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Abstract Virtual memory mechanisms allow offering more
RAM memory space to processes than the amount of mem-
ory physically available in the system, using disk space as a
memory extension. When there is not enough RAM mem-
ory to satisfy the active processes’ working sets, the system
throughput may be significantly reduced, due to the excessive
paging activity. Such situation is known as memory thrash-
ing. This paper presents an evaluation of some commodity
desktop operating systems under thrashing conditions. We
also identify and discuss the performance data about mem-
ory management available in each system and the mecha-
nisms available to collect it. A portable benchmark tool was
developed to bring each system to a thrashing situation and
then pull it back to normality. The results observed from the
systems under study are compared and discussed.

Keywords Memory thrashing · Virtual memory ·
Memory management · Operating systems

1 Introduction

In a general purpose operating system, the virtual mem-
ory infrastructure allows offering to processes more RAM
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memory space than that physically available in the system,
using disk space as a memory extension. When the mem-
ory demand increases, the memory management subsys-
tem selects some memory pages and move their contents
to disk, to free some memory to satisfy the demand. When
such swapped pages are to be accessed again by their own-
ers (processes), they should be pulled back into RAM. This
migration of memory pages between RAM and disk is usu-
ally called paging.

As defined by Denning [9], the working set of a process
is the set of memory pages it is effectively using at a given
moment, including code, data, stack, and heap pages. When
the available RAM space is not enough to hold the working
sets of all the active processes, paging activity increases, to
free RAM space and to load the memory pages requested
by the processes. Consequently, the system performance
degrades, because the operating system should spend some
effort doing I/O to save/retrieve pages to/from the disk, and
because processes should wait for the pages they need to be
available.

When physical memory is under a stressing demand, a
memory thrashing situation may occur. Under such situa-
tion, CPU usage falls and the system becomes almost unre-
sponsive, since the application processes are continuously
waiting for memory pages to continue their execution. This
paper presents a quantitative evaluation of some popular
general-purpose operating systems under thrashing condi-
tions. We selected four commodity operating systems and
defined our own benchmark tool, which induces a controlled
thrashing situation in each operating system under study and
then brings it back to normality.

This text is organized as follows: Sect. 2 revisits the
concept of memory thrashing, presents some proposed solu-
tions, and discusses how current commodity operating sys-
tems deal with it; Sect. 3 presents some benchmark tools
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used to measure memory performance in computing systems;
Sect. 4 discusses the benchmark strategy adopted in this
work, presents the developed benchmark tool, and indicates
how memory performance measurements were taken in each
operating system under study; Sect. 5 describes the experi-
ments performed and analyses the results obtained; finally,
Sect. 6 concludes the paper.

This paper is based in a previous work [10], published
in a Brazilian workshop (in Portuguese). The present paper
includes more details about the experiments performed and
a much deeper analysis of their results.

2 Memory thrashing

The term memory thrashing [8] refers to a situation of mem-
ory stress on a computer, in which a large amount of pag-
ing I/O activity slows down the execution of processes and
makes the system unusable. The dynamics of thrashing in a
page-based memory system is somewhat simple: the set of
memory pages a process needs for its execution at a given
moment is called its working set [9]. If a process does not
have its current working set entirely in RAM memory, it gen-
erates page faults to retrieve the missing memory pages from
the swap area in disk. If the amount of RAM available in the
system is not sufficient to hold the working sets of all the
active processes, the memory management needs to continu-
ously swap-out (save to disk) pages from some processes to
swap-in (load from disk) requested pages for other processes.
Due to this cascading effect, the processes’ execution evolves
very slowly, since they spend most of their time waiting
for the pages they need to be loaded into the RAM. Thus,
the CPU usage falls down and the system becomes almost
unresponsive.

The thrashing phenomenon is influenced by several fac-
tors, such as the amount of RAM memory available, the num-
ber and size of the active processes, the locality of reference
of their execution, the algorithms used for page selection (for
swap-outs) and the disk I/O speed [8]. An obvious remedy
for this situation would be to increase the amount of RAM
memory available in the system, but this is not always possi-
ble and may not solve the problem. In fact, it just pushes the
thrashing threshold and consequently reduces the probability
of its occurrence, but does not change the system behavior
whenever a memory thrashing occurs.

Technical literature has several proposals to manage mem-
ory thrashing. After the pioneering efforts done by Denning
[8] and his working set model [9], Blake [2] proposed a
thrashing control method based in the discrete control theory.
It defines a thrashing level indicator to be used as a feedback
parameter to a control algorithm that can increase or decrease
the multiprogramming level of the system. Among others,
Markatos [19] proposed to use memory from other machines

in a local network instead of the local disks, to reduce mem-
ory thrashing. They obtained interesting results, although the
expected performance is heavily dependent on the network
traffic.

The works [15,16] defined a technique called TPF
(Thrashing Protection Facility) to manage memory thrash-
ing situations. In this approach, a token is assigned to one
process in the system; the process holding the token is pro-
tected from the trashing, because its pages are kept in RAM
by the swapping mechanism. The allocation of the token to
a process follows some rules: (a) the token holder is the
same in the last few seconds; (b) the current token holder
did not generate page faults since it received the token; and
(c) the current active process has not received the token
recently.

