
Journal of Network and Computer Applications 34 (2011) 1342–1352
Contents lists available at ScienceDirect
Journal of Network and Computer Applications
1084-80

doi:10.1

� Corr

E-m

maziero
journal homepage: www.elsevier.com/locate/jnca
Applying a usage control model in an operating system kernel
Rafael Teig~ao, Carlos Maziero �, Altair Santin

Graduate Program in Computer Science, Pontifical Catholic University of Paraná State, Rua Imaculada Conceic- ~ao 1155, 80.215-901 Curitiba, PR, Brazil
a r t i c l e i n f o

Article history:

Received 4 December 2009

Received in revised form

24 November 2010

Accepted 10 March 2011
Available online 16 March 2011

Keywords:

Access control

Usage control

Kernel services
45/$ - see front matter & 2011 Elsevier Ltd. A

016/j.jnca.2011.03.019

esponding author. Tel.: þ55 41 3271 1669; f

ail addresses: rafael.teigao@tjpr.jus.br (R. Teig

@ppgia.pucpr.br (C. Maziero), santin@ppgia.p
a b s t r a c t

Operating systems traditionally use access control mechanisms to manage access to system resources

like files, network connections, and memory areas. However, classic access control models are not

suitable for regulating access to the diversity of ways data is available and used today. Modern usage

control models go beyond traditional access control, addressing its limitations related to attribute

mutability and continuous usage permission validation. The recently proposed UCONABC model

establishes a predicate-based framework to satisfy the new access/usage control needs in computing

systems. This paper defines a usage control model based on UCONABC and describes a framework to

implement it in an operating system kernel, on top of the existing DAC mechanism. A language for

representing usage control entities and rules is also proposed, and some typical access/usage control

scenarios are represented using it, to show its usefulness. Finally, a prototype of the proposed

framework was built in an operating system kernel, to control the usage of local files. The prototype

evaluation shows that the proposed model is feasible, straightforward, and may serve as a basis for

more complex usage control frameworks.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Classic access control models are not suitable for regulating
access to the diversity of ways digital content is available and
used today. For instance, Digital Rights Management (DRM)
requires control that goes beyond the simple one-step access
granting. This is also true for the manipulation of related data
collected from several independent sources, such as medical
information about patients in a hospital. Current electronic
commerce of digital items brings with it the necessity of checking
whether some requirements have been met, like accepting an
end-user license agreement (EULA), or enforcing time restrictions
in a commercial transaction. Although most of these controls are
employed at the application level, they would be easier to deploy
and harder to circumvent if more sophisticated access control
mechanisms were made available by the underlying operating
system.

The formal concept of usage control (UCON), presented by Park
and Sandhu (2003), introduces the evaluation of attributes and
requirements during the use of a resource (e.g., permission of a
user to continue to watch a movie). It also considers the mutability

of such attributes as a consequence of actions by users. Further-
more, the usage control concept includes the notion of depen-
dency of the access policies on external information, like the time
of day or the system load, which was not explicit in previous
ll rights reserved.

ax: þ55 41 3271 2121.
~ao),

ucpr.br (A. Santin).
access control models. The UCONABC model (Park and Sandhu,
2004) formalizes such concept.

This paper proposes a usage control model derived from the
UCONABC model. It considers the formal UCON specification
defined in Zhang et al. (2004), adapting it to be implemented in
an operating system context. From the proposed model, a lan-
guage to describe usage control policies on system objects is
defined, and its expressiveness is evaluated through a series of
typical usage control scenarios. It also describes a prototype
implementation for the proposed model, which was built in an
operating system kernel to mediate operations on files. The
prototype evaluation shows that the model is feasible and may
serve as a basis for more complex usage control frameworks. This
paper is an extended version of a previous work (Teigao et al.,
2007), including a formal presentation of the usage control model,
more details about its framework, the grammar specification,
more usage examples, and the description/evaluation of an
implementation prototype.

The paper is organized as follows. Section 2 describes the
main features of usage control and the UCONABC model. Section
3 explains the usage control model adopted in this paper.
Section 4 presents the framework which implements the
proposed model. Section 5 details the language proposed for
representing usage control policies. Examples of the language
representing common usage and access control scenarios are
given in Section 6. Section 7 gives some details of the imple-
mented prototype and its evaluation. Section 8 discusses
related work. Finally, Section 9 gives some conclusions and
presents future research directions.

www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2011.03.019
mailto:rafael.teigao@tjpr.jus.br
mailto:rafael.teigao@tjpr.jus.br
mailto:maziero@ppgia.pucpr.br
mailto:santin@ppgia.pucpr.br
dx.doi.org/10.1016/j.jnca.2011.03.019

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–1352 1343
2. Usage control

Operating systems traditionally use standard access control
models, which are used to define how processes can access files
and inter-process communication channels like pipes, shared-
memory areas, and semaphores. However, such models are
frequently not flexible enough to represent specific usage situa-
tions, like processor, memory, and disk space usage, and time-
dependent access/usage control. This problem motivated the
proliferation of ad hoc solutions for specific control needs, like
disk/memory/processor quotas, access restrictions based on net-
work addresses, time, system load, and so on. Furthermore,
applications and services that require a more sophisticated
access/usage control policy should implement it by themselves.
Thus, it would be useful to provide a means to generalize such
controls in a more homogeneous model, and it should be available
at the operating system kernel interface.

Although ad hoc usage control mechanisms are relatively old,
formal models for usage control have been introduced recently
(Park and Sandhu, 2003). A well-known usage control model,
UCONABC (Park and Sandhu, 2004), is based on the concepts of
authorization (A), obligations (B), and conditions (C). In this model,
subjects and objects are tagged with attributes that may be used
in access decisions. Access and usage control decisions are based
on policy rules stated over such user and object attributes,
obligations, and conditions. The main decision elements offered
by the UCONABC model are:
�
 Authorizations: Functional predicates evaluated to decide if a
user can exercise rights on an object. Such predicates encom-
pass the traditional access control models, like DAC, MAC,
and RBAC.

