
46 July/August 2013 Copublished by the IEEE Computer and Reliability Societies 1540-7993/13/$31.00 © 2013 IEEE

0-Day attacks

Ontologies can help build a strategy-based knowledge attack database. A novel hybrid attack detection
engine brings together the main advantages of knowledge- and signature-based classical approaches.

W eb services are increasingly used as distrib-
uted systems on the Internet; they provide a

standard means of interoperation among different soft-
ware applications running on a variety of platforms and
frameworks.1 However, the underlying technologies
used by Web services, such as SOAP, HTTP, and XML,
have fostered the deployment of well-known vulner-
abilities in this new environment.

In a 2009 report, the Open Web Application Secu-
rity Project (OWASP) predicted that injections would
be among the most exploited vulnerabilities the fol-
lowing year.2 This forecast was confirmed by 2010’s top
10 attacks related to injections according to OWASP
(www.owasp.org/index.php/Top_10) and the 25 most
dangerous software errors according to the CWE/
SANS report (cwe.mitre.org/top25/index.html).

This article specifically addresses XML injection
attacks—those that produce some change in the XML’s
internal components that aims to compromise the
Web service application. This can be achieved by, for
instance, injecting malicious content into an XML mes-
sage, such as invalid XML characters (cwe.mitre.org/
data/definitions/91.html).

One way to protect Web services from injection
attacks is through signature-based detection sys-
tems.3 A signature is a payload that identifies an attack
through some specific malicious context. Signature-
based detection systems usually lead to low software-
detection mistake rates—namely, false-positive rates.4
However, one important limitation of signature-based

attack detection is that it doesn’t detect new unknown
attacks, even if they have only small variations from a
known payload.

Another way to protect Web services from injection
attacks is through knowledge-based detection systems,
which apply protection based on some kind of previ-
ously known and cataloged behavior.5 Usually, two
distinct classes are modeled: one for normal behav-
ior, containing all expected actions that define such a
profile, and another for attacks containing actions that
aren’t considered normal. Knowledge-based detection
techniques can detect new attacks, but they usually pro-
duce a high false-positive rate.

Signature-based detection techniques are widely
used, but they allow for 0-day attacks, which occur when
a vulnerability (software flaw) becomes publicly known
before its fix is available.6 No matter how a vulnerability
is disclosed to the world, a 0-day attack’s effectiveness
can vary from hours to months (www.zerodayinitiative.
com/advisories/upcoming).

The classical detection system approach relies on
building a signature-based database, cataloging attacks
independently from each other. It doesn’t take into
account whether an attack’s strategy is similar for a set
of existing attacks.

Our goal in this work is to model attack elements as
strategies—representing them by classes and relation-
ships—in an ontology. Our belief is that by knowing
the attack strategy, which defines a semantic relation-
ship among attack elements, attack variations can be

Mitigating XML Injection 0-Day Attacks
through Strategy-Based Detection Systems

Thiago Mattos Rosa | Exxon Mobil Information Technology
Altair Olivo Santin and Andreia Malucelli | Pontifical Catholic University of Parana

www.computer.org/security 47

easily detected and automatically added to the ontol-
ogy’s database.

In this article, we describe an XML injection strat-
egy-based detection system, XID, to mitigate the time
gap for 0-day attacks resulting from an ontology’s
attack variations. Because many new and unknown
attacks are derived from known strategies— considered
 signatures—low false-positive detection rates should
occur. We present XID as a hybrid approach that sup-
ports knowledge-based detection derived from a sig-
nature-based approach. We then apply an ontology
to design the knowledge database for XML injection
attacks against Web services. (See the “Related Work
in Attack Detection” sidebar for more information on
other intrusion detection methods.)

Ontology
An ontology describes a common vocabulary with
concepts and attributes that are important for a given
domain. This description is achieved through a set of
definitions that associate the concepts with human-
readable text, describing their meaning and a set of for-
mal axioms (premises) that restrict the interpretation
and usage of these concepts.7

Another feature of ontologies is that they allow
interoperability among systems through a common
vocabulary and for inferences to be made into logical
axioms.8 Axioms are first-order logic statements that
involve classes, instances, relationships, and logical
operators and are used to express well-known truths for
a given knowledge domain.