More recently, Reuven and Wiseman [30] proposed a mid-
term process scheduler that takes into account the whole
RAM usage. The active processes in the system are separated
in a number of “packs” according to their RAM usage. The
size of each pack should be the closest to the system’s free
RAM space. Grouping the active processes into packs means
solving a classic bin packing problem. The process packs are
then scheduled using a round-robin policy; inside a pack,
processes are scheduled by the standard OS scheduler. This
mid-term pack scheduler ensures that the RAM demand for
the active processes in a pack fits the available RAM space,
thus preventing memory thrashing. Since the pack schedul-
ing quantum is longer than the system quantum, interactive
and real-time processes should be treated separately.

In the following, approaches for thrashing management
present in some popular COTS operating systems are dis-
cussed. The FreeBSD operating system detects thrashing
through the monitoring of the RAM usage level [24]. When
the free RAM memory is low and there is a high rate of
page requests, the system is presumed to be under thrashing.
The memory management subsystem then tries to reduce the
thrashing by not allowing the last active process to get back
to the CPU for some time. Such approach allows the memory
subsystem to discharge all the pages of the last active process
to disk, freeing up memory for the other active processes. If
the thrashing continues, more processes are chosen to be
blocked and swapped out, until the page fault rate decreases.
Blocked processes can return to activity after 20 s, which
may cause a new thrashing, leading to other processes being
blocked, and so on.

The current Linux kernel implements a variant of the TPF
approach [16], as defined by Jiang and Zhang [17]. However,
in cases of extreme trashing, the prevention algorithm is left
aside and the memory manager starts to choose and kill “bad”
processes, using an appropriate heuristics, until the memory
demand is reduced to manageable levels [3].

The memory manager of the OpenSolaris operating sys-
tem defines three working states: normal, soft and hard swap.
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In the normal state, it uses a classic paging mechanism (a ver-
sion of the well-known two-handed clock algorithm [35]).
If the amount of free RAM falls below a predefined thresh-
old called desfree for more than 30 s, the system switches
to the soft swap state, in which entire processes are swapped
out to disk. If paging activity remains high even after swap-
ping some processes, the system enters the hard swap state,
in which the system kernel unload all unused modules and
free its memory cache. It also moves the processes that are
sleeping for a long time to the disk, one at a time, until the
paging activity decreases enough to resume the soft swap
state [20].

Finally, Windows XP uses a variable-length file as its swap
area, which may be increased in memory outage situations.
The page selection algorithm is based on the working set
concept [33]. A kernel thread periodically reviews the sizes
of all processes’ working sets, “stealing” pages from some
processes if the free RAM space is low. Another kernel thread
gradually moves processes suspended too long to the swap
area. Unfortunately, no clear mention to thrashing manage-
ment policies for the Windows OSes was found in the avail-
able technical literature.

3 Tools for memory benchmarking

Most memory benchmark tools are designed to measure the
speed of operations involving RAM and its associated caches.
Two frequent measures are the memory bandwidth and mem-
ory access latency. This section presents some tools for mem-
ory benchmarking, initially those that run on more than one
operating system and that are open source (an important
project feature that ease understanding how each tool per-
forms its measures).

The Bandwidth tool [34] measures the speeds of read/write
operations in L2 cache, RAM memory, and video memory,
and the speed of memory-related C functions like memset,
memcpy, and bzero. The CacheBench tool [27] program
evaluates the cache hierarchy performance, measuring its
various bandwidths. The LMbench tool [25] program runs
in UNIX systems and measures only the data transfer rate
between processors, cache, memory, network, and disks.
The nBench tool [21] evaluates the performance of CPU
and memory bandwidth, simulating operations performed
by popular applications. Finally, Stream [23,22] is a portable
tool for measuring the time required to copy memory regions
and also some bandwidth values.

The Standard Performance Evaluation Corporation (SPEC)
maintains a set of benchmarks for modern computers [14].
The SPEC CPU tool runs on Unix and Windows systems and
allows to measure the CPU performance, compiler perfor-
mance, and memory bandwidth. In addition to these tools,
SPEC provides several other tools, but none of them pro-

vides functionality to specifically evaluate the response of a
system under memory thrashing conditions.

4 Evaluation of system behavior under thrashing

The objective of this study is to evaluate the behavior of some
popular operating systems under thrashing conditions. We do
not intend to propose new algorithms to deal with this prob-
lem, neither to evaluate state-of-the-art algorithms like those
discussed in Sect. 2, but to evaluate the solutions currently
available in commodity systems. For this study, we selected
the FreeBSD, Linux, OpenSolaris, and Windows XP oper-
ating systems, because they are the main desktop operating
systems natively running on the standard Intel x86 platform.1

Such hardware platform was chosen due to its availability
and good driver support. The operating systems chosen may
operate in desktop mode or as a multi-user remote termi-
nal servers. In this last context, the thrashing effects may
be particularly problematic, because the action of a single
user may directly affect the system availability for the other
users.

