
A UCONABC Resilient Authorization
Evaluation for Cloud Computing

Arlindo Luis Marcon Jr., Altair Olivo Santin, Member, IEEE,

Maicon Stihler, and Juliana Bachtold Jr.

Abstract—The business-driven access control used in cloud computing is not well suited for tracking fine-grained user service

consumption. UCONABC applies continuous authorization reevaluation, which requires usage accounting that enables fine-grained

access control for cloud computing. However, it was not designed to work in distributed and dynamic authorization environments like

those present in cloud computing. During a continuous (periodical) reevaluation, an authorization exception condition, disparity

among usage accounting and authorization attributes may occur. This proposal aims to provide resilience to the UCONABC

continuous authorization reevaluation, by dealing with individual exception conditions while maintaining a suitable access control in

the cloud environment. The experiments made with a proof-of-concept prototype show a set of measurements for an application

scenario (e-commerce) and allows for the identification of exception conditions in the authorization reevaluation.

Index Terms—Access controls, security and privacy protection, distributed systems

Ç

1 INTRODUCTION

EMPLOYING the traditional approach for policies defini-
tion, configuring statically authorization attributes in

the policies rules for each user, may lead to a scenario in
which a given user’s resource would be underutilized,
while for another user it would be in shortage. There is no
way for precisely anticipating how much consumption
demand a given user will generate on a service, in such way
that matches the policy and each user attributes’ require-
ments. Thus, the evaluation model should be suitably
resilient to accommodate particular policies exceeding
without impairing other users or the whole access control
system [1], [2].

A real-word example that shows this fact is an e-
commerce web service site hosted on a cloud computing
platform. It can experience sudden spikes on the number of
incoming requests due to some promotional campaign. In
the business-driven access control, the virtual machine
(VM) instances responsible for the e-commerce web service
are usually initialized with the usage policies stored locally
and statically defined, but the web service will be used by
many different users from different domains.

Each user will interact with the e-commerce web service,
demanding different amounts of computational resources.
However, in the operating system level, usage accounting
for computing resources will be made for the web service
as a single account. As the web service’s users are only
known at the service entry point (software as a service,

SaaS), it is not possible to measure the service consumption
corresponding to each user. An additional disadvantage of
business-driven access control is the impossibility of
offering different user experiences, because the user
identity cannot be easily known by the different services
[3]. Thus, coarse-grained usage control can favor the misuse
by some user.

A reason to deploy a security system based on fine-

grained access control is to facilitate the usage management

tasks. For cloud computing, it should be scalable, effective,

and flexible for providers and consumers [4].
A fine-grained user service accounting and authoriza-

tion attribute reevaluation approach allows the consumer

to control individual usage of services hosted on the

providers [5].
A consumer may contract the same service from different

cloud providers. In this context, it is necessary to
standardize the access to cloud services. However, there is
no consensus on standardization; thus, web services can be
one alternative to facilitate the interaction in heterogeneous
and scalable environments [6].

Providers are expected to honor service-level agreements

(SLA) established with an “intermediary contractor” (i.e.,

broker) [7] and to control access to the consumer’s and

system’s data.
In cloud computing, it is desirable to do the accounting

for services usage frequently, to reevaluate authorization

and to detect usage disparity, dynamically reconfiguring the

policies. This assures an even utilization of the computing

resources, avoiding the prejudice to user experience [8].

However, the task of rewriting policies periodically may

impose an important burden on the usage control system.

Additionally, the user consumption can span over many

virtual machines (service instance). Therefore, balancing a

given user’s policies (authorization requirements) among

specific VMs becomes a challenge during reconfiguration.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014 457

. The authors are with the Graduate Program in Computer Science,
Pontifical Catholic University of Parana, Curitiba 81530-150, Parana,
Brazil. E-mail: {almjr, santin, stihler, jbachtold}@ppgia.pucpr.br.

Manuscript received 21 Sept. 2012; revised 19 Mar. 2013; accepted 29 Mar.
2013; published online 9 Apr. 2013.
Recommended for acceptance by X. Li, P. McDaniel, R. Poovendran, and
G. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-09-0976.
Digital Object Identifier no. 10.1109/TPDS.2013.113.

1045-9219/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

The UCONABC usage control enhances the classical access
control by reevaluating continuously the user attributes
during consumption of a service or resource against the
usage policies [9]. The usage can be understood as an
object’s (e.g., a file) read and write operations and resource
consumption (e.g., CPU cycles) [10].