According to Tom Gruber, the preliminary criteria
one should take into account before designing ontol-
ogies are clarity, coherence, extendibility, and mini-
mal ontological commitment.9 An ontology designer
might need to make trade-offs. For example, defini-
tions should restrict the possible interpretations of
terms to satisfy the clarity criterion. However, mini-
mizing ontological commitment means admitting sev-
eral possible models. Therefore, a knowledge domain
expert must make design choices according to the
ontology’s goal.

Using an ontology to model data brings the advan-
tages of providing explicit and formal semantic rela-
tionships for such data, allowing for shareability (that
is, being portable to several systems written in different
programming languages) and reusability. Moreover,
through inference, an ontology can also provide infor-
mation about a certain domain that the knowledge data-
base hasn’t explicitly stated.7

Strategy-Based Ontology
To deal with Gruber’s proposed criteria,9 we used the
taxonomy and attack features outlined on the Com-

mon Attack Pattern Enumeration and Classification
(CAPEC) website to model the ontology’s class struc-
ture and axioms (capec.mitre.org). CAPEC describes
mechanisms to exploit software flaws from the attack-
er’s perspective.

Classes
Our proposed ontology (see Figure 1) is composed of
classes and properties (Figure 1a), instances (Figure 1b),
and axioms. For the sake of simplicity, we used only one
Web services attack class (XML Injection) and three
subclasses (XPath Injection, XQueryInjection,
and XSS Injection) to exemplify the injection
strategy. The two superclasses in the ontology are
AttackAction and WebServices Attack.
AttackAction has subclasses containing instances
that represent actions—for example, malicious content
such as a payload that can be captured in the network.

The WebServicesAttack class has subclasses
representing categories of Web services attacks. Each
one of these subclasses has instances representing pre-
viously known attack templates of a specific strategy. In
the ontology, the specific strategy for an attack instance
is represented by the relationships it has with actions
through the property hasAttackAction. One
attack instance can have one or more Attack Action

Figure 1. An overview of the XML injection strategy-based detection system
(XID) ontology: (a) a class diagram and (b) an object diagram.

- attackID:int
- attackName:String

hasAttackAction
* 1 ..*

WebServicesAttack

- actionPayload:String
AttackAction

XMLInjection
Discovery Probing

ProbeXPath

XQueryInjection

XPathInjection XSSInjection

Injection

InjectXQuery InjectXSSInjectXML

attackID = 001
attackName = XPathInjection 001

xpathInjection 1: XPathInjection
actionPayload = GetWSDL doc

getWSDL : Discovery

actionXPayload = ll*
probeXPath 1: ProbeXPath

attackID = 002
attackName = XQueryInjection 001

xqueryInjection 1: XQueryInjection

actionPayload = count(
injectXQuery 1: InjectXQuery

(a)

(b)

48 IEEE Security & Privacy July/August 2013

0-Day attacks

instances, and one AttackAction instance can be
part of several attack instances.

We produced the proposed ontology class structure
(in Figure 2) by pulling the ontology class structure

from Figure 1a. Additionally, we created attack instances
(middle, Figure 2) and their properties and relation-
ships (right, Figure 2) using the Protégé tool (protege.
stanford.edu).

Related Work in Attack Detection

M ost proposals for Web services attack detection found in the
technical literature use classical approaches that don’t work

properly. However, when an alternative approach for injection detec-
tion is used, it does not apply suitably to Web services attacks. The
following approaches address some aspects related to our work.

Irfan Siddavatam and Jayant Gadge proposed running captured
SOAP requests through a series of tests to determine if they could
be classified as Web services attacks. Requests that fail the tests are
filtered to be examined later.1 The researchers presented tests and re-
sults, but didn’t detail the test detection mechanisms in their proposal.

Chan Yee and colleagues proposed an adaptable framework, ap-
plying agents, data mining, and fuzzy logic techniques to compen-
sate for differences between anomaly and signature-based detection
for Web services.2 According to the authors, these techniques allow
for decision making in uncertain and inaccurate environments, but
no concrete results were provided.