Since an adequate tool to evaluate the behavior of an oper-
ating system under memory thrashing was not available, an
ad-hoc benchmark tool was developed. Our tool brings the
system from a normal operation state to a memory thrashing
situation and then brings it back to a normal state. Thus, it
allows to evaluate how each system manages the memory
during the thrashing and how fast the system recovers when
the demand for physical memory comes back to normal lev-
els. The behavior of each system was observed by monitor-
ing the CPU usage in user and system levels and the rate
of pages being read or written to disk (respectively, page-in
and page-out rates). Each system provides such information
through its own API, thus a platform-specific measurement
program was required to collect performance data in each
system.

4.1 The benchmark tool

The benchmark tool has three components: a set of N
consumer processes that are responsible for inducing the
memory thrashing, a measurement process that collects per-
formance data, and a master process that manages the other
processes. Each consumer process allocates a large mem-
ory area (using standard malloc), seen as a large byte
array. It then performs write cycles at random bytes in this
array, interleaved with sleeping periods, as shown in Fig. 1.
Its temporal behavior is described by the following algo-
rithm:

1 Windows Vista and Windows 7 were not yet widely adopted at the
time this research was conducted; Apple’s MacOS X was not considered
because it runs in specific hardware.
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Fig. 1 Temporal behavior
of the benchmark program
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Require: N (# of consumers), i (current process), t (system
time), tc (delay between two consumers), ts (sleep dura-
tion between write cycles), W (number of write operations
per cycle), S (size of the memory area, in bytes)

1: sleep (10 + i × tc)
2: mem = malloc (S)
3: tp = (N × tc) + tc {activity duration}
4: t f = t + tp{execution end time}
5: while t ≤ t f do
6: for k = 1 to W do
7: val = random () mod 256
8: pos = random () mod S
9: mem [pos] = val

10: end for
11: sleep (ts)
12: end while
13: free (mem)

An artificial workload was chosen instead of a real applica-
tion because the memory access patterns of real processes are
very variable, depending on their purpose and even in what
they are doing at a given moment. For instance, memory-
hungry applications like a CAD system, an image editor, or
even a document indexer have very distinct memory needs
and access patterns during their lifetime. Due to this het-
erogeneity, an artificial workload with a poor locality of
reference represents a general “less favorable case”. Our
benchmark tool is inspired from the workloads described in
[28,29], in particular workloads 2 and 3, in which the write
operations are done at random bytes in the allocated memory
area, to keep a low locality of reference and thus to not favor
any specific operating system.

The benchmark parameters whose influence was studied
are: the number of write operations in each write cycle (W ),
the sleeping time between two write cycles (ts), and the delay
between two consumer processes’ activations (tc), i.e. the
interval between the start of activity of two successive con-
sumer processes (pci and pci+1). Other parameters were also
studied, but these showed to be the most relevant ones in all
the experiments performed.

The consumer processes were written in ANSI C, due to its
portability. Therefore, the consumer program is exactly the
same in all the four operating systems under evaluation. The
measurement process was also written in C, with an exception
for the Windows operating system, in which a native mea-
surement tool was adopted. The master process was written
in Java, since its process creation API is platform indepen-
dent. As seen in the algorithm presented in this section, each
consumer process waits at least 10 s before starting to work;
this initial sleeping time was defined to avoid any impact of
the Java runtime loading on the behavior of the consumer
processes.

4.2 Performance data collection

Basically, the measurement process periodically collects data
about CPU and memory usage as provided by the kernel and
saves it to a file. The measurement period chosen was 1 s,
which is enough to represent the dynamics of the phenom-
enon being studied. The measurement process is specific to
each operating system, because the interfaces to access ker-

Table 1 Kernel data sources in each operating system

OS Mechanism Counters

FreeBSD sysctl kern.cp_time

vm.stats.vm.v_swappgsin

vm.stats.vm.v_swappgsout

OpenSolaris kstat cpu_ticks_user

cpu_ticks_kernel

pgswapin

pgswapout

Linux /proc /proc/stat

/proc/vmstat

Windows XP perfmon CPU.%User Time

CPU.%Privileged Time

memory.Pages Input/sec

memory.Pages Output/sec
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nel statistics are distinct for each system, as described in
the following and summarized in Table 1. We consider that
the mechanisms offered by each operating system to provide
kernel statistic data are reliable and accurate.

In the FreeBSD OS, the sysctl tool allows to query
more than 500 kernel variables organized hierarchically.
The variables related to CPU and memory usage are:
kern.cpu_time (an array with CPU times at user and sys-
tem levels), vm.stats.vm.v_swappgsin (number of
pages read from disk in the last second) andvm.stats.vm.
v_swappgsout (number of pages written to disk in the last
second).

The Linux kernel implements the /proc virtual file sys-
tem [6], which offers a hierarchy of kernel information
through an abstraction of files and directories. Many Linux
monitoring tools like top and vmstat use the /proc file
system as a primary source of information. In the experi-
ments described here, the CPU usage data were obtained
from the file /proc/stat, while the paging I/O data were
obtained from the file /proc/vmstat (fields pgpgin and
pgpgout).