�
 Obligations: Actions that should be performed by a user prior

or during the use of an object, to use it. For instance, a user
should accept an end-user license agreement prior to running
a new software.

�
 Conditions: Restrictions that consider system or environmental

factors independent of users, objects or the decision mechan-
ism. Conditions are considered external, independent informa-
tion, like the time of the day or the processor load.

Predicates must be evaluated by a reference monitor (Sandhu
and Samarati, 1994) to decide if a usage right of a subject over an
object should be granted, maintained, or denied. A set of pre-
dicates must be evaluated before a subject accesses an object,
namely preA, preB, and preC, respectively for authorization,
obligation, and condition predicates. Similarly, the decision about
maintaining a usage right is taken during the object usage, which
defines onA, onB, and onC predicates. Finally, actions that should
be performed when a usage finishes may be defined through posA,
posB, and posC predicates.

The UCONABC model also introduces attribute mutability,
which brings with it the possibility to influence current or future
actions based on usage history. For instance, it is possible to take
usage decisions based on attributes that are modified at each
access. A simple example of such scenario is a credit-based
system: with each access to a given object, the user’s credit
decreases; when she runs out of credit, her access to it may be
denied. It is important to notice that the value of conditions
cannot be updated by the reference monitor, since conditions are
external information and the reference monitor has no control
over them.

The UCONABC model allows to represent uniformly several
common ad hoc controls and encompasses a wide range of
previous models, from conventional discretionary access control
to various types of mandatory and role-based models. The next
section presents a usage control model, derived from UCONABC,
whose goal is to integrate usage control within an operating
system kernel.
3. The proposed usage control model

Let us consider a system with a set of users U and a set of
objects O. Each object oAO is associated with a set of rights RðoÞ
like read, write, remove, and so on, which can be either fully or
partially granted to users. The precise set of rights associated to
an object depends, of course, on its nature.

Users access objects through usage sessions; a usage session
captures the relationship between a user and an object during a
certain period of time (Katt et al., 2008). A usage session starts
when an access request from a user to an object is granted, and
ends when the user releases the object, either explicitly or due to
a usage policy decision. Formally, a usage session s is a triplet
sðu,o,GÞ, in which u is a user, o is an object, and GDRðoÞ is a set of
rights on the object o granted to user u when the session is
initiated. The set of all active usage sessions is defined as S; being
it a set, a given user can have at most one active session on each
object: jfsðu,o,�ÞASgjr1, 8ðu,oÞAU�O.

The usage session concept expresses only the usage relation-
ship between a user and an object; it is orthogonal to any object
sharing semantics. Furthermore, the precise semantics of a usage
session depends on the kind of object being used. For instance, a
file usage session starts when the file is opened and finishes when
it is closed. Thus, all read and write operations on such file should
be performed during a usage session.

Each user uAU is associated with a (possibly empty) set of
attributes AðuÞ, whose initial values are given by A0ðuÞ. Similarly,
each object oAO is associated with a (possibly empty) set of
attributes AðoÞ, with initial values A0ðoÞ. Users’ and objects’
attributes are defined and manipulated according to the usage
policy being enforced.

Additionally, users may have to fulfill obligations when acces-
sing or using objects. An obligation bAB is an external require-
ment that should be fulfilled by a user to start or to maintain a
usage session. Obligations are seen here as information external
to the decision system that are not directly produced by the user,
but depend on her actions. For instance, the user may be asked to
accept a license agreement before using a software, or should
keep an advertisement window open while accessing a free
service. The checking of obligations fulfillment and its feeding
to the reference monitor are discussed in Section 4.

There is also a set of environmental conditions C. Each
condition cAC represents a system/environment information
accessible to the reference monitor, like the time of the day,
system load, processor temperature, free disk space, and so on.
The value of a condition depends uniquely on factors external to
the users and to the reference monitor, and cannot be directly
modified by them.

Finally, each object is associated with three finite lists of
predicates (possibly empty) that are used in the reference
monitor decisions. In each list, a single predicate may be either
a boolean expression or an attribute update. A boolean expression
may involve user attributes AðuÞ, object attributes AðoÞ,
requested/granted rights G, obligations B, and conditions C,
and evaluates to either true or false. By contrast, an attribute
update sets the current value of a single user or object attribute
and always evaluates to true. The predicate lists associated with
each object are:
�
 Pre(o): list of predicates [pre0, pre1, y] to be evaluated for
deciding whether a request for a usage session on object o

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–13521344
should be granted or denied. A user u can open a usage session
on object o with a given set of granted rights G either if the list
Pre(o) is empty (meaning that there are no pre-conditions for
using that object) or if all the predicates in the list are satisfied
for u and G:

can_openðu,o,GÞ’ðPreðoÞ ¼ |Þ3
^
8i

preiðoÞ

 !
�
 On(o): list of predicates [on0, on1, y] to be continuously
evaluated during a usage session. A user u can continue to
exercise her rights G on an object o either if the list On(o) is
empty or if all the predicates in the list are satisfied:

can_useðu,o,GÞ’ðOnðoÞ ¼ |Þ3
^
8i

oniðoÞ

 !

Obviously, a fully continuous usage evaluation is generally not
possible in a real system, so it should be replaced by periodic
checks. The granularity of this discretized evaluation is to be
defined for each kind of object being used, in order to produce
semantically meaningful results while not overloading the
reference monitor.