Martin Bravenboer and his colleagues suggested using syntax
embedding, according to the guest and host languages (such as
XPath and Java).3 The aim is to automatically generate code that will
prevent vulnerabilities to injection attacks—for example, adding
character-escaping functions. The approach is generic and therefore
can be applied to any language combination, but a limitation is the
fact that not all languages have a context-free syntax.

Meisam Najjar and Mohammad Abdollahi Azgomi developed a
hybrid Web services intrusion detection service to detect malicious
behaviors in SOAP request/response messages.4 The authors used
misuse detection to verify an attack against a known set of signa-
tures. Afterward, they use an anomaly-detection technique, based
on normal profiles obtained through training, to alert unknown
attacks. The authors mention that the proposal has an acceptable
detection rate after a prototype implementation, but no actual test
results were shown in the paper.

Zhichun Li and his colleagues proposed an approach to miti-
gate the 0-day attack problem through an automated signature-
generation system, focusing on polymorphic worms.5 The system
generated signatures based on invariant worm contents and on
small content variations. Tests showed that the approach is viable
both in performance and accuracy for the proposal’s scope, but the
article didn’t describe Web services attacks.

Jeffrey Undercoffer and his colleagues applied an ontology to
model attack classes mainly on the basis of the attack target, while
also considering the attack’s means and consequences.6 The pro-
posed ontology was shared by several attack detection systems with
the objective of disseminating new attacks acknowledged by any of

them. This approach, however, didn’t use axioms or inference, and
no tests were presented in their work.

Zakaria Maamar and colleagues presented an ontology-based
approach to specify and secure contexts of Web services.7 Each
context in the ontology had specific encryption/decryption mecha-
nisms to authenticate messages that were sent and received. The
authors didn’t model attacks in their ontology; they mainly focused
on representing the context of Web services composition and se-
curity needs.

Artem Vorobiev and Jun Han proposed the closest approach
to the work we present in this article; they applied an ontology to
specifically address the Web services attacks domain.8 However, the
ontology implementation wasn’t included in the research, and the
proposal didn’t use inference to detect unknown attacks; it mostly
used ontologies to represent a common vocabulary.

References
1. I. Siddavatam and J. Gadge, “Comprehensive Test Mechanism to

Detect Attack on Web Services,” Proc. 16th IEEE Int’l Conf. Net-
works (ICON 08), IEEE, 2008, pp. 1–6.

2. C.G. Yee, W.H. Shin, and G.S.V.R.K. Rao, “An Adaptive Intrusion
Detection and Prevention (ID/IP) Framework for Web Services,”
Proc. Int’l Conf. Convergence Information Technology, IEEE, 2007,
pp. 528–534.

3. M. Bravenboer, E. Dolstra, and E. Visser, “Preventing Injection
Attacks with Syntax Embeddings,” Science of Computer Program-
ming, vol. 75, no. 7, 2010, pp. 473–495.

4. M.S.A. Najjar and M.A. Azgomi, “A Distributed Multi-approach
Intrusion Detection System for Web Services,” Proc. 3rd Int’l Conf.
Security of Information and Networks (SIN 10), ACM, 2010, pp.
238–244.

5. Z. Li et al., “Hamsa: Fast Signature Generation for Zero-Day Poly-
morphic Worms with Provable Attack Resilience,” Proc. 2006
IEEE Symp. Security and Privacy (SP 06), IEEE CS, 2006, pp. 32–47.

6. J. Undercoffer et al., “A Target-Centric Ontology for Intrusion
Detection,” Proc. IJCAI-03 Workshop Ontologies and Distributed
Systems, Morgan Kaufmann, 2004, pp. 47–58.

7. Z. Maamar, N.C. Narendra, and S. Sattanathan, “Towards an
Ontology-Based Approach for Specifying and Securing Web
Services,” Information and Software Technology, Elsevier, 2005,
pp. 441–455.