The periodicity (frequency) a given user is accounted
interferes directly on the continuity of the policy evaluation
process on UCONABC. Thus, the periodicity of reevaluation
defines the maximum amount of time a given user may be
in a condition that misleads the usage control, characteriz-
ing an exception (usage authorization disparity).

Obviously, it is desirable to obtain the smallest interval
of time for obtaining usage attributes and reevaluating the
usage policies. However, when frequency is very high, the
service will suffer a significant overhead. There are no
proposals dealing with these issues in the literature.

Finding out the best accounting reevaluation frequency
for the resources is very important. The best frequency
means that it will not cause service overhead while
reducing the period of possible authorization inconsistency.
The environment for managing usage must be flexible
enough to adapt itself to the different needs of a consumer
domain (CD). The usage data collected from the involved
providers should be used to feed the usage attribute
repository and the reference monitor that reevaluates usage
control policies for each user.

For each consumer’s service purchased, an SLA is
required to make sure that the contracted resources amount
will be correctly provided [11]. Therefore, the access control
management, in a cloud-based architecture, should support
a monitor collecting accounting usage attributes—the
accounting agent—on an arbitrary number of providers,
in a scalable fashion.

It is important to notice that a fine-grained usage control
is not tackled by the cloud computing, given it is considered
a consumer responsibility and is not addressed on any
literature proposal. However, if a consumer purchases an
infrastructure service to concentrate its effort in the
development of its business, it is not desirable for this
consumer to develop a customized access control architec-
ture herself. Therefore, it would be better to have an access
control model provided as a platform as a service (PaaS) to
deal with the security issues.

The policy evaluation system and the attribute reposi-
tories, on this proposal, employ a distributed shared
memory implemented on a tuple space service [12], hosted
on a pool of servers. In this manner, the environment for
accounting and policy reevaluation can be scaled to the
usage demands, tweaking the architecture to the require-
ments of each consumer and set of cloud providers. The
flexibility of the evaluation system and attribute reposi-
tories is transparent to consumer and provider entities,
impacting positively on the expansion or reduction of the
access control system. This usage control feature is not
present on any literature proposal.

The proposed approach provides a resilient UCONABC

reevaluation authorization model for cloud computing.
The usage architecture for collecting contextual data allows
for fine-grained services accounting and authorization

attributes. The data are consolidated on a management
domain and provided to consumer management systems,
enabling the reconfiguration of usage policies and mon-
itoring of SLA fulfillment. The management services are
provided through a federated environment (FE) hosted on
a cloud computing provider. The federation environment
is a usage control management domain shared by the
policies evaluation system, accounting attributes handling
system, SLA manager and service’s broker. The service’s
broker offers an entry point for cloud users and an FE
entry point for providers and consumers.

This work is organized as follows: Section 2 briefly
introduces cloud computing and access control for dy-
namic environments; Section 3 shows the related works; in
Section 4, the proposal’s model is presented; Section 5
addresses the proposal’s architecture; Section 6 presents
the prototype and evaluation tests; Section 7 draws the
proposal’s conclusions.

2 CLOUD COMPUTING AND ACCESS CONTROL

In this section, some aspects regarding cloud computing are
discussed briefly, as well as the access control applied on
dynamic and heterogeneous environments.

2.1 Cloud Computing

The client-server architecture and commercial off-the-shelf
software are still dominant on today’s computing land-
scape. However, cloud computing is changing this para-
digm, offering services and computational resources as
utilities [13]. On cloud computing, the consumer (services
buyer) requests resources on demand as the need arises,
without being concerned about infrastructure management.
This approach affects the computational ecosystem as a
whole (e.g., from the infrastructure to the users) [14].

A cloud service hosted on computational centers
should be available and accessible through the network
(e.g., Internet). The consumer does not need to be
bothered by infrastructure management complexities as
in client-server architecture.

The main entities involved in cloud computing can be
briefly described as: 1) resource or service providers
(SPs)—offer computational services (e.g., infrastructure,
platform, and software); 2) consumer—entity that pur-
chases cloud services (usually to provide it for her users);
3) user—entity who consumes the service or resources,
the end user.

Cloud providers can be categorized according to the
service model [15] as (i) Software as a Service (SaaS): It is the
final cloud computing product—on this service, the con-
sumer does not control the underlying system, although it is
possible to use the applications hosted on it; (ii) Platform as a
Service (PaaS): offers resources for consumers to deploy
their own applications—the consumer does not manage the
underlying infrastructure (e.g., network, storage); however,
she has control over her applications and the system that
controls the environment configurations; and (iii) Infra-
structure as a Service (IaaS): provides basic computational
resources (e.g., processing power, storage space) for
consumers to deploy their own operating systems—on this
service, the consumer does not handle the physical

458 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

infrastructure, but she has partial control over network
components (e.g., host firewalls).