�
 Pos(o): list of predicates [pos0, pos1, y] to be evaluated when a

usage session terminates, either because the user closes it or
the reference monitor revokes the session due to a usage
policy decision. Since the session closing has no influence on
the session itself, only attribute update predicates are allowed
here. All the predicates in the list Pos(o) should be evaluated
because the attribute updates they perform may have effects
on other (concurrent or future) usage sessions:

on_closeðu,oÞ’
^
8i

posiðoÞ

It should be noticed that predicates in lists Pre, On, and Pos
are totally ordered, and should be evaluated respecting that

order, using a short-circuit logic: once a single predicate
evaluation returns false, the remaining predicates are not
evaluated. In other words, each predicate list can be seen as a
program, i.e., a sequence of statements to be evaluated in
sequence. In addition, the evaluation strategy adopted in our
model considers that a request should be granted if there is not
a predicate that explicitly denies usage (i.e., its evaluation
returns false). Therefore, an empty predicate list does not have
the power to deny accesses and is not considered to express a
complete UCON policy, according to the rules expressed by
Zhang et al. (2005). This approach was also used in Woo and
Lam (1992).
Fig. 1. The proposed usag
The usage control model proposed in this paper is derived
from the formal UCONABC model as presented in Park and Sandhu
(2004), Zhang et al. (2004), with adjustments (like the notion of
usage sessions) to better fit in an operating systems context.
Nevertheless, although the original UCON model is powerful
enough to encompass traditional DAC mechanisms which are
present in most operating systems, this work considers that the
usage control model discussed here is not meant to replace the
underlying OS controls, but to offer an additional decision level to
them, more accurate, flexible, and consistent.

4. The usage control framework

The usage control model presented in Section 3 consists
basically of predicate lists to be sequentially evaluated before,
during, or after usage sessions. Predicates in each list are boolean
expressions or attribute updates, written using a simple language
that will be presented in Section 5.

The usage control framework consists of a usage reference
monitor, which takes usage decisions through the evaluation of
predicate lists involving user and object attributes, obligations,
and conditions, and a usage mediator, which receives access/
usage requests from user processes, and invokes the usage
reference monitor whenever needed. It should be noticed that
the usage control framework does not replace the standard kernel
DAC mechanism, but add another decision level to it: an access
will be granted only if both the DAC controls and the usage
controls allow it. Such structures are depicted in Fig. 1.

The initial values of user/object attributes are defined in
attribute files. Each user may be associated with a user attribute
file, and each object may have its corresponding object attribute
file. Attribute values are normally read once and stored in
memory, but the updated attribute values may be written back
to the files, to provide attribute persistence between system
reboots or faults. Each object may be also associated with three
policy files as follows:
�

e co
the pre policy file contains the rules to be evaluated and the
attribute update operations to be performed when a subject
requests access to that object. Boolean predicates and attribute
updates can be interleaved as needed to obtain the desired policy;

�
 the on policy file contains the rules to be verified and the

attribute update operations to be performed whenever the
object is used, i.e., after its usage session is open. The evalua-
tion of this policy may be triggered periodically, or at any
single event that characterizes a usage for that object;
ntrol framework.

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–1352 1345
�
 the pos police file contains the attribute update operations to
be performed when a usage session on the object is closed or
revoked. There are no conditional rules to be evaluated here,
only attribute updates, since there is no access/usage request
being evaluated.

A missing or empty policy file means only that object does not
have a Pre, On, or Pos usage policy associated with it. The same
default behavior applies to user and object attribute files. Thus,
the framework does not interfere with requests for which no
usage policy is defined.

The mechanisms responsible for gathering obligation and
condition values should be carefully designed, due to the nature
of data they contain. Obligations and conditions concern to
external information, which should be provided by external code,
outside the reference monitor. A simple way to obtain such
external data would be to associate obligations and conditions
with external routines. Each time a given obligation or condition
needs to be evaluated, its respective routine would be triggered,
thus retrieving up-to-date values. However, in an OS context this
solution is not adequate for obligations, since the policy evalua-
tor/enforcer is a mechanism running in the operating system
kernel. Triggering an external user-supplied code to run using the
kernel privileges may adversely affect the system security.

As obligations usually refer to information coming from the
user’s context, a safer approach to retrieve such information is to
define typed data slots representing them. Such data slots, which
are readable by the reference monitor, are filled by privileged
user-level processes, called here obligation feeders, which are
responsible for verifying the fulfillment of each obligation and
for feeding the respective obligation slots. Although this approach
is less flexible than executing external routines to retrieve
obligation data, as it constrains the amount and type of data fed
to the reference monitor, and introduces some asynchrony
between the production and the consumption of such data, it is
considered safer.

On the other hand, in an operating system context, conditions
usually refer to data available at kernel level, like the processor
usage level, date/time, etc. Triggering routines for gathering such
data does not imply a security risk because such routines can be
considered part of the reference monitor framework. A basic set
of conditions is described in Section 5, but it can be easily
extended by adding new constructs to the grammar, relating
condition keywords to the corresponding routines for gathering
the required information. Figure 2 illustrates the use of data slots
Fig. 2. Information flow for obligations and conditions.
to feed/retrieve obligation data, and routines for gathering con-
dition information to be supplied to the reference monitor.
5. The usage control language

The usage control model discussed in Section 3 defines
elements like user/object attributes, authorizations, obligations,
and conditions. It also defines predicates for attribute updates and
access/usage rules. This section proposes a language to allow
a system administrator to associate attributes with users and
objects, and to define rules that use such attributes to take usage
decisions. The intended application context for this language is
the access/usage control of local resources in a multiuser operat-
ing system.

5.1. Language requirements

Translating the predicate-based usage control model into a
grammar for expressing practical usage control rules requires
solving some problems, such as:
�
 The language should be simple, to be easily, clearly, and
unambiguously understood and used by system administra-
tors. Nevertheless, it should be expressive enough to represent
most predicates involving user/object attributes, authoriza-
tions, obligations, and conditions.

�
 The grammar should be flexible; particularly, it should be

possible to add new control rules without modifying the user’s
attributes, provided that all attributes required by the new
rules are already defined.

�
 Policy-object bindings: since distinct system objects may have

distinct usage needs, it should be possible to define object-
specific usage rules, as well as system-wide rules.

�
 The grammar parser should be fully implementable and easy to

integrate within an existing environment (like an operating
system kernel).

�
 The rule evaluation should be efficient, otherwise the time

required to take an access decision may hinder the user
experience and degrade the system performance (i.e., it should
not take longer than in traditional access control mechanisms
to decide about an access request).