OpenSolaris provides statistic information about the ker-
nel and its modules using a facility named kstat, through
which the kernel subsystems publish their data. Access to
this facility is done using the virtual device /dev/kstat
and a set of functions. The kstat_data_lookup func-
tion allows to lookup for a specific counter and to retrieve its
value. The counters of interest here are:cpu_ticks_user
(CPU time at user level), cpu_ticks_kernel (CPU time
at system level), pgswapin (pages read from swap in the
last second), and pgswapout (pages written to swap in the
last second).

Finally, the Windows XP OS does not offer a public API
to collect data from the kernel. Instead, a native tool called
perfmon (from Performance Monitor) allows to access the
system performance data provided by the kernel. Windows
classifies computer resources as objects, which are associ-
ated with counters. The counters considered here concern
the object “CPU” and the object “memory”: %User Time
(CPU time at user level), %Privileged Time (CPU time
at system level), Pages Input/sec (pages read from
swap in the last second), and Pages Output/sec (pages
written to swap in the last second).

4.3 The experiment environment

The experiments were performed in an IBM PC ThinkCen-
tre S50 computer, with a 32-bit Intel Pentium IV 2.6 GHz
processor, an Intel motherboard using the 865G chipset and
a 533 MHz front-side bus. The machine had 1 GB of DDR-
RAM PC2700, with 333 MHz clock and 6 ns access time.
Standard page size in the platform is 4 Kbytes. The hard
drive used was a Seagate Barracuda ST3400E3 40 GB IDE

Table 2 Transfer rates for each disk partition, in MB/s (means and
standard deviations for ten measurements)

#P hdparm (seq reads) dd (seq writes) sysbench (rnd r/w)

1 28.23 ± 0.04 16.59 ± 0.03 0.880 ± 0.003

2 26.91 ± 0.07 15.80 ± 0.00 0.867 ± 0.004

3 27.59 ± 0.22 16.31 ± 0.03 0.857 ± 0.004

4 27.23 ± 0.05 15.90 ± 0.00 0.833 ± 0.006

(ATA-100 connector, 2 MB internal buffer, 7,200 RPM speed,
100 MB/s peak transfer rate and 8.5 ms seek time).

The hard disk was divided in four equal primary partitions,
one for each operating system, installed in this order: (1)
Windows XP, (2) FreeBSD, (3) OpenSolaris, and (4) Linux.
To keep the structure of all systems as similar as possible, a
2 GB swap file was used as swap area inside each partition,
since the Windows platform does not use a separate swap
partition. Normally, performance impact of using a swap file
instead of a swap partition is negligible, as discussed in [26].
Also, the implementation of swapfs in SunOS shows that
adding an indirection layer between RAM and its backing
store does not impact swapping performance [4].

It is well known that cylinder position has an influence
in data transfer rates. However, other factors also influence
data access performance, like track-to-track latency, bus and
memory speeds, etc. We evaluated the performance of the
disk used in our experiments, according to the position of the
data being accessed, for both sequential and random access,
to better estimate the impact of placing each operating system
at a given partition.

Sequential read/write access performance was measured
at the disk interface level, using the standard UNIX hdparm2

and dd3 tools. Random read/write access performance was
measured at the filesystem interface level, using the sys-
bench4 tool on the Linux’s Ext2 file system; we found no
reliable tool to perform random access benchmarks at the
disk interface level. According to Ruemmler and Wilkes [32],
swapping workload on disks in UNIX systems may be char-
acterized as synchronous and composed of 70–90 % reads.
Such characterization was taken into account to define the
parameters of the benchmark tools.

Table 2 shows transfer rates measured in the four disk
partitions created to host the operating systems. The biggest

2 hdparm -t /dev/partition.
3 dd bs=4096 count=128 oflag=dsync if=/dev/zero
of=/dev/partition.
4 sysbench –num-threads=1 –test=fileio
–file-num=128 –file-block-size=4096
–file-total-size=512M –file-fsync-mode=
fdatasync –file-rw-ratio=2 –file-test-mode
=rndrw.
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Fig. 2 Transfer rates according to the disk region, in MB/s (means and
standard deviations for ten measurements)

Table 3 Configuration of the operating systems under study

System FreeBSD Linux OpenSolaris Windows

Version PC-BSD OpenSUSE 2008.11 XP Pro

7.0 10.3 SP3

Compiler GCC 4.2.1 GCC 4.2.1 GCC 3.4.3 GCC 4.2.3

User interface KDE 4 Gnome 2.20 Gnome 2.22 Native

Processes 66 62 79 16

Free RAM (MB) 630 730 370 830

RAM in cache
(MB)

70 140 100 70

Swap in use (MB) 0 0 0 80

performance gap was 5.64 %, observed between partitions 1
and 4 in the sysbench random read/write access test.