The IaaS employs virtualization technologies to make
flexible the use of the underlying hardware [16]. The VM is
the mechanism that provides an independent computa-
tional environment. A VM may be instantiated and
destroyed under demand, while the cloud computational
services are being provided [17].

2.2 Access Controls for Dynamic Environments

The most employed approach to evaluate access control
policies, on heterogeneous and distributed environments, is
based on the reference monitor and guardian (active entities
in the authorization evaluation system) and the policy

repository (passive one) [18]. The reference monitor (policy
decision point—PDP) evaluates the policies it retrieves from
the policy repository (Policy Administration Point—PAP)
against the subject’s (user) attributes to decide if an access
to an object should be allowed or not. The guardian (policy
enforcement point—PEP) executes a PDP decision.

In the outsourcing model (Fig. 1), the PEP receives an
access request (event o1) from a user and forwards it to the

PDP (event o2). The PDP retrieves policies from the PAP
(event o3i) and attributes from the policy information point
(PIP; event o3ii), and decides (event o4) if the requested
access should be allowed or denied, thus communicating
such decision to the PEP (event o5). The PEP executes
actions to enforce the PDP decision (event o6).

The access control model that best suits the needs of

dynamic environments is the usage control UCONABC. The
UCONABC usage controls reevaluate authorizations peri-
odically, taking into account the attributes mutability
(ongoing updates in the usage accounting and authoriza-
tion attributes). Authorizations may be understood in the
traditional form of granting and evaluation of rights (e.g.,
read, write).

The UCONABC evaluates its controls continuously,

because it understands that attributes of user and object
(resources or services) may change (mutability) during the
time an object is under use. An example of mutable
attribute is the user quota in a file system or storage.

Mutable attributes may be updated before or during an
object usage. The constraint model considers two stages for
controls evaluation: before (pre) and during (ongoing) a

resource or service usage. Evaluation before usage char-
acterizes the classical authorization procedure, while
evaluation during ongoing usage is required by the
attribute mutability scheme.

3 RELATED WORKS

The proposal of Zhang and Zhang [19] aims at helping SPs
and consumers to increase flexibility, extensibility, and
adaptability of the services being provided or used on the
cloud. That approach offers an access interface that is
homogenous for the consumer, and it may be composed by
different SPs. However, the proposal adopts a traditional
security scheme that does not follow the flexibility offered
by the SaaS service level.

Lim et al. [20] consider that control policies together with
data collected by the provider may help the consumer to
better allocate resources for usage. To enable the usage of
dynamic controllers outside the cloud, it must expose
sensors and actuators, allowing the enforcement of policies.
However, sensors and actuators, with help from an inter-
mediating domain responsible for collecting and consolidat-
ing fine-grained data from the environment, may provide a
more adequate solution to managing the environment.

Bertram et al. [21] argue that a service-oriented infra-
structure, at the PaaS, is one solution for security risk
management related to the assets (e.g., goods or services)
shared on collaborative clouds. Despite proposing the
employment of attributes dynamically generated by the
environment, executing the creation and automated map-
ping of those attributes to control policies, it is not clear how
this process is accomplished.

The PESA architecture, proposed by Goyal and Mikki-
lineni [22], allows a management approach based on
policies to control the characteristics of a service (e.g.,
availability, performance, security, risk management).
PESA contemplates mainly the management of resources
being used on the cloud. However, the evaluation of user
access requests or the control over who is making use of a
service is not covered by the architecture.

Tavizi et al. [23] proposed an architecture to use
UCONABC in cloud computing. The paper presented a
scheme to address obligations and eXtensible Access
Control Markup Language (XACML) extensions to support
the need of UCONABC in cloud computing. The authors
described the main entities of the proposal, but did not
consider implementation and evaluation issues.

In the proposal of Danwei et al. [24], it is described a
negotiation module that is activated when the user has no
suitable attributes to access a service. The proposal is based
on security assertion markup language for security asser-
tions and XACML for policies language. The paper is
theoretical, and the presented approach is applied only to
local environments.