�
 Safe evaluation of obligations and conditions: obligations and

conditions are, in general, strongly tied to data coming from
external sources which are not related to the usage control
monitor; the mechanisms used to generate/retrieve such data
should be carefully designed to not compromise the system
security.

The simplicity, clearness, and efficiency requirements stated
above lead to a LALR(1) grammar as a natural choice for expres-
sing usage control rules. Parsers for such grammars are generally
small, fast, memory-efficient, making them suitable to be
embedded in an OS kernel. Furthermore, they can be automati-
cally generated from the grammar specification (DeRemer and
Pennello, 1982), reducing the risk of errors in the parser code
itself.

5.2. Language structure

The language will be used to describe users’ and objects’
attributes, obligations, and conditions, and to build predicates
on them. Such predicates will then constitute the Pre(o), On(o),
and Pos(o) lists. As mentioned in Section 3, such predicates may
be boolean expressions or single attribute updates.

Table 1
Symbols for variables and values used in the language.

Symbol Type Description

$name Integer, string Represents a named variable, beginning with the $ symbol, followed by its unique name

digits Integer A constant integer value

alphanum chars String A constant string value

int1 . . . intn Integer A constant set of integers

str1 . . . strn String A constant set of strings

o$slot Integer Keyword to access obligation values (slots)

c&name Integer Keyword to access a value for the system resource name, used to express conditions

Table 2
Operators defined by the language.

Operator Type Functionality

¼ Assignment Assigns the value on the right to the variable on the left

¼ ¼ !¼ o4o ¼ 4 ¼ Comparison Perform comparisons between left and right operands

& j Logical Logical operators AND and OR

size Set operation Returns the number of elements in a set

þ - n / Arithmetic Arithmetic operations between left and right numeric operands

þ n Set operation Union and intersection between left and right set operands

(expression) Precedence The inner-most expression should be analyzed before the non-parenthesized expression

– Starts a comment

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–13521346
Attributes, obligations, and conditions are represented by
variables which may have two different types: integer and
string. An attribute variable is represented by a $ sign followed
by its name (e.g., $name). When a variable is created, a value must
be assigned to it. The value initially assigned to a symbol defines
its type: if a symbol is first assigned an integer value, it will
always be treated as an integer.

Obligations are represented as numbered slots, defined using
the keyword o$slot followed by a slot number (e.g., o$slot 37).
The obligation slot numbering is system-wide. Similarly, condi-
tions are represented by keywords having the form ‘‘c$name’’.
A standard set of conditions is defined for building usage rules
associated with usual system resources, like processor, memory,
and disk usage, date, time, and so on. In our current prototype (cf.
Section 7), the following conditions are defined: c$time (current
time), c$cpu_used (amount of CPU in use), c$free_mem (amount
of free memory), c$free_disk (free disk space).

The language terminal symbols consist of variable names, key-
words, constant values, and operators. Tables 1 and 2 present the
terminal symbols: Table 1 shows those symbols related to variables
and values, and Table 2 introduces the operators and their function-
ality (the operators are shown in increasing order of precedence).
The most relevant grammar production rules for the usage control
language are expressed in Fig. 3, using the EBNF notation.

Such grammar allows building complex boolean expressions,
involving attributes, obligations, and conditions. Syntax and
semantic errors (like reading from an undefined slot) are detected
and treated during the rule parsing. To provide fail-safe defaults,
an error in an assignment expression causes it to fail, whereas an
error in a boolean expression causes it to be evaluated as false
(thus leading to an access/usage denial). For convenience, long
input lines can be ‘‘folded’’ in a multiple line representation, by
breaking lines when appropriate and starting the continuation
lines with a whitespace.
6. Usage control examples

A trivial example of access/usage control policy using the
proposed language and its framework could be the following:
for a given object, only its owner is authorized to access it. This
requirement could be put as simply as follows:
1.
 first, each user’s attribute file should contain an attribute to
define her identity (it is assumed that each user has a
distinct ID):
$userID ¼ 4323
2.
 then, the object’s attribute file should define an attribute
informing who is the object’s owner:
$ownerID ¼ 7503
3.
 finally, a boolean predicate should be put in the object’s pre

policy file, to define the prerequisite to access the file:
$userID ¼¼ $ownerID

When a given user requests access to that file, the correspond-
ing user and object attribute files are read (if not already in
memory) and then its Pre(o) file is evaluated; access will only be
granted if the user ID is defined and it is equal to the object’s
owner ID. Obviously, in this trivial example, the access would be
denied because the IDs are distinct ð4323a7503Þ.

In the following, more complex examples of policies defined
using the language described here are presented. When compar-
ing such examples with those presented in Park and Sandhu
(2004) and Zhang et al. (2005), it can be seen that the proposed
grammar can express the policies formally defined in the original
UCON model proposal.

6.1. Discretionary access control with ACL

Discretionary access control (Lampson, 1974) with access control
lists is a very simple and straightforward control mechanism, which
only takes a few lines to be implemented using our language. The
user’s attributes should only contain her identification: $userID ¼
5456. The enforcer may inform the requested right as a string like
‘‘read’’ and ‘‘write’’. The object’s attribute file should look like:
set of IDs of users with read permission

$readers ¼ 1549 4334 5456 8997
set of IDs of users with write permission

$writers ¼ 4456 5456 7896 8345

Fig. 3. Grammar rules in EBNF notation.