To better understand the impact of disk position in access
performance, a finer-grained evaluation was also performed.
A primary partition of 1 GB size was created at successive
disk positions and its access performance was evaluated using
the same tools. Figure 2 shows the performance observed for
the disk used in our experiments. It is possible to observe
that there is some performance degradation at the end of
the disk (the 37–40 GB region), mainly for large sequential
read accesses. Since such disk region was not used in the
experiments (operating systems occupied only around 10–
15 % of each partition after installed), and since swapping
usually deals with small groups of contiguous pages, the per-
formance degradation observed in the disk evaluation does
not have a significant influence in the results. Moreover, this
work focus the overall behavior of each operating system;
any fine-grained quantitative comparison among the systems
under study should take into account such performance para-
meters.

It should be also observed that more recent, higher den-
sity disks show a more intense performance degradation
according to the disk region, as shown in [18] and [7]. Due

to the strong advances in chip technology, bottlenecks due
to controller, bus, memory, and processor performance are
much smaller in more recent systems, putting in evidence
the mechanical properties and restrictions of hard disks.

A default desktop installation was performed for each
operating system and only the default processes of each oper-
ating system were running during the experiments. The com-
piler chosen was GCC (GNU Compiler Collection), since it
is widely used and has versions for all the operating systems
being evaluated. No specific compiler optimizations were
used. Table 3 shows the configuration of each system just
after the system startup, including the number of running
processes, the amount of free RAM memory, the RAM space
used for disk cache, and the swap area already in use.

5 Experimental results

The experiments aimed at evaluating the influence of the
parameters described in Sect. 4.1, i.e. the number of write
operations in each write cycle, the delay between write cycles
and the delay between the starting of two consecutive con-
sumer processes. For each parameter, its influence on the
CPU usage and on the number of pages being read (page-in)
and written (page-out) was observed. In each experiment 25
consumer processes were created (N = 25), each one allo-
cating a 100 MB memory area (S = 100 MB). Such para-
meters were chosen empirically, to bring each OS to a deep
thrashing situation, while avoiding memory exhaustion. The
possibility of memory exhaustion was checked by testing all
memory allocations during the execution and by examining
all the system logs after each experiment.

Performance data were collected each 1s by a measure-
ment process running with default priority and super-user
permissions. The interference of the data collector itself was
estimated negligible, since experiments performed with the
collector running at different sample rates (1, 10, and 30 s)
provided equivalent results in terms of overall behavior. The
machine was rebooted after each measurement.

As discussed in Sect. 2, the expected behavior of an operat-
ing system during thrashing is to present a low CPU usage at
user level, since user processes continuously wait for missing
pages and progress slowly. System level activity is expected
to be moderate or even high, specially if paging algorithms
are complex. Page-in and page-out activity are also expected
to be high, to satisfy the pages demanded by user processes
(page-in operations) and to free RAM space for them
(page-out operations).

5.1 Experiments

Table 4 shows the experiments performed. They investigate
the influence of the benchmark parameters W (number of
write operations per cycle), ts (sleep time between two write
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Table 4 Details of the experiments

Experiment W ts (ms) tc (s) CPU usage Paging
activity

e1 1,000 100 30 Fig. 4 Fig. 5

e2 10,000 100 30 Fig. 6 Fig. 7

e3 10,000 1,000 30 Fig. 8 Fig. 9

e4 10,000 100 1 Fig. 10 Fig. 11

cycles), and tc (interval between the start of activity of two
successive consumer processes), on the systems’ CPU usage
and paging activity. The first two experiments (e1 and e2)
investigate the influence of the number of write operations
in each write cycle. Together, experiments e2 and e3 allow
to analyze the influence of the sleep between write cycles,
and experiments e2 and e4 allow to evaluate the impact of the
interval between two consumer processes’ creation. For each
experiment, two diagrams for CPU usage (user and system
level) and two diagrams for paging activity (page-in/sec and
page-out/sec) were created. User level CPU usage is mostly
related to the processing of consumer processes, and system
level processing is generally due to kernel activity.

The performance data measured in all experiments showed
an important variability, making their direct visualization
and interpretation unfeasible. To overcome this problem, col-
lected data were “smoothed” using Bézier curves, allowing
to graphically present the measured results in a meaningful
way. This problem can be seen in Fig. 3, which shows some
results before and after the Bézier smoothing procedure.
Therefore, all the graphics presented in the following sections
do not indicate the exact values observed for each individ-
ual performance indicator, but their “smoothed” behavior.
This approach may hide some local peaks and valleys in the
curves, but it is satisfactory to depict the “high-level behav-

ior” of the systems in each experiment. Furthermore, the sta-
bility results (presented in Sect. 5.5) allow one to infer that
such behavior is adequately represented by the smoothed
curves.

5.2 Impact of the number of operations per write cycle

The only difference between experiments e1 and e2 is W ,
the number of write operations in each write cycle. Indi-
rectly, W represents how CPU-bound is a process; in this
sense, higher W values mean more processing during each
cycle. In the workload, each worker allocates a 100 MB area
(25,600 pages of 4 KB), in which it performs cycles of W
write operations (W = 1,000 for e1 and 10,000 for e2 · · · e4).
Considering that accesses are issued at random positions, the
probability of a given page to be accessed more than once in
a single write cycle is ≈0.07 % for W = 1,000 and ≈5.9 %
for W = 10,000. This means that the number of distinct
pages touched in each write cycle roughly corresponds to W.
Observed results are shown in Figs. 4, 5, 6 and 7.