Services hosted on the cloud are distributed and
dynamically provided. Traditional approaches to address
access control, as those described previously, are not
adequate for these environments. Cloud computing requires
an approach for evaluation of usage policies that allows a
distributed service accounting, in a fine-grained manner,
and taking into account periodical evaluation of policies to
maintain the whole system’s access control integrity. This
policy evaluation environment and consumption account-
ing service must be flexible enough to deal with the cloud’s
elasticity.

MARCON JR. ET AL.: A UCONABC RESILIENT AUTHORIZATION EVALUATION FOR CLOUD COMPUTING 459

Fig. 1. Access control architecture for heterogeneous environments.

4 PROPOSED MODEL

The proposed model aims to extend the UCONABC

ongoing authorization model, providing resilience to the
reevaluation of usage policies. Resilience means providing
the model with the ability to deal with some individual
user authorization attributes exceeding, while the SLA
(Fig. 2, event SLACo) for the respective consumption
service is under the contracted amount. The consumer
writes policies (event UAQ) for her users, defining indivi-
dual authorization attributes—a user’s service usage quota
(UAQ). Quota is used during the reevaluations in place of
authorization attributes; the aim is to relax the usage
policy when possible.

The contextual information is obtained for each user’s
service usage (AUU), i.e., the user accounting attributes are
obtained from providers through the accounting agent.
Therefore, the resilience for ongoing authorization reeva-
luation (RAR, (1)) is defined only if SLACo minus the sum of
each user attribute accounting (sua) is greater than t. The
constant t is a spare quota, freely defined by the consumer
for that service or resource

RAR 9 SLACO �
Xn
i¼1

AUUi

 ! !
> t

" #
: ð1Þ

That means, when the users’ consumption (sua) is close
enough to the contracted amount (SLACo � t), a new SLA
with additional quota should be negotiated to avoid an
SLA violation.

Next, for the sake of simplicity, it is shown a simple
scenario, involving a file system, aiming to show how quota
is used in the model to provide resilience to UCONABC

authorization.
Considering a consumer that negotiates an SLACo for a

service, for example, storage space: 600 GB and t: 100 GB.
The consumer writes usage policies for userA: 200 GB,
userB: 200 GB, and userC: 100 GB. When a user requests an
access to the provider (Fig. 2, event AR), the service
guardian sends an authorization evaluation request for
such user to the Reference Monitor (RM; event PER). In its
turn, the RM sets up the usage quota for that user (initially
equal to the authorization attributes, e.g., userA: 200 GB,
userB: 200 GB, and userC: 100 GB) and provides an “allow”
response to the access control enforcement (event PDE).

After getting the provider’s access released by the
enforcement (service guardian, event AG), the user starts
the storage consumption. Therefore, the accounting agents
send the usage attributes of each user (e.g., userA: 190 GB,
userB: 10 GB, and userC: 0 GB) to the Contextual
Information Repository (CIR). After a while, the service
guardian requests an authorization reevaluation. In the
reevaluation (ongoing authorization), the RM compares
each user’s accounting attribute (event AA) against the quota
(mechanism to implement authorization resilience). In such
a case, the storage consumption of each user is below their
respective quotas.

A period of time after, the accounting agents send to CIR
the consumption of each user again (e.g., userA: 250 GB,
userB: 20 GB, and userC: 10 GB) and the reevaluation is
required. During the RM’s authorization reevaluation, it is
detected that userA’s accounting attribute is exceeding
userA’s quota; thus, computing sua yields 280 GB. As the
SLACo � t allows 500 GB of storage consumption for the
consumer and userA is exceeding the attribute authoriza-
tion threshold, the quota is automatically expanded as
userA: 250 GB.

After a while, the accounting agents send the usage
attributes of each user again (e.g., userA: 240 GB, userB:
160 GB, and userC: 100 GB) to CIR. During the RM’s
authorization reevaluation, requested by the guardian, it is
noticed that userA’s usage attribute is below userA’s quota,
but computing sua yields 500 GB of storage consumption.
As the RAR is not valid (SLACo � sua ¼ t) and userA quota
is exceeding the usage policy, it should be made equal to the
authorization attribute (usage policy) again, userA: 200 GB.
If in the next reevaluation the usage attributes reported by
accounting agents keep a value over the quota and sua is
close enough to SLACo, userA will be under an exception
condition. Otherwise, userA’s quota can be tweaked again.

The exception conditions occur when a user, during the
reevaluation, is detected exceeding a quota that was
authorizing her in the previous evaluation. The exception
conditions happen because during the reevaluation period
(current and previous) the user continues to consume
services. Moreover, such situation can be triggered by the
resilience of the model, which resets the quota to the
original authorization attribute value. An exception may
also occur because during the reevaluation period there
was a change that made a policy more restrictive than the
one previously defined.