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–1352 1347
These attributes are groups of users’ IDs that have read or
write permission. The pre policies file could simply contain:

(

for reading, user ID should be in $readers set

($right ¼¼ read) & (size ($userID n$readers) !¼ 0)

) j(

for writing, user ID should be in $writers set

($right ¼¼ write) & (size ($userID n$writers) !¼ 0)

)

This policy basically states that if a user is requesting read or
write permission, the user’s ID must be present in the $readers
or $writers list, respectively; otherwise, the access is denied.
6.2. Mandatory access control

A simplified version of the Bell La Padula mandatory access
control policy (Bell and LaPadula, 1976) may be implemented by
considering clearance as a user’s attribute, and classification as an
object’s attribute, both integers. Thus, the user’s attribute file
contains her clearance level and her current security level:
$clearance ¼ 5

$currlevel ¼ $clearance
Similarly, the object’s attribute file contains its current classi-
fication level:
$classification ¼ 3
The pre policy file should then ensure that read access is
granted only if the user’s current level is higher or equal to
the object’s classification, and that write access is granted only
if the user’s current level is lower or equal to the object’s
classification:
(

don’t read up

($right ¼¼ read) & ($currlevel 4 ¼
$classification)

) j(

don’t write down

($right ¼¼ write) & ($currlevel o ¼
$classification)

)

This assumes that the enforcer fills the variable indicating the
right required ($right), similarly to the previous example.

6.3. Usage control with obligation fulfillment

Let us consider a policy in which the user has to keep an
advertisement window open while accessing an object. An external
program, possibly the one controlling the window, will update an
obligation slot indexed by the user’s ID. The user’s attribute file
contains only this ID, for instance $userID ¼ 5899. The object has
only one associated file, containing its on policies, which are going to
be checked every time the right over the object is to be exercised
(e.g., when reading the next seconds from a music file):
access to the slot indexed by UID

o$slot $userID ¼¼ 1
The slot indexed by the user’s ID is created by the system
when the user requests access to the object. The external
program that controls the advertisement window writes 1 in
this slot once the window is opened, and changes it to 0 when it
is closed.

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–13521348
6.4. Limit of the number of simultaneous users

Let us consider a policy in which the access to a given object
should be limited to 10 simultaneous users between 8am and 6pm
and to 20 users between 6pm and 8am. Users already accessing the
object will not have their access revoked when the time shifts for a
period admitting a smaller number of simultaneous accesses, but no
new user will be accepted until the number of users falls under the
limit. To implement this policy, the object’s attributes file contains
the number of simultaneous accesses accepted and the start and end
times for the changes on the maximum number of users:
number of current users

$users ¼ 0

max simultaneous users during the day

$max_day ¼ 10

max simultaneous users during the night

$max_night ¼ 20

day starts 8 o’clock (8am)

$day_start ¼ 8

day ends 18 o’clock (6pm)

$day_end ¼ 18
The pre policies file controls the number of simultaneous users
and updates the variable controlling this number:
(

it’s day, check for max users during day

((c$time 4 $day_start) & (c$time o $day_end))
&

($users o $max_day)
) j(

it’s night, check for max users during night

((c$time o $day_start) & (c$time > $day_end))
&

($users o $max_night)
)

increments current users counter

$users ¼ $users þ 1
The last line states that, if access is granted to the user, then
the number of users is updated. If the first rule fails, the parsing of
the file stops and the update is not performed. There should also
be a pos update file, for decreasing the number of current users
when a user finishes accessing the object:
decrements current users counter

$users ¼ $users � 1
6.5. Limit on usage time

It is possible to define a policy to limit the amount of time a
user can access an object. For achieving this, the user’s attribute
file should contain an attribute to track her total usage time and
another attribute to record the time of her last action:
total usage time (in hours)

$total_usage ¼ 0

time of last action

$last_action ¼ 0
The object should also have an attribute to define the max-
imum usage time (6 h in this case):
max number of hours per user

$max_usage ¼ 6
The statements implementing such policy are divided into
three files. The pre file should contain:
stores the time this action was performed

$last_action ¼ c$time
The on file should contain:
$max_usage must not be hit

$max_usage > $total_usage
increments $total_usage by the amount of

time between this and the last action

$total_usage ¼ $total_usage þ c$time - $last_action
$last_action ¼ c$time

Finally, the pos file should be:
when the access ends, the control attributes

should be reset

$total_usage ¼ 0

$last_action ¼ 0
By setting to zero the user’s attributes, the policy allows her to
release the object and request it again. This policy could be
modified to leave the total usage time recorded, requiring an
administrative action to allow the user to access the object again,
after attaining her maximum usage time.
6.6. Basic RBAC

In role-based access control (Sandhu et al., 2000), a user can
only activate roles she is authorized to. Two user attributes are
necessary to represent this: one for the user’s authorized roles
and other for the user’s active roles. Thus, the user attribute file
should contain:
roles authorized for this user

$roles ¼ director manager teller
currently active roles

$active_roles ¼ manager teller
These two variables provide many-to-many user-role assignment
($roles is a group of roles, and each role can be assigned to other
users), support for user-role assignment review (one can ask for the
contents of $role) and a user can activate multiple roles simulta-
neously ($active_roles is also a group of roles). The actual access
control is implemented as a combination of object’s attributes and
policies. Just one object’s attribute is required:
$required_roles ¼ teller manager
The pre policies should take care that at least one of the
required roles should be present on the user’s roles list, and
update the active roles to add this role:
roles required to access the object and roles

available

to the user must have a non-null intersection:

size ($required_roles n$roles) !¼ 0
mark the role as active

$active_role ¼ $active_role þ ($required_roles
n$roles)

Fig. 4. A typical RBAC hierarchy.

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–1352 1349
6.7. Hierarchical RBAC

Our language gives support to limited partial ordering or
hierarchy (RBAC level 2 Sandhu et al., 2000). Since this language
does not support complex data structures, such as trees or linked
lists, the hierarchies have to be built using sets. To illustrate this,
let us take as an example the hierarchy shown in Fig. 4.

To describe this hierarchy, a fourth file containing system-
wide values could be used to hold the relationships between
roles. However, for the sake of simplicity, in this example the
hierarchy is defined using object’s attributes. The rules to build
the hierarchy take advantage of the ability to expand variables to
their contents when assigning values to a new variable:
$Director_1 ¼ Manager_1 Manager_2 Director_1
$Director_2 ¼ Manager_3 Manager_4 Director_2
$Director_3 ¼ Manager_5 Manager_6 Director_3
$President ¼ $Director_1 $Director_2 $Director_3
President
Each director has her role and the roles of the managers below
her. The president has her roles created by expanding every role
held by all the directors and by adding her own. The access
control rules are similar to those presented in the previous
example.