8. A. Vorobiev and J. Han, “Security Attack Ontology for Web Ser-
vices,” Proc. 2nd Int’l Conf. Semantics, Knowledge, and Grid (SKG
06), IEEE CS, 2006, p. 42.

www.computer.org/security 49

Axioms
A class’s axiom will restrict the number and type of
AttackActions its attack instances have in the ontol-
ogy. Moreover, axioms can also help the reasoner (ontology
inference engine) infer if a type of attack has happened.
When an inferred pattern (instance) isn’t in the ontolo-
gy’s knowledge database yet, this new attack can be added
to it. For instance, the following XQueryInjection
class is presented in first-order logic:

XQueryInjection ≡ ∃ hasAttackAction.
Discovery ∏ ∃ hasAttackAction.
ProbeXPath ∏ ∃ hasAttackAction.
InjectXQuery

This code tells the reasoner that any attack instance
having at least one AttackAction of the type Dis
covery, one AttackAction of the type Probe
XPath, and one AttackAction of the type
InjectXQuery will be an instance of the class
XQuery Injection. For XID, this means that an
XQueryInjection attack was detected.

An example of practical usage for this specific
axiom is represented by packets i, ii, and iii, which XID
detected using a parser to extract the attack pattern con-
tent from each packet. The packet sequence represents
a new instance for the reasoner because the detection
occurs before the attack instance xqueryInjec
tion1 was in the ontology.

Packet i represents a user accessing the Web Ser-
vices Description Language (WSDL) document. XID
created a relationship (through property hasAt
tackAction) with the specific action getWSDL
(Figure 1b), one of the instances of the Discovery
class in the ontology, identified in the payload as GET
and ?wsdl:

GET /WSDigger_WS/WSDigger_WS.asmx?wsdl
HTTP/1.0\r\n (i)

Packet ii contains characters that shouldn’t show up
in any normal user input for an XPath operation (//*),
causing XID to create another relationship, now with
the action probeXPath1 (Figure 1b), an instance of
class ProbeXPath that represents the payload //*:

<query>//*</query> (ii)

Finally, packet iii contains the payload count(,
which represents an illegal user action trying to obtain
the number of occurrences of some XML structure ele-
ment. This caused XID to create a third relationship,
with the action injectXQuery1 (Figure 1b) as an
instance of class InjectXQuery in the ontology:

<query>count(/child::node())</query>
 (iii)

Inference
XID, through the reasoner, infers over the ontology to
check if these AttackAction instances represent an
attack. Even though this specific attack instance wasn’t
in the ontology’s knowledge database, the reasoner
inferred the set of captured events as an instance of
the class XQueryInjection—complying with the
defined axiom. Thus, this procedure allowed XID to
learn a new attack instance and automatically add it to
the ontology’s knowledge database.

The instances and relationships (specific strategy)
in the ontology can be considered as known attack pat-
terns in a signature-based detection approach. However,
from the mechanism’s perspective, the strategy is repre-
sented by a well-known set of actions (malicious/suspi-
cious activity or content) that are semantically linked,
whereas for a signature-based approach, an attack pat-
tern is represented only by a payload. In addition, the
classes and axioms (attack category strategy) let the rea-
soner infer whether an attack occurred, even if it’s not
yet in the ontology’s knowledge database.

The addition of new attacks in the classical knowl-
edge-based approach will generate new detection mod-
els (similar to the ontology’s database) because the
attacks as a whole will define the attack class.

In XID, the attack variation (new attack) will simply
be added to the ontology’s database, reusing or defin-
ing new classes and relationships. After that, nothing
else is necessary, because in XID, each attack is mod-
eled independently; each attack has its own profile. So,
as the strategy defines an attack, the inferred (derived)
new attack instance certainly will be an attack. This
is a reason that XID maintains a low false-positive
rate, whereas in the classical approach, complex

Figure 2. XID’s class structure, with attack instances, properties, and relationships,
designed with the Protégé tool.

50 IEEE Security & Privacy July/August 2013

0-Day attacks

 alert-correlation techniques are applied to obtain bet-
ter false-positive rates.10

XML Injection Ontology-Based Detection
We designed our ontology using the Protégé tool and
the Web Ontology Language (OWL; www.w3.org/
TR/owl-features).

