authorization certificates
delegated by the corporate administrator. The permissions
granted by the branch administrator, through certificates, to
clients in its domain serve only to create policies to grant
client-specific access to provider’s resources.

When the client request cannot be evaluated by either LPDP
and or PDP (outsourcing), this means that a policy for such
subject (client) concerning the requested resource does not
exist. Thus, the client sends the chain of SPKI/SDSI
certificates to PEP, that in its turn sends them to STS invoking
XKMS (event ce, Fig. 4). After obtaining the reduced
certificate, STS2 creates an XACML policy and encapsulates it
in an SAML envelope, sending it to the corporate repository
(event up2). Moreover, BCPMp sends back an alert message to
PEP requesting an update of LPAP. After the update, the
evaluation is done by LPDP.

IDTR

reqac

rup

up2

IDTR

DR3

reqpp

av

DR4

DR2

up1

ac

ProviderClient

Resources

STS2

XKMS

np

SPKI/SDSI ProvisioningOutsourcing

STS1

XKMS
CCPM

ce

pp

sp

ev2
PAPPAP

PSO

ev1

Corporate Domain

LPA
P

PST

PEP

RA

LPD
P

PSP

PDP

Caption
Branch Domain

DR
1

IDTR

BCPMp
STS3

XKMS

BCPMc

Fig. 4. Overview of proposed architecture

Chains of authorization certificates grant permissions to
clients without the need of administrative intervention; the
Branch Credentials and Policies Management (BCPMC, Fig.
4) could be a software agent responsible for interacting with a
client. Thus, BCPMC can substitute the client administrator,
guided by a set of rules, in order to grant permissions
automatically. BCPMC is an interface for administrators to

handle certificates and trust relationships and for clients to
interact with STSs in order to obtain permissions. Also, a
properly authorized client may forward permissions to other
clients (event DR4, Fig. 4).

BCPMP is an interface for administrator handling
certificates and trust relationship and for send alerts to PEP.
Corporate Credentials and Policies Management (CCPM, Fig.

52 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

4) is the interface for corporate administrator deals with
certificates, policies, provisioning pendency and trust
relationship.

SPKI/SDSI, which is independent of the underlying
technology, forwards permissions by delegation via a chain of
authorization certificates. The advantage of SPKI/SDSI is that
through a chain the information about who delegated
permissions to whom is maintained within the system.
Moreover, the corporate administrator specifies which
permissions can be delegated (propagated), thus preventing
branch administrators from intentionally or accidentally

violating the corporate policy.
Our distributed architecture provides support for certificate-

based policy control and for provisioning server-based
architectures. This hybrid policy control system aims at low
coupling, high interoperability and easier distributed policy
management in service-oriented architecture environments.
Our scheme favors the decentralization of policy management
together with the unification of information regarding which
clients can access which resources in the whole corporation
environment.

Fig. 5. Proposal overview of WS Protocols and specifications

V.APPLICATION SCENARIO

Corporate access control systems are usually heterogeneous,
so they must support branch-specific requirements. Thus, the
management of access control policies in a corporation should
deal with different needs for many providers and users
(clients) distributed across several branches.

Fig. 5 shows some details about the interactions between
entities in the deployment of the scenario. The scenario
applies Web Services, SPKI/SDSI, and the provisioning
approach to implement the proposal. In this scenario,
SPKI/SDSI applies digital signatures to all certificates and
request messages.

Let us consider that, at any given moment, a client requests
access to a given resource (event reqac, Fig. 5). The PEP
(Context Handler) receives the request and forwards it to the
LPDP (event ev1), which queries its repository (event sp) and
does not find any policy applicable to the requested access.
Then, the LPDP notifies the PEP that it is not able to evaluate
the request.

The PEP sends the evaluation request to the PDP (event av,
Fig. 5), since the client may be in transit, i.e., it can be external
to the domain of the resource provider – a branch of the
corporation, for example. Hence, no policy regarding this
client was received in the LPAP provisioning. In this case, the
evaluation can follow the outsourcing approach; PDP at

corporate domain decides (event ev2) and PEP at the
provider’s domain does the enforcement (event ac).