6.8. Constrained RBAC

The constrained RBAC model (Sandhu et al., 2000) includes
separation of duty (SoD) support. Such behavior can be achieved
here basically through a modification of the pre policy file and the
definition of a on policy file. The pre policy should ensure that two
conflicting roles cannot be activated at the same time. This can be
easily done by ensuring that only one role is currently active (the
size of the intersection between the set of active roles and the set
of required roles is one).
size ($active_role n $required_roles) ¼¼ 1
This example assumes that the roles listed on $require-
d_roles are mutually exclusive. If that is not the case, it is also
possible to add an attribute to the object’s attribute file, listing the
conflicting roles. The following on policy guarantees that, if a
conflicting role is activated by an access to another object (in
which these roles are non-conflicting ones) or if the required role
is no longer active, the usage session will be revoked:
size($active_role n$required_roles) ¼¼ 1
1 For the sake of simplicity, other file-related operations, like lseek, mmap,

and others, are not considered here.
This rule is identical to the rule defined in the pre file; since it
should be continuously verified during the object usage session, it
should be placed in the On(o) policy file.
7. Evaluation prototype

The usage control model and framework proposed in this paper
were partially implemented as a proof-of-concept prototype, incor-
porated into an operating system kernel. The prototype allows a
system administrator to define usage policies for file access opera-
tions using our grammar rules. This section describes the prototype
architecture and the experiments performed to evaluate it.

7.1. Prototype architecture

The prototype is composed of a rule parser, a usage reference
monitor and a usage mediator. The parser translates the rules
expressed by the grammar into an internal representation to be
used by the reference monitor. The usage mediator is responsible
for intercepting system calls related to file access, after they are
accepted by the standard DAC mechanism. Figure 5 gives an
overview of the prototype. The existing DAC structure is repre-
sented by the gray box, which encapsulates the DAC reference
monitor and its enforcer.

The usage mediator is the entry point of the system; it is
activated during the execution of some relevant system calls. It
analyzes the right requested and consults the usage reference
monitor for a decision. The monitor will then evaluate each rule
and the set of rights, in order to decide granting or denying the
request. The process of evaluating a policy consists of setting the
semantic values to the rules expressed through the grammar
(associating requirements to objects), and deciding if the subject
attributes meet the object’s required rights. If so, the request is
allowed, otherwise it is denied. If any rule fails, the reference
monitor returns false to the usage mediator, which takes the
appropriate actions to refuse the access and/or to revoke active
rights, if any.

The mediator intercepts system calls used in file operations,
such as open, close, read, and write. The pre rules evaluation
and attributes updating are performed during open requests,
while ongoing actions are performed in the read and write

calls. Pos updates are realized when the close system call is
invoked, or when a previous rule evaluation results in access
denial. As the file usage is achieved through the read and write

operations,1 mutable attributes can be checked before such
operations are actually performed. This approach is consistent
with the model presented in Park and Sandhu (2004). Table 3
lists all the system calls intercepted by the current mediator
implementation.

It is important to observe that the usage control mechanism
does not replace the default access control mechanism used by the
kernel (i.e., UNIX file permissions), but only complements it. Thus,
if a usage control policy denies an access, the access is definitely
denied; if it approves the access, the corresponding file permis-
sions are considered. If a file has no usage policies associated to it,
then only its file permissions are checked. This strategy simplified
the implementation, as only usage policies for some files of
interest need to be defined.

7.2. Implementation details

The prototype was implemented in the OpenBSD 4.1 UNIX
kernel, using C and the compiler generator Bison. This operating
system was chosen due to its small and well documented kernel
source code. The mediator is implemented through hooks in the
kernel function syscall, responsible for system call dispatching
in the kernel. When this function is activated, the mediator

Fig. 5. Overview of the prototype architecture.

Table 3
File-related system calls intercepted by the current mediator implementation.

Syscall Description Policy

SYS_open Open a file for reading or writing pre

SYS_close Close a file referred by a descriptor pos

SYS_read Read from an open file on

SYS_write Write to an open file on

SYS_recvmesg Receive a message from a socket on

SYS_recvfrom Receive a message from a socket on

SYS_sendmsg Send a message through a socket on

SYS_sendto Send a message through a socket on

SYS_accept Accept a connection from a socket pre

SYS_socket Create a communication endpoint pre

SYS_connect Establish a connection on a socket pre

SYS_listen Wait for a connection from a socket pre

SYS_execve Execute a file pre

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–13521350
collects information about the request, submits it to the reference
monitor and waits for a decision. If the access is granted, the
syscall function continues its execution. However, if the access
is denied by the reference monitor, the syscall function jumps
to error handling and returns the EACCES (Access error) status to
its caller process.

The gucon_evaluate hook function, called at the beginning
of the syscall code, gets as parameters the system call data
structure and the user requesting it. This function locates the
inode and the device number of the requested file access, and
retrieves the corresponding policy in the object directory: /var/
gucon/obj/devnumber/inode. The object attributes are in the
same directory as the policies; the user attributes are stored in
the /var/gucon/usr/userID file. The object directory also con-
tains the files used as obligation slots.

7.3. Experiments

The scenario defined to evaluate the prototype consisted in
playing a standard MP3 music file. The file is 5 MB large and was
played using mpg123, a very simple music player with a com-
mand line interface. The usage policy defined for this file is:
�
 at most 10 simultaneous users can play the file;

�
 the file only can be played if the current processor usage is

under 30%;

�
 an externally defined obligation, simulated by having the value

1 on the obligation slot 1, should be continuously met.
These usage policy statements lead to the definition of the
following file attributes, user attributes, and pre/on/pos policies.
The file attributes are:
maximum number of simultaneous users

$maxusers ¼ 10

current number of simultaneous users

$currusers ¼ 0

maximum processor usage (in %)

$maxcpu ¼ 30

(arbitrary) value for the obligation

$slotvalue ¼ 1

authorized user groups

$groups¼ USERS ADMINS
The user attributes are:
group to which the user belongs

$user_group ¼ USERS
The pre policy file contents are:
is this user group authorized?

size ($groups n$user_group) 4 ¼ 1

too many users?