We used the Pellet reasoner (clarkparsia.com/
pellet) through the DL Implementation Group (DIG)
interface (dig.cs.manchester.ac.uk) in Protégé to infer
in the ontology. When the ontology is under develop-
ment, the reasoner can suggest structural changes due
to inconsistencies on the basis of the axioms defined for
each attack class.

In the ontology design, XQueryInjection
and XPathInjection were sibling classes under
XMLInjection, as suggested by the CAPEC tax-
onomy. However, after we ran Pellet, it suggested
that XQueryInjection should be a subclass of
XPathInjection. After our analysis, we agreed;
the first class has all the restrictions that the second
one has. We also found support for that assumption
in the World Wide Web Consortium (www.w3.org/
TR/xquery), which states that XQuery language is an
extension of XPath. The inference, in this case, helped
us enhance the attack classes’ organization in the
designed ontology. Figure 3 shows the detection sys-
tem architecture for XID that we developed to evalu-
ate the proposed ontology.

We used jpcap (jpcap.sourceforge.net) to capture
packets from the network. Jpcap filters IP and TCP
packets, transferring them to the detection engine. So,

the detection engine analyzes only Web services–related
content—XML content—for the purpose of XID.

The prototype handled the ontology knowledge
database using the Jena framework (jena.sourceforge.
net), which already supported the Pellet’s reasoner.
The ontology’s knowledge database was queried for
instances by SPARQL and RDF (Resource Descrip-
tion Framework; www.w3.org/TR/rdf-sparql-query), a
SQL-like language used to query RDF and OWL files
(the ontology’s knowledge database). We applied a raw
text file obtained from the well-known database of rules
for the Snort intrusion detection system (www.snort.
org/snort-rules) as a signature-based database for per-
formance comparison purposes.

We studied attack strategies using the Metasploit
framework (www.metasploit.com) and some of the
security testing tools that the OWASP project sug-
gested to generate XPath and XQuery injection attacks.
We also used scripts from the ha.ckers website (ha.
ckers.org/xss.html) to generate XML cross-site script-
ing attacks. We used the Wireshark sniffing tool (www.
wireshark.org) to capture packets on the network for
analysis of prototype functionalities.

XID Procedure
Figure 4 presents XID’s procedure for inference and
detection. When a strategy action is first detected
in a network packet (Event 1), the prototype cre-
ates an attack instance (Event 2) and links it with that
AttackAction (Event 3).

The prototype then queries the ontology through
SPARQL, looking for an instance linked to exactly the
same set of AttackActions (Event 4), indicating that
the attack is known (Event 5). If no identical instance is
found, the prototype tries to infer (using Pellet) a new
attack—on the basis of classes and axioms from the
ontology (Event 6)—indicating that the instance could
be an attack variation. If no attack is inferred, the proto-
type continues analyzing the subsequent packets until a
new AttackAction is found. This new AttackAc
tion is then added to the attack instance (which is now
linked to two actions), and the prototype evaluates the
attack possibility again.

An attack can be alerted by the prototype (Event 5)
if an identical instance is found or if a new instance is
inferred based on the ontology. When a new instance is
inferred, before alerting the attack, the prototype veri-
fies if the instance’s class has subclasses, in which case
a more specific attack could be happening. If subclasses
are found, the prototype waits for the next detected
AttackAction for the same attack target and per-
forms a new inference in the ontology.

If the new inference doesn’t detect any of the sub-
classes, the original attack is alerted as an informative

Figure 3. An overview of XID’s architecture.

Pellet (reasoner) SPARQL

Ontology

Packet capture

Web services
(server)

Web services
(client) Detection

Jena

Java

Jpcap
SOAP/XML

protocol

SOAP/XML protocol

Network

XID

www.computer.org/security 51

message (Event 8), meaning that the attack might not
be complete yet or that a new subclass might need to be
created for it. If the new inference does point to a sub-
class, the more specific attack is alerted. In both cases,
the prototype adds the attack variation under the cor-
responding class in the ontology’s knowledge database
(Event 7).