Now suppose that PDP, after querying PAP (events rup and
sgp, Fig 5), still does not have the policies concerning that
client. PDP reports it to PEP, which offers an alternative to the
client. Using a challenge-response protocol [18], PEP replies
back the client with a message advising the permissions
required to access the resource.

The client then asks STS3 (Fig. 4) for a SPKI/SDSI chain of
certificates that grants the required permissions. When such
chain is finally obtained, the client sends the access request
and the chain of certificates (event reqac) to PEP. In turn, PEP
forwards the chain of certificates to STS2 (event ce) so that the
STS can reduce the chain to a single certificate.

STS2 invokes the XKMS module, which reduces the chain
and returns a single certificate to STS2 that generates a
XACML policy, encapsulates it in SAML [19] and updates
PAP with the new policies (event up2, Fig. 5). Then, STS2
through BCPMP (Fig. 4) returns a notification to PEP (event
ce, Fig. 5), which requests an LPAP update to PDP (in this
case acting as SPML PST). After the LPAP update, the LPDP
evaluates the client request allowing the access that is granted
by PEP (event ac, Fig. 5).

Figure 6 shows the message SOAP sent in the event up2

(Fig. 5), containing the XACML policy generated from the

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 53

reduced SPKI/SDSI certificate (Fig. 3). The XACML policy
has as subject the Public-Key-C, which represents the client
user, and the path of target resource (www.branch.
com/researcher). As a valid certificate chain grants permission
to its last subject, if the policy is generated, then the rule effect
in XACML must be the default value “Permit”. The action
field in XACML means the permission execute in SPKI/SDSI.
An authorization certificate that carries more than one
permission for the same resource can generate policy rules
with more than one <Action> element. Given that, only one
XACML policy rule is generated from each SPKI/SDSI
certificate. Moreover, the rule combination algorithm should
be “first-applicable” in XACML.

Fig. 6. XACML policy from a reduced certificate in a SOAP packet

VI. PROTOTYPE

The prototype implements the architecture proposed in Fig. 4.
It was developed in JAVA (using JDK 1.6) with the support of
the following APIs: OpenSPML (www.openspml.org); SAML
and the SAML Profile of XACML (www.opensaml.org), and
SUN XACML (sunxacml.sourceforge.net). Also, from the
Apache Software Foundation it is used, the TomCat
application server (tomcat.apache.org), the Axis2 SOAP
engine (ws.apache.org/axis2), and the Rampart module for
WS-Security and WS-Trust support. The policy repositories
use Oracle Berkeley DB XML (www.oracle.com) and the
SPKI/SDSI infrastructure was implemented by Morcos [20].

Two scenarios were considered for the prototype
evaluation. In the first, we evaluated the influence of central
architectural entities on the overall system performance, when
security is not applied at the level of SOAP messages. In the
second scenario, the same architectural entities under the same
conditions were evaluated, but in this time considering the use
of digital signatures, encryption, and timestamps, to provide
end-to-end message security in the level of WS-Security.
During the evaluation the scenario is kept the same, but the
approach (provisioning, outsourcing and SPKI/SDSI)
employed changes, as well as the use of WS-Security.

In the evaluated Server-based Policy Control Architectures
(provisioning and outsourcing), the size of the request
message that is sent from the client to the provider is always
247 bytes (event reqac, Fig. 4). The messages exchanged
between the PEP and the PDP have a size of 976 bytes (event
av, Fig. 4).

In the Certificate-Based Policy Control Architecture the
access request sent from the client to the PEP (event reqac, Fig.
4), has a size of 4.30 Kbytes, and each certificate that
composes this request amounts for 1.78 Kbytes. This request
carries the SPKI/SDSI certificate chain (two certificates and
three keys) that will provide the access permissions for a
client.

Fig. 7 shows that the usage of SPKI/SDSI certificates
demands more processing time than the evaluation based on
provisioning or outsourcing approach. However, this delay
only happens in the first time the client presents the certificate
chain to the PEP. After that, the corresponding derived policy
is automatically created and the evaluation occurs by the
provisioning approach. In such a scheme, the policies are
created dynamically, without human administrator
interventions.