$currusers o ¼ $maxusers
increment user count

$currusers ¼ $currusers þ 1
The on policy file contents are:
is the cpu load acceptable?

$maxcpu o ¼ c$cpu_used
is the obligation slot value met?

o$slot 1 ¼¼ $slotvalue
The pos policy file contents are:
decrement user count

$currusers ¼ $currusers � 1
The experiments described hereafter were performed in a PC
equipped with an AMD Athlon 64 Processor 3200þ (2.0 GHz),
with 512 MB RAM. The first experiment consists of checking
whether the defined policies were being correctly evaluated and
enforced. Initially, we measured the processor usage according to
the external obligation rules defined in the on policy. When

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–1352 1351
pushing the processor load above 30% or when setting the o$slot 1
value to values other than 1, the mpg123 player quickly stopped
playing the music, due to an EACCES error received from the kernel.
The meaning of the obligation represented by o$slot 1 was not
defined because it is not relevant for the experiment. It could be, for
instance, the previous acceptance of an EULA contract, or keeping an
advertisement window open; such requirements would be checked
by a user-level obligation feeder process, responsible for defining the
value of the ‘‘o$slot 1’’ obligation slot.

We also evaluated the system behavior under several con-
current accesses, varying from 1 to 15 users. For each user that
opened or closed the audio file, the corresponding pre and pos

policies correctly updated the object attributes. Also, when the
$maxusers threshold was attained, no new users could open the
file until the current number of users went under that threshold.

Before evaluating the impact of policy evaluation in system
performance, we inspected how many times each relevant system
call was called during the player execution. Whereas the open

and close system calls were invoked only 4 times each, the read
system call was invoked 18 922 times. This leads us to conclude
that only the on policy evaluation has a relevant impact in
performance, at least in this scenario.

Finally, we also evaluated the impact of the on policy evalua-
tion in the system performance. We created a simple policy
consisting of the following rule, repeated N times, with N varying
from 0 to 20:
$variable ¼¼ 1
Figure 6 presents the time spent in the kernel (systime) during
the execution of the MP3 player software, according to the
number of rules in the on policy (the time values presented are
the average for 100 executions; coefficient of variation was 10.8%
for N¼0 and 4.2% for N¼20). We observed that each new rule in
the policy linearly increased the systime by 34 ms, which means
1:8 ms per read invocation. Obviously, longer and/or more com-
plex rules will increase this time.

7.4. Results discussion

The experiments performed show that the proposed model and
its implementation can be used in the context of a real operating
system to provide the advantages offered by the UCONABC model,
even considering some degradation in the system’s performance.
Although the rule evaluation performance depends strongly on the
number of statements and their complexity, it could be significantly
 0

 200

 400

 600

 800

 1000

 1200

0 5 10 15 20

sy
st

em
 ti

m
e

(m
ill

is
ec

on
ds

)

number of rules

Fig. 6. System time spent evaluating usage control rules.
improved if rule caching techniques were used, to avoid reading
them continuously from the disk. Other possible improvement
would be to define a binary representation for storing the rules, to
reduce the parser size and to improve its efficiency. Such optimiza-
tions are planned as future work.

Even considering the system performance degradation, it
seems clear that the concepts used to represent attributes,
obligations, and conditions satisfy the UCONABC model descrip-
tion, specially the concept of slots to represent obligations. Also,
the application of this model to control file usage in an operating
system showed that it can be a viable substitute to current ad hoc
controls.

As a side result, it was observed that most application
programs used during our tests (among them a text processor
and an MP3 player) behaved correctly concerning usage denial.
When an access request is denied, the corresponding system call
returns the EACCESS error status, and the applications behave
accordingly. Such behavior makes it easier to implement more
complex access/usage control models like the one presented here.
8. Related work

There are several languages proposed to address different
security and privacy needs. The Enterprise Privacy Authorization

Language (EPAL) (May, 2004) tries to unify the rules that control
how privacy sensitive information should be handled across
systems, by creating a universal mechanism for describing
required privacy policies. In Wedde and Lischka (2004), the
authors propose a modular authorization language to support
distributed authorization between cooperating administrative
teams, based mostly on RBAC. Woo and Lam (1992) also tackle
distributed authorization by introducing a language to encode
authorization requirements, which they call a Policy Base; in
another paper (Woo and Lam, 1998) they further introduce the
formal syntax and semantics for a language called Generalized

Access Control List (GACL) for representing authorization policies
based upon ACL. Since GACL is limited to ACL-based mechanisms,
Ryutov and Neuman (2000) present a policy language that allows
representing several control models (such as ACL, capabilities,
lattice-based and RBAC) and a generic authorization and access-
control API (GAA API) to facilitate integration of authentication
and authorization.

Just like the UCONABC model is distinct from traditional models
by supporting modern needs of continuous usage control and
privacy, such as credit-based usage and DRM, the language
represented by our grammar differs from the above presented
languages by including means to express a more abstract view of
control.

There are several works applying the UCONABC model in
specific domains. For instance, Hilty et al. (2007) present a policy
language for distributed usage control, with particular interest in
DRM interoperability aspects. Distributed systems are also the
focus area of Pretschner et al. (2008), which formally models
mechanisms to enforce usage control in a distributed setting. To
our knowledge, only the works (Xu et al., 2007; Zhang et al., 2008)
used the UCONABC model in the context of an operating system.