Experiments
To evaluate XID’s efficiency, we developed four experi-
ment scenarios with the goal of evaluating the scalabil-
ity and performance of the ontology’s knowledge-based
approach against signature-based databases, ensuring
that the use of inference for new attacks wouldn’t jeop-
ardize the proposal’s viability.

We applied an ontology database composed of 128
known attacks (added through Protégé) for the evalu-
ation. The database initially contained four attack
classes (XMLInjection, XPathInjection,
XQuery Injection, and XSSInjection) and four
attack instances (xpathInjection1, xquery
Injection1, xqueryInjection2, and xssIn
jection1). To compose a 128-attack database, we
simulated several attack and action instances to mimic
attack variations.

The first experiment queried the ontology through
SPARQL. XID analyzed the packets, looking for sets of
suspicious AttackActions that were already in the
ontology’s knowledge database, represented as attack
instances, previously added through Protégé.

The second experiment used Pellet as the reasoner to
infer within the ontology at runtime. Because the attack
instances were missing when SPARQL queried the ontol-
ogy database, Pellet tried to derive new attacks based on
preset axioms for each attack class in the ontology.

The third experiment used the text file containing
Snort rules as a signature database with no query opti-
mization technique for searching within it. We queried
the signature file for payloads that were in the text file
(randomly inserted from the beginning to end) to com-
pare with SPARQL’s performance.

The fourth experiment also used Snort rules as a sig-
nature file, but in this case, we queried it for payloads
that weren’t in the text file; the goal was to compare it
with Pellet’s performance.

Results
Figure 5 shows the relative detection times of the four
search attacks, using signature-based detection meth-
ods as bases for comparison.

The first comparison evaluates the first and third
experiments (Figure 5a), where we observed that
SPARQL started with a 190 percent slower detection
time than the signature approach (with four attacks

being searched). As the databases grew, SPARQL
proved to be more scalable than the signature-based
detection approach. When the databases reached
128 attacks, the signature-based detection was only
90 percent faster than SPARQL. Owing to the scal-
ability tendency, we expect SPARQL to outrun the
signature-based approach when the database reaches
512 attacks.

The second comparison (Figure 5b) evaluates the
second and fourth experiments. Pellet started 129 per-
cent slower than the signature-based approach (with
four attacks being searched). Pellet was less scalable
than the signature-based detection approach—when
the databases reached 128 attacks, the fourth experi-
ment was 281 percent faster than Pellet.

The second comparison reflects the worst-case sce-
nario because the full databases were searched. Nev-
ertheless, using Pellet is advantageous because for
each unknown attack, the inference should be used
only once, adding the attack instance to the ontology.
Thus, the next time these specific sets of actions are
captured, SPARQL will alert the newly added attack
first. For signature-based detection, such processing
will always mean wasted time because attack variations
can’t be detected.

Figure 4. XID’s detection and inference procedure overview.

1. Detects action

1. Detects action

5. Alerts attack

3. Links instance
to action

7. Adds instance
to the ontology

8. Alerts
informative message

7. Adds instance
to the ontology

Instance
cleared?Start

End

4. Calls detection
module (SPARQL)

Instance
inferred in the

ontology?

Inferred
attack has
subclasses?

No

No

No

Subclasses
have been
verified?

Yes

No

Instance
found in the

ontology?

No

Yes

Yes Yes

Yes

2. Creates instance

52 IEEE Security & Privacy July/August 2013

0-Day attacks

Observations
Based on these results, we concluded that XID, which
mixes the first and second experiments, is advantageous
against the classical approach of the third and fourth
ones for obtaining the best detection trade-off—with
SPARQL to detect known attacks and Pellet to infer
new attacks.

Gruber mentions that in ontologies, classes (or con-
cepts, as Gruber called them) should always be defined
using axioms, and their definitions should be complete.9
To express complete definitions, the axioms are set as
necessary and sufficient conditions for each concept.
This will allow a reasoner to infer attacks as instances
of the respective classes. So, in an ideal case, XID would
never generate false-positive alerts because detected or
inferred instances must comply with the defined axioms
for the attack classes.