0

0,3

0,6

0,9

1,2

1,5

1,8

Provisioning Outsourcing SPKI/SDSI

S
ec

on
ds

Clear Text

Signature +
Timestamp

Signature +
Encryption +
Timestamp

Fig. 7. Response Time for the Client in each approach

The percentages in Fig. 8 are corresponding to the results of
the evaluation related to the Response Time for the Client in
Fig. 7 (RTC). Analyzing the evaluation of the provisioning
approach, we observed that most of the time is spent in the
PEP, dealing with XML messages and enforcing the decisions
received from the LPDP, which is the entity that spends the
least of the total time in the proposed architecture.

In the outsourcing approach, every request sent by the client
to the PEP is forwarded to and evaluated by the PDP (events
events av, rup, sgp and ev2), requiring the computer hosting
PEP to wait for the reply be received from the PDP. The
client, in its turn, has to wait for message exchanges between
the PEP and the PDP.

With the access evaluation using only SPKI/SDSI
certificates (Fig. 8) the PEP spent 20% of the RTC with
marshalling/unmarshalling of messages and enforcing the
LPDP decision. The STS2 spent 60% of the RTC, 40% of this
corresponding to certificate chain validation and SAML
assertion creation and 5% corresponding to sending the
SAML/XACML policies to PAP. The remainder time is spent
on internal marshalling/unmarshalling of messages on the
STS2 (15%). In this operational mode, the PEP is not a critical
failure point on the system, since the client and the PEP were

54 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

only affected by the time spent on the STS2 when evaluating
the first SPKI/SDSI access request.

0%

10%

20%

30%

40%

50%

60%

70%

Provisioning Outsourcing SPKI/SDSI

PEP

(L)PDP

STS2

Fig. 8. Percentage of time spent in each entity of each approach

For each new certificate inserted on the chain, the average
increase on the response time was 11% without WS security,
and 15% with security. This increase in time is related to the
additional message size (1.78 Kbytes for each new certificate),
and specially related to the increased complexity involved in
certificate chain validation, given that more parameters need
to be verified (e.g. signatures, authorizations, expiration
dates). Thereby, we simulated the delegation of permissions
that occurs internally between administrator and clients in
branch domains.

In the provisioning approach, the computer hosting the PEP
handled 200 concurrent clients without WS security. The same
computer was able to serve 150 clients concurrently when
applying security. When using only digital signature and
timestamp, the same computer served 200 concurrent clients.

In the outsourcing approach, the computer hosting the PEP
served 150 clients concurrently without security. The same
computer was capable of serving 50 clients concurrently when
using WS security. Using only digital signature and
timestamp, the host was able to serve 100 clients concurrently.

When evaluating access requests using SPKI/SDSI
certificate chains (two certificates and three keys), the
computer hosting the PEP was able to handle 75 clients
concurrently, without security. This number drops to 50
concurrent clients when applying WS-Security. Remember
that, in addition to a timestamp, signature, and encryption
applied in the SOAP message, each SPKI/SDSI certificate in
the chain has its own signature, which increases the overhead.

Considering the performance when using WS security, one
can observe that if confidentiality (WS encryption) is not a
requirement, the security can be improved using digital
signatures (which provide authenticity, integrity and
non-repudiation) and timestamps (which protect against
message-replay vulnerability) without unreasonably affecting
the overall performance.

The outsourcing approach not only creates a tight coupling
with the PDP, but also requires more computing resources,
negatively affecting scalability. On the other hand, the
approach based on SPKI/SDSI and provisioning creates
loosely-coupled security control, given its operational
autonomy and reduced dependence of message exchanges
between the architectural entities. Additionally, this
combination shows that it is possible to reduce human and

computing costs involved in policy management while
improving web services scalability.

VII. RELATED WORK

Karp [21] considers that Identity Based Access Control
(IBAC), which follows a traditional access control approach,
is very limited to be applied in SOA. The author argues that
Authorization Based Access Control (ABAC) is more
adequate to SOA needs. An example of ABAC is SPKI/SDSI.
However, the author only discusses the model and does not
present an implementation to support his claims. In our
proposal we show that SPKI/SDSI (ABAC) is better if
combined with provisioning, for example. Applying only
SPKI/SDSI in SOA brings an important cost in computing that
should not be neglected.