During e1, both paging activity and user/system CPU
usage were generally very low (Fig. 4). This means that the
consumer processes’ workload did not affect the systems sig-
nificantly. One exception is OpenSolaris, showing peaks of
40 % of user-level CPU usage at the beginning and at the end
of the experiment (and a corresponding small increase in the
system level CPU usage too). Such high CPU activity seems
to happen when the system enters or leaves the soft swap state
(cf. Sect. 2), thus probably some of the OpenSolaris mem-
ory management operations are being accounted as user-level
processing time. The other exception is FreeBSD, which pre-
sented a CPU usage higher than the others, both at user and
system level. As the CPU usage level is almost constant, and
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Fig. 3 Plots with raw observed data (left) and smoothed data (right)

123



36 J Braz Comput Soc (2013) 19:29–42

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200  1400

C
P

U
 u

sa
ge

, u
se

r 
le

ve
l (

%
)

Time (s)

FreeBSD
Linux

Solaris
Windows

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200  1400

C
P

U
 u

sa
ge

, s
ys

te
m

 le
ve

l (
%

)

Time (s)

FreeBSD
Linux

Solaris
Windows

Fig. 4 CPU usage during experiment e1 (in %)
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Fig. 5 Paging activity during experiment e1 (in pages/s)

is not accompanied by a more intense swapping activity, we
attribute such CPU activity to the consumer processes.

Paging activity during e1 (Fig. 5) was higher in Linux, and
particularly high in Windows, whose intense page-in activ-
ity during the first seconds may be explained by the pag-
ing demanded to load the experiment program and dynamic
libraries. The reasons for the paging activity peak at t≈850s
are unclear; we infer that it is related to internal Windows
thresholds or time-outs, since no meaningful event happened
in the experiment at that time. Also, the Windows XP reac-
tion to memory thrashing was more aggressive than the other
systems’, as shown by the page-out peaks at the beginning
and the middle of the experiment.

The observed systems’ behavior changed significantly
during e2, i.e. all the systems showed more intense CPU and
paging activity, mostly between t ≈ 400 s and t ≈ 1,300 s.
Severe thrashing apparently starts at t ≈ 400 s, when the
paging activity suddenly increases in all systems. CPU activ-
ity concentrated at system level, due to the virtual memory

algorithms; user level activity was very low, except for Linux,
which attained the highest levels in this experiment. Thrash-
ing impact was strongest in Windows, whose CPU activity
was the lowest among all the systems. In fact, some consumer
processes in Windows finished much later than their expected
time t f , during experiment e2.

Concerning paging operations, Linux and Windows were
the systems with the highest activity. However, it can be
inferred that the thrashing prevention/management mecha-
nisms in Linux are more effective than in Windows, because
of the higher user level CPU activity observed. Results sug-
gest that OpenSolaris and FreeBSD reacted to thrashing by
swapping out the most RAM-demanding processes, in a ten-
tative to “calm down” the whole system activity. In fact, the
page-in activity in OpenSolaris and FreeBSD remains quite
low, while their number of page-out operations increased
after t ≈ 400 s.

When comparing e1 and e2 results, the impact of W is
clear: more memory accesses per write cycle means more

123



J Braz Comput Soc (2013) 19:29–42 37

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200  1400

C
P

U
 u

sa
ge

, u
se

r 
le

ve
l (

%
)

Time (s)

FreeBSD
Linux

Solaris
Windows

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200  1400

C
P

U
 u

sa
ge

, s
ys

te
m

 le
ve

l (
%

)

Time (s)

FreeBSD
Linux

Solaris
Windows

Fig. 6 CPU usage during experiment e2
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Fig. 7 Paging activity during experiment e2

memory pages being requested, and more effort is required
from the paging mechanism. The 100 ms sleep period of each
process between two write cycles seems to be insufficient to
decrease such pressure.

5.3 Impact of the sleeping time between writes cycles

The influence of the sleeping time between two write cycles
can be analyzed by the comparison between e2 (in which
ts = 100 ms) and e3 (ts = 1,000 ms) results. Figures 6 and
8 show the CPU usage for ts = 100 ms and ts = 1,000 ms,
respectively, keeping the number of writes/cycle at W =
10,000 and the delay for activating each process at tc = 30 s.
Figures 7 and 9 show the corresponding page-in and page-out
activity for such experiments.

Increasing the sleeping time ts has several effects: while
it reduces the user-level CPU demand (as processes sleep
longer), leaving more CPU time for the kernel mechanisms
(if needed), it also reduces the pressure on the paging mech-
anism, thus alleviating the memory thrashing. Such behavior

can be observed in Figs. 8 and 9, which show a less intense
paging activity than in experiment e2. The graphics result-
ing from e3 show thrashing occurring at t ≈ 750 s, when
there is a burst of paging-out activity. It should be observed
that experiments e1 to e3 have the peak of their activity in
the interval [730, 790 s], when all consumers are active. Only
Windows showed an uncommon paging activity, with a lower
(but longer) page-out burst, and three page-in peaks (and their
corresponding CPU usage peaks at system level). Again, no
intuitive explanation was found for such behavior. Finally,
we inferred that OpenSolaris reached its soft swap state at
t ≈ 500 s, as shown by the increase in the system level CPU
and page-out activity at that time. This early reaction is prob-
ably due to the fact that OpenSolaris uses more memory at
its startup than the other systems, as shown in Table 3.