Gruber highlights that there is, however, always
the possibility of an incorrect input in the ontology’s
definition. In such a case, if the input model is incor-
rect, the results will be inaccurate, which is true for
any other automated system. For XID, though, such an
attack ontology specification error is initially minimized
owing to the use of CAPEC’s taxonomy.

Taking into account the false-positive detections
that affect the XID alert’s accuracy, we reevaluated the
fourth experiment (the second experiment developed
to test the Pellet approach, which used inference from
the axioms to detect attack variations).

We observed that the prototype was alerting
attacks immediately after reaching any axiom restric-
tions (necessary and sufficient conditions of any given
class). This showed us that some attack instances were
being incorrectly detected. These instances had three
actions each, one AttackAction of class Dis
covery, one of class ProbeXPath, and one of class
Inject XQuery. This set of three AttackActions
should alert an XQueryInjection attack according
to the defined axiom for this attack class. However, for

each of the instances, the prototype alerted XPath
Injection and XML Injection attacks (totaling
14 inaccurately alerted attacks).

The inconsistences happened because the first part
of these simulated instances (AttackActions of
Discovery and ProbeXPath) satisfied the axiom
restrictions of class XPathInjection, and the
remaining part (InjectXQuery) satisfied the axiom
restrictions of the generic class XMLInjection.

Attack alerts were inaccurate in some cases because
the XID engine wasn’t considering the complete set of
actions that would satisfy the axiom restrictions of the
most specific attack class. In other words, the inference
was considering only a subset of AttackActions that
satisfied the axiom restrictions of the generic classes—
the first ones tested in the detection procedure.

Follow-Up Experiment
To fix the inaccurate XID alerts, we developed a fifth
experiment to test the prototype, aiming to eliminate
the attack-alert inconsistency.

We split the fifth experiment into two phases. The
first phase used 64 of the 128 attack instances, with the
objective of evaluating the ontology and tuning XID’s
inference engine when needed. Therefore, half of the
instance sampling was already in the ontology by the end
of the first phase. After the first phase of this experiment,
we programmed the prototype to alert only a generic
attack after its more specific subclasses had been verified,
resulting in XID’s definitive detection procedure (Figure
4). No design changes were needed in the ontology for
this adjustment because it was an implementation issue.

The second phase used the remaining 64 attack
instances to test the accuracy rate at runtime. All 64
attack instances were successfully inferred and added
to the correct classes in the ontology. At that time, the
prototype verified the more specific attack subclasses
before alerting a generic attack; there were no errors
(false positives) in the detection.

300
275
250
225
200
175
150
125
100

75
50
25

0

Re
la

tiv
e

de
te

ct
io

n
tim

e
(%

)

Number of attacks
4 8 16 32 64 128

Strategy-based ontology detection (SPARQL)
Signature-based detection

700
650
600
550
500
450
400
350
300
250
200
150
100

50
0

Re
la

tiv
e

de
te

ct
io

n
tim

e
(%

)

Number of attacks
4 8 16 32 64 128

(a) (b)

Strategy-based ontology detection (SPARQL)
Signature-based detection

Figure 5. Relative detection time performance comparison for the (a) first and third experiments and (b) second and fourth experiments.

www.computer.org/security 53

We didn’t consider possible detection inaccuracies
(a generic attack being alerted even after the subclasses
had been verified) to be false positives for XID, because
false positives in classical approaches result from incor-
rect evaluation of normal actions that are considered
attacks or vice versa.

In the prototype approach, detection inaccuracies
are identified and alerted as informative messages (Fig-
ure 4, Event 8). This might mean that the attack isn’t
completely defined or that a new subclass might need
to be created in the ontology. To the best of our knowl-
edge, this feature is exclusive to the strategy-based
detection system.