Mello and Fraga [22] propose the use of a trusted
intermediary that should be responsible for dealing with
distinct security technologies (e.g., SPKI/SDSI and X.509).
All the evaluation process uses message exchanges based on
the SAML assertion format. In other words, SPKI/SDSI and
X.509 credentials are replaced by SAML assertions to obtain a
common format and a functional scheme. The use of a
mediator implies an overhead, due to the increase in the
number of messages exchanged and the additional time to
obtain the access credential (e.g., SAML assertion), requested
in each authorization evaluation. We consider the usage of the
outsourcing approach increases the number of messages
exchanged and the dependence on entities from the client
domain during the authorization decision process; that works
against the principle of loose coupling employed in SOA/Web
Services.

Hai-bo and H. Fan [23] propose an access control system,
based on attributes, that can cross security domains and be
implemented in heterogeneous systems, enabling interactions
between different parties who know little of each other. The
model provides access to Web Services based on a signed
digital credential and enhanced with attributes provided by
trusted authorities. The work focused on the description of the
entities and in the function of each one in the model. The
proposed approach is based on the outsourcing model,
allowing that authorization decisions be carried out based on
attributes, service parameters and pre-established policies. We
consider that the proposed model has the same tight coupling
principles mentioned the outsourcing-based previous work.

VIII.CONCLUSION

This work presented a proposal for the unified management of
access control policies in corporation environments. However,
policy writing, evaluation, and enforcement are done in a
distributed way. Branch domain security entities derive
permissions from SPKI/SDSI authorization certificate chains
to write new policies. The PAP stores the new policies that are
automatically provisioned in branch domains. Thus, policy
evaluation can be done in the provisioning approach, which
has the smallest computing cost.

The proposed scheme is an alternative means for a client to

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 55

obtain required permissions in cases when it is not registered
with the Corporate Credentials and Policies Management –
distinctly from the traditional approach that in such a case
simply would deny the access.

Transposition of client and provider authorization domains
is easily obtained through the use of SPKI/SDSI authorization
certificates. SPKI/SDSI is independent of the underlying
technology, which permits the transport of permissions and the
establishment of trust relationships across security domains.

SPKI/SDSI certificates carry all the attributes needed to
evaluate the access request, not being required to contact
security authorities (administrators) in the client domain to
obtain additional attributes to take an authorization decision.
Policy provisioning and certificate chains favor loose coupling
and interoperability among policy control entities.

The proposed architecture can automatically operate in both
server-based policy control approaches: provisioning and
outsourcing. Such feature is not present in any other related
work. However, in general, our proposal operates in the
provisioning approach, because it requires less message
exchanges and together with SPKI/SDSI is better fitted to
organizations having branches with local autonomy.

The proposed approach is compliant with the server-based
approach of Web Services. Nevertheless, it does not depend
on an infrastructure based on authentication and authorization
servers to transpose security domains, thus favoring the loose
coupling of the system. The developed prototype shows the
feasibility of the proposal. However, the scenario explored in
this paper can be extended to more complex ones.

REFERENCES

[1] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz and B.
A. Hamilton, Reference Model for Service Oriented Architecture, v. 1.0,
OASIS Std., Oct. 2006; http://docs.oasis-open.org/soa-rm/v1.0/.

[2] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris.
and D. Orchard, Web Services Architecture, W3C note, Feb 2004;
http://www.w3.org/TR/ws-arch/.

[3] L. Clement, A. Hately, C. V. Riegen and T. Rogers, Universal
Description Discovery & Integration (UDDI) v. 3.0.2, OASIS Draft,
Oct. 2004; http://uddi.org/pubs/uddi_v3.htm.

[4] R. Chinnici, J. J. Moreau, A. Ryman, S. Weerawarana, Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language,
W3C recommendation, June 2007; http://www.w3.org/TR/wsdl20/.

[5] N. Mitra, Y. Lafon, SOAP Version 1.2 Part 0: Primer (Second Edition),
W3C recommendation, Apr. 2007; http://www.w3.org/TR/soap12-
part0/.