5.4 Impact of the delay between process activations

Experiment e4 aims to evaluate the impact of tc, i.e. the delay
between the activation of two consumer processes. Although
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Fig. 8 CPU usage during experiment e3
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Fig. 9 Paging activity during experiment e3

decreasing tc also increases the pressure on the paging mech-
anism, it is distinct from decreasing ts , because in e4 the
memory allocations and deallocations (rows 3 and 14 of the
algorithm presented in Sect. 4.1) are done faster, leading to a
more aggressive thrashing. Figures 10 and 11 show the CPU
usage and paging activity for e4, in which tc = 1 s. They
are to be compared, respectively, to Figs. 6 and 7 from e2, in
which tc = 30 s (ts and W are the same in e2 and e4).

First of all, a smaller tc obviously leads to a shorter exper-
iment, in which behaviors are more smooth and somewhat
similar. There is a fair amount of system level activity in all
systems, excluded Windows. We inferred that this processing
is due to the kernel virtual memory algorithms, including the
thrashing management itself. CPU activity is more intense
from t ≈ 5 s to t ≈ 40 s, although FreeBSD continues
to have a sustained kernel level processing until the end of
the experiment. This behavior is probably due to the 20 s
blocking period imposed by FreeBSD to some processes, as
discussed in Sect. 2.

Windows showed an intense page-in activity during the
beginning of the experiment, distinctly from the other OSes.
Since no page-out activity was seen during this period, this
page-in activity is certainly related to loading executable code
and/or libraries. Such behavior can also be seen in the other
experiments, but it is less visible in their graphics due to their
larger time scale.

Once again, Linux showed the most intense paging activ-
ity during the thrashing period, for both page-in and page-
out operations. However, although there is a corresponding
kernel-level processing activity, no concomitant user-level
processing was observed in this experiment to justify a real
performance gain for user processes.

5.5 Stability of results

To evaluate the stability of the collected data, each experiment
was repeated three times under the same conditions. Given
the complexity and dynamic nature of the memory man-
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Fig. 10 CPU usage during experiment e4

 0

 100

 200

 300

 400

 500

 600

 700

 0  10  20  30  40  50  60

P
ag

e 
in

 (
pa

ge
s/

se
c)

Time (s)

FreeBSD
Linux

Solaris
Windows

 0

 1000

 2000

 3000

 4000

 5000

 0  10  20  30  40  50  60

P
ag

e 
ou

t (
pa

ge
s/

se
c)

Time (s)

FreeBSD
Linux

Solaris
Windows

Fig. 11 Paging activity during experiment e4

agement mechanisms implemented by the systems under
study, we expected to observe a large variation in the
results obtained during the experiments. However, such vari-
ation showed to be quite modest: Fig. 12 shows the results
obtained in three distinct executions of an experiment with
the FreeBSD system using W = 10,000 writes/cycle, ts =
100 ms, and tc = 10 s. This was the worst situation observed,
all the other experiments presented more stable results, with
curves almost fully overlapping for the three executions.

5.6 Discussion

As shown in the previous section, all the systems under
evaluation presented some level of sensibility to memory
thrashing, and each operating system behaved distinctly dur-
ing the experiments. It is possible to see that Linux had the
most intense paging activity during the thrashing, followed
by Windows. Paging activity in FreeBSD and OpenSolaris

was surprisingly small, under our point of view, specially for
page-in operations; this may be explained by the tendency of
their thrashing management mechanisms to “calm down” all
the processes during a thrashing. In fact, the page-out rates
for both systems were quite low during all the experiments,
and their page-in rates were almost zero.

Besides the explicit behavior depicted in the diagrams, one
should also consider the subjective perception of each sys-
tem’s usability, i.e. its global responsiveness throughout the
memory thrashing. In our experiments, the memory thrashing
management mechanisms of the four systems under evalua-
tion were not sufficient to effectively attenuate the impact of
this phenomenon on the system usability. Both FreeBSD and
OpenSolaris showed the highest degradation of the system
usability, as perceived by the user interaction. On the other
hand, Windows XP showed a small usability penalty, although
the system took longer to recover from the thrashing, from a
user’s perspective. Finally, Linux clearly showed the lowest
usability degradation and the fastest recovery from the thrash-

123



40 J Braz Comput Soc (2013) 19:29–42

 0

 100

 200

 300

 400

 500

 0  100  200  300  400  500

P
ag

e 
in

 (
pa

ge
s/

se
c)

Time (s)

Execution 1
Execution 2
Execution 3

 0

 100

 200

 300

 400

 500

 600

 700

 0  100  200  300  400  500

P
ag

e 
ou

t (
pa

ge
s/

se
c)

Time (s)

Execution 1
Execution 2
Execution 3

Fig. 12 Variation of the paging activity in FreeBSD

ing period. However, it should be stressed that this is only
a subjective estimation, not backed by concrete results, and
thus should not be considered “as is”. More experimentation
should be carried out, using unbiased users, to confirm and
quantify such observations.