In the first paper (Xu et al., 2007), the authors applied usage
control and virtual machines to ensure the integrity of an operating
system kernel against rootkit attacks. The second paper (Zhang et al.,
2008) proposes a platform architecture and mechanisms to enforce
usage control in heterogeneous distributed environments. Instead of
defining a language to specify usage control rules, their approach
uses the SELinux framework (Loscocco and Smalley, 2001) as a
reference monitor; usage control policies are expressed using
XACML, which are automatically translated into SELinux conditional

R. Teig~ao et al. / Journal of Network and Computer Applications 34 (2011) 1342–13521352
policies. The standard policy booleans facility of SELinux is used to
inform the reference monitor about subject/object integrity and
environmental conditions. User-level daemons are responsible for
setting/clearing SELinux policy booleans, which are read by the
kernel-level reference monitor, similarly to the obligation slots
defined in our approach (Teigao et al., 2007). Such approach is
similar to ours, but we understand that using only the boolean flags
provided by SELinux to inform the reference monitor is limiting and
may lead to overly complex usage control policies.
9. Conclusion

This paper presented a usage control model suited for imple-
mentation in an operating system kernel, inspired from the
UCONABC model. It also proposes a framework for usage control
and an LALR(1) grammar for specifying usage control policies. The
proposed grammar is simple to understand but expressive
enough to describe a wide range of policies, like DAC, MAC, RBAC,
UCON, and DRM-like policies, as shown in Section 6.

We integrated the proposed framework into a real operating
system, to show its feasibility. Although the prototype is func-
tional, there are some open issues to be solved, such as efficiently
relating the rules and attribute files to objects and users, and
creating and managing obligation slots, which could be over-
looked in our proof-of-concept implementation, but are essential
for a production system. Also, the solution found to provide
condition values is not very flexible, as it depends on data
gathering kernel-level routines. Finally, our current model lacks
administrative policies to make clear who can modify the user
and object attribute files and the corresponding policy files.

References

Bell D, LaPadula L. Secure computer systems: unified exposition and Multics
interpretation. Technical Report MTR-2997 Rev. 1, MITRE Corporation; 1976.

DeRemer F, Pennello T. Efficient computation of LALR(1) look-ahead sets. ACM
Transactions on Programming Languages and Systems 1982;4(4):615–49.

Hilty M, Pretschner A, Basin D, Schaefer C, Walter T. A policy language for
distributed usage control. In: Biskup J, López J, editors. Computer security
ESORICS 2007. Lecture notes in computer science, vol. 4734. Springer; 2007.
p. 531–46.

Katt B, Zhang X, Breu R, Hafner M, Seifert J-P. A general obligation model and
continuity-enhanced policy enforcement engine for usage control. In: ACM
symposium on access control models and technologies; 2008. p. 123–32.

Lampson B. Protection. SIGOPS Operating System Review 1974;8(1):18–24.
Loscocco P, Smalley S. Integrating flexible support for security policies into the

Linux operating system. In: Usenix Annual Technical Conference; 2001.
p. 29–42.

May MJ. Privacy system encoded using EPAL 1.2. Technical Report, University of
Pennsylvania; August 2004.

Park J, Sandhu R. Usage control: a vision for next generation access control. In:
Gorodetsky V, Popyack LJ, Skormin VA, editors. International workshop on
mathematical methods, models, and architectures for computer network
security, Lecture Notes in Computer Science, vol. 2776. Springer; 2003.
p. 17–31.

Park J, Sandhu R. The UCONABC usage control model. ACM Transactions on
Information and System Security 2004;7(1):128–74.

Pretschner A, Hilty M, Basin D, Schaefer C, Walter T. Mechanisms for usage control.
In: ACM symposium on information, computer and communications security.
ASIACCS ’08; 2008. p. 240–4.

Ryutov T, Neuman C. Representation and evaluation of security policies for
distributed system services. In: DARPA information survivability conference
and exposition. Healton Head, South Carolina, January, 2000. p. 1172.

Sandhu R, Ferraiolo D, Kuhn R. The NIST model for role-based access control:
towards a unified standard. In: ACM workshop on role-based access control.
New York, NY, USA: ACM Press; 2000. p. 47–63.

Sandhu R, Samarati P. Access control: principles and practice. IEEE Communica-
tions Magazine 1994;32(9):40–8.

Teigao R, Maziero C, Santin A. A grammar for specifying usage control policies. In:
IEEE international conference on communications; 2007. p. 1379–84.

Wedde HF, Lischka M. Modular authorization and administration. ACM Transac-
tions on Information and System Security 2004;7(3):363–91.

Woo TYC, Lam SS. Authorization in distributed systems: a formal approach. In:
IEEE symposium on research in security and privacy; 1992. p. 33–51.

Woo TYC, Lam SS. Designing a distributed authorization service. In: IEEE interna-
tional conference on computer communications; 1998. p. 419–29.

Xu M, Jiang X, Sandhu R, Zhang X. Towards a VMM-based usage control framework
for OS lernel integrity protection. In: ACM symposium on access control
models and technologies; 2007. p. 71–80.

Zhang X, Parisi-Presicce F, Sandhu R, Park J. Formal model and policy specification
of usage control. ACM Transactions on Information and System Security
2005;8(November):351–87.

Zhang X, Park J, Parisi-Presicce F, Sandhu R. A logical specification for usage
control. In: ACM symposium on access control models and technologies; 2004.
p. 1–10.

Zhang X, Seifert J-P, Sandhu R. Security enforcement model for distributed usage
control. In: IEEE international conference on sensor networks ubiquitous and
trustworthy computing; 2008. p. 10–8.

	Applying a usage control model in an operating system kernel
	Introduction
	Usage control
	The proposed usage control model
	The usage control framework
	The usage control language
	Language requirements
	Language structure

	Usage control examples
	Discretionary access control with ACL
	Mandatory access control
	Usage control with obligation fulfillment
	Limit of the number of simultaneous users
	Limit on usage time
	Basic RBAC
	Hierarchical RBAC
	Constrained RBAC

	Evaluation prototype
	Prototype architecture
	Implementation details
	Experiments
	Results discussion

	Related work
	Conclusion
	References