[6] T. Bray, J. Paoli, C. M. S. McQueen, E. Maler, F. Yergeau and J.
Cowan, Extensible Markup Language (XML) 1.1 (Second Edition), W3C
recommendation, Sep. 2007; http://www.w3.org/TR/xml11/.

[7] A. Nadalin, C. Kaler, R. Monzillo and P. H. Baker, Web Services
Security: SOAP Message Security 1.1 (WS-Security), OASIS Std., Feb.
2006; http://docs.oasis-open.org/wss/v1.1/.

[8] A. Nadalin, M. Goodner, M. Gudgin, A. Barbir and H. Granqvist, WS-
Trust 1.3, OASIS Std., Mar. 2007; http://www.oasis-
open.org/specs/index.php#wstrustv1.3.

[9] P. H. Baker and S. H. Mysore, XML Key Management Specification
(XKMS 2.0), W3C recommendation, June 2005;
http://www.w3.org/TR/xkms2/.

[10] G. Cole, Service Provisioning Markup Language (SPML) v. 2, OASIS
Std., Apr. 2006; http://www.oasis-open.org/specs/index.php#spmlv2.0.

[11] S. Cantor, J. Kemp, R. Philpott, and E. Maler, Assertions and Protocols
for the OASIS Security Assertion Markup Language (SAML), v. 2.0,
OASIS Std., Mar. 2005; http://www.oasis-
open.org/specs/index.php#samlv2.0.

[12] T. Moses, eXtensible Access Control Markup Language (XACML), v.
2.0, OASIS Std., Feb. 2005; http://www.oasis-
open.org/specs/index.php#xacmlv2.0.

[13] B. Moore, E. Ellesson, J. Strassner, and A. Westerinen. Policy Core
Information Model, IETF RFC 3060, Feb. 2001;
http://www.ietf.org/rfc/rfc3060.txt.

[14] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F.
Reichmeyer, R. Yavatkar and A. Smith, COPS Usage for Policy
Provisioning (COPS-PR), IETF RFC 3084. Mar. 2001;
http://www.ietf.org/rfc/rfc3084.txt.

[15] R. L. Rivest and B. Lampson, “SDSI - A Simple Distributed Security
Infrastructure,” Sep. 1996; http://theory.lcs.mit.edu/~rivest/sdsi10.html,
Access: Jan. 2009.

[16] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen,
SPKI Certificate Theory, IETF RFC 2693, Sep. 1999;
http://www.ietf.org/rfc/rfc2693.txt.

[17] T. F. Franco, W. Q. Lima, G. Silvestrin, R. C. Pereira, M. J. B. Almeida,
L. M. R. Tarouco, L. Z. Granville, A. Beller, E. Jamhour, and M.
Fonseca, "Substituting COPS-PR: An Evaluation of NETCONF and
SOAP for Policy Provisioning," Proc. 7th IEEE Int’l Workshop on
Policies for Distributed Systems and Networks (POLICY'06), IEEE,
2006, pp. 195-204.

[18] NIST FIPS PUB 196, Entity Authentication Using Public Key
Cryptography, Feb. 1997;
http://csrc.nist.gov/publications/fips/fips196/fips196.pdf.

[19] A. Anderson and H. Lockhart, SAML 2.0 profile of XACML v2.0, OASIS
Std., Feb. 2005; http://docs.oasis-open.org/security/saml/v2.0/.

[20] A. Morcos, "A Java Implementation of Simple Distributed Security
Infrastructure", master’s thesis, Dept. EECS, Massachusetts Institute of
Technology, 1998.

[21] A. H. Karp, "Authorization-Based Access Control for the Services
Oriented Architecture," 4th Int’l Conf. on Creating, Connecting, and
Collaborating through Computing (C5'06), IEEE, 2006.

[22] E. R. Mello and J. S. Fraga, "Mediation of Trust across Web Services,"
Proc. Int’l Conf. on Web Services (ICWS’05), IEEE, 2005, pp. 515-522 .

[23] S. Hai-bo and H. Fan, "An Attribute-Based Access Control Model for
Web Services," Proc. 7th Int’l Conf. on Parallel and Distributed
Computing, Applications and Technologies (PDCAT'06), IEEE, 2006,
pp. 74-79.

56 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