It is not simple to state a clear judgment about the Win-
dows XP thrashing management mechanism, due to the lack
of documentation about it. Although its usability did not suf-
fer from thrashing as much as OpenSolaris and FreeBSD, it
showed low levels of CPU usage during the experiments, and
did not succeed to execute all the consumer processes during
the expected duration of experiment e2, which not completed
within the expected time. It also showed a longer recovery
time from the thrashing, as shown in Figs. 7 and 9; such
longer recovery time was also perceived from the user inter-
action perspective. This allows to suppose that Windows XP
thrashing management uses a mechanism based on delaying
the most active processes, similar to that used by FreeBSD.

According to the remarks stated above, it seems clear that
the token strategy implemented in Linux [17] behaves bet-
ter than the “lets calm the things down” strategy adopted
by OpenSolaris and FreeBSD. In fact, giving a process the
opportunity to keep most of its pages in memory allows it
to go ahead until it finishes its processor/memory burst. This
strategy, which is equivalent to reduce the multiprogramming
level for all but one “elected” process at a time, seems to use
more efficiently the swapping infrastructure.

The synthetic workload used in the experiments presented
here does not correspond to a specific application; its behav-
ior was conceived to stress the memory system in extremis,
due to its strong memory demand, multiple concurrent flows,
and very poor locality of reference (leading to a large work-
ing set). This workload is similar to the rand benchmark used
in [36] and the microbenchmarks defined in [1]. The advan-
tage of a synthetic workload over a real application is that

its memory footprint and behavior can be easily modified.
Nonetheless, this workload may be considered representa-
tive of applications having large working sets and random
memory access patterns, similar to the memory-intensive
QSim and SMV applications studied in [36] and the Hash-
Cache application used in [1]. Such applications represent
a worst case for virtual memory mechanisms. Applications
having working sets significantly smaller than their memory
needs and more regular (i.e. less random) access patterns will
present better results.

As observed from the results, the general-purpose operat-
ing systems studied still use traditional virtual memory man-
agement algorithms whose performance may be improved.
An approach that can produce good results in attenuating
the effects of physical memory exhaustion is swap compres-
sion. The use of compression mechanisms to extend physical
memory was first implemented in [11]; his proposal consisted
in compressing LRU pages, keeping them in a RAM cache,
and sending them to disk whenever needed. The page com-
pression allows to keep much more pages in RAM, avoiding
disk accesses, at the cost of some processing. Such approach
was revisited in [31,38] and improved in [5], using newer
hardware and better compression algorithms, with very good
results, because swap contents showed to be highly com-
pressible [31].

More recently, swap compression has been adopted in
COTS operating systems, through projects like Comp-
Cache/zRAM [13]. The computing power available in current
multicore processors allows compression to be used with a
negligible impact in CPU performance. Furthermore, modern
hardware provides other resources to help memory manage-
ment that are not being effectively used by the operating sys-
tems, like multi-sized memory pages [37] and performance
counters that could be used to detect memory thrashing, or
even predict it [12]. Another interesting path to be explored
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is the increasing availability of large solid-state disks that
may be used as swapping devices, as discussed in [1]. Such
devices have better access times than hard disks, improving
swapping speeds.

6 Conclusion

This paper presented the evaluation of some popular general-
purpose operating systems under memory thrashing circum-
stances. We proposed a portable tool that induces each
operating system to a controlled thrashing and then back to a
normal operation. Furthermore, we identified the perfor-
mance information available in each system and the mecha-
nisms used to collect them. Some experiments were proposed
to evaluate the behavior of the systems under study during and
after the thrashing phenomenon. The experiments showed
that the operating systems under study behaved distinctly
during a memory thrashing, showing distinct recovery times
and also distinct degradation levels from the user’s interac-
tivity perspective.

System behavior under memory thrashing is still a rele-
vant problem. One may argue that just adding more memory
to the system solves it, but this is not true. In fact, adding
more memory just pushes forward the thrashing threshold,
making thrashing less probable to occur (under the same
memory usage conditions), but does not improve the sys-
tem behavior during a memory thrashing. Furthermore, the
recent tendency of multi-core CPUs leads to an increase
in the processing power and multiprogramming level; more
processes and larger memory page sizes may lead to thrash-
ing even faster. As the demand for RAM space increases,
specially for user applications dealing with multimedia or
document indexing, the responsiveness of a desktop operat-
ing system under memory thrashing continues to be a relevant
research issue. Indeed, efficient swap management mecha-
nisms are also becoming relevant in other domains, like vir-
tualized operating systems in large cloud environments.

This study may be improved by considering also other
popular desktop operating systems, like MacOS X and more
recent Windows operating systems. We are also consider-
ing effective methods to quantitatively evaluate the sys-
tem responsiveness to user interaction before, during, and
after a memory thrashing situation. Another point of further
research is to evaluate the effects of memory thrashing on
well-behaved processes (i.e. processes not directly involved
in the thrashing).
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