A Web services administrator can consider the infor-
mative messages for investigation, aiming to tune the
detection system, ensuring that the proposal approach
doesn’t produce false positives during detection.
SPARQL also queries the ontology, but the difference
is that it doesn’t use inference. The detection through
SPARQL is similar to the signature-based approach,
provided that the attack instances being queried are
present in the ontology’s database. Moreover, Pellet
uses inference to derive new attacks in the ontology
when SPARQL doesn’t find exact matches, giving the
XID approach a similarity to a classical knowledge-
based detection approach. The inference in this case
maintains a false-positive detection rate similar to sig-
nature-based approaches because new attacks are only
derived based on preset classes and axioms.

Another advantage is that 0-day attacks are elimi-
nated for the inferred instances because a new attack
instance is automatically added to the ontology’s knowl-
edge database at the moment it’s first detected.

I n future work, we intend to extend the ontology to
contemplate other attacks that burden Web services,

such as denial of service. As the number of attack classes
and axioms grows, so does the inference power of our
hybrid approach.

Acknowledgments
The National Council for Scientific and Technological Devel-
opment (CNPq) grant 310319/2009-9 and State of Paraná
Research Foundation (Araucária Foundation) grant 7374
partially supported this research.

References
1. D. Booth et al., “Web Services Architecture,” working

group note, W3C, Feb. 2004; www.w3.org/TR/ws-arch.
2. OWASP Annual Report, Open Web Application Secu-

rity Project, 2009; www.owasp.org/images/3/3f/2009
AnnualReport.pdf.

3. I. Siddavatam and J. Gadge, “Comprehensive Test Mech-

anism to Detect Attack on Web Services,” Proc. 16th
IEEE Int’l Conf. on Networks (ICON 08), IEEE, 2008,
pp. 1–6.

4. N. Antunes and M. Vieira, “Benchmarking Vulnerability
Detection Tools for Web Services,” Proc. IEEE Int’l Conf.
Web Services (ICWS), IEEE CS, 2010; doi;10.1109/
ICWS.2010.76.

5. C.G. Yee, W.H. Shin, and G.S.V.R.K. Rao, “An Adaptive
Intrusion Detection and Prevention (ID/IP) Framework
for Web Services,” Proc. Int’l Conf. Convergence Informa-
tion Technology, IEEE, 2007, pp. 528–534.

6. E. Levy, “Approaching Zero,” IEEE Security & Privacy, vol.
2, no. 4, 2004, pp. 65–66.

7. N. Konstantinou, D. Spanos, and N. Mitrou, “Ontology
and Database Mapping: A Survey of Current Implemen-
tations and Future Directions,” J. Web Eng., vol. 7, no. 1,
2008, pp. 1–24.

8. D. Dou, D. McDermott, and P. Qi, “Ontology Translation
on the Semantic Web,” J. Data Semantics, vol. 2, 2004, pp.
35–57.

9. T.R. Gruber, “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing,” Int’l J. Human-
Computer Studies, vol. 43, nos. 5–6, 1993, pp. 907–928.

10. B. Morin et al., “A Logic-Based Model to Support Alert
correlation in Intrusion Detection,” Information Fusion,
vol. 10, no. 4, 2009, pp. 285–299.

Thiago Mattos Rosa is a system analyst at Exxon Mobil
Information Technology. His research interests
include intrusion detection, distributed systems, Web,
and ontologies. Rosa received an MSc in computer
science from Pontifical Catholic University of Parana.
Contact him at tmattosr@gmail.com.

Altair Olivo Santin is a professor in the graduate pro-
gram of computer science at Pontifical Catholic Uni-
versity of Parana. His research interests include usage
and access control models, mechanisms for distrib-
uted systems, Web security, cloud computing secu-
rity, intrusion detection systems, and digital forensics.
Santin received a PhD in electrical engineering from
Federal University of Santa Catarina. He’s a member
of IEEE, ACM, and the Brazilian Computer Society.
Contact him at santin@ppgia.pucpr.br.

Andreia Malucelli is an associate professor in the gradu-
ate program of computer science at Pontifical Catho-
lic University of Parana. Her research interests include
software engineering, ontologies, multiagent systems,
and information systems in healthcare. Malucelli
received a PhD in electrical and computer engineer-
ing from the University of Porto. She’s a member
of the Brazilian Computer Society. Contact her at
malu@ppgia.pucpr.br.