When a user is detected in an exception condition, the
consumer must rewrite the usage policies to bring the
user’s condition back to normal, as before the exception
was reached. The exception condition may lead the
consumer to conclude, when the sua is close to SLACo,
that more service needs to be contracted (if available in the
provider, Fig. 2, event SLAP). Also, the elasticity provided
by the cloud can be used in an automatic request for more
service—when it is depleting, thus allowing the model’s
resilience to be continuously provided.

One can notice that in traditional cloud approaches,
when a user reaches the quota, there is no support for
exceeding authorizations in the model. In fact, the con-
sumer’s manager needs to look for a user that is not using

460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Fig. 2. Proposed UCONABC ongoing authorization model.

its allowed quota and rewrite the policies. However, it is a
manual and tiresome task performed by a human without
having real consumption attributes to help. Therefore, there
is no support to decide how to change the policy for a target
user. Applying the proposed resilient model provides
an automatic authorization threshold balance, and only
after computing sua and identifying that SLACo has
been reached, the consumer’s manager is required to act.
Therefore, the reevaluation provides authorization resili-
ence, exploring idleness on the service consumption, if the
user’s sua is below the threshold (SLACo � t).

In traditional approaches, authorization is only evalu-
ated in the beginning of a usage (preauthorization); thus,
there may be inconsistencies between the authorization
granted and the active authorization attribute. Notice that
even the ongoing reevaluation of authorization is not
enough to make sure that some authorized usage for a
given user will not be violating a policy. This may happen
because exception conditions may occur between reevalua-
tions. However, in this proposal, those periods will be
smaller than in traditional approaches, depending only on
the time interval between reevaluations.

In Fig. 2, the resilience can be seen as dashed lines in
usage attribute and authorization attribute, as presented
before. Furthermore, the elasticity provided by cloud
computing is used to automatically add reference monitors
and CIR instances when the demand for authorization
reevaluation and accounting attribute retrieval increases.

One can notice that the proposal as a cloud PaaS frees the
consumer of the responsibility of dealing with security
aspects; therefore, she can focus on the development of
services for its own business.

5 PROPOSED ARCHITECTURE

The proposed architecture is based on a computing cloud
composed of several types of services, providers, and
consumers, and each of these may be exchanging data

between different services (SaaS, PaaS, and IaaS). An
intermediating (federated) environment is used, aiming to
ease the interaction between entities using the cloud
computing and to offer a PaaS that is UCONABC security
oriented with ongoing authorizations (Fig. 3).

An entry point to the cloud computing environment for
providers, consumers, and users is available through the
broker (Fig. 3). Broker intermediates the offering of services
by providers, the consumer’s negotiations for obtaining
service access as well as for defining SLAs, and redirects
consumer’s users to the network address of SPs.

The SP advertises itself as a provider for the federated
cloud environment through the broker. For each offered
service, the provider negotiates an SLA with the broker
and sends to it a service interface description. An SLA
defines the service agreed items, which will be a source for
the broker to derivate the service amounts offered to
consumers. A service interface description will be provided
to the consumer’s domain users, allowing them to
implement their systems, compatible with the services
offered by the SPs.

The consumer establishes an SLA with the broker, who
represents the federated providers, and defines usage
policies for the users of her own domain, regarding the
contracted services. The usage control policies will be
configured on a PAP on the FE (Fig. 3).

The established SLA provides each consumer with a set
of services employed to manage the environment (e.g.,
services for storing attributes, policies, credentials, and
cryptographic keys). Authentication credentials are created
considering the consumer accounting, allowing the users to
interact with the broker, so they can reach the desired SP.

The CD’s user receives a quota defining the usage
attributes (“rights”) for service consumption. Before a user
can exercise her quota, she must present herself to the
broker. In the initial contact, the user must provide the
broker with authentication credentials—an identification
credential signed by the consumer. The broker selects the

MARCON JR. ET AL.: A UCONABC RESILIENT AUTHORIZATION EVALUATION FOR CLOUD COMPUTING 461

Fig. 3. Proposed architecture overview.

provider that fits best the services or resources required. A
reference (interface describing how to access the service) is
returned as a response to the user, who will start to directly
access the provider in future interactions. This approach
allows the broker to redirect users to a specific provider,
according to the SLA for each consumer.

The service requests received by the providers, which
make up the cloud federation, are interpreted by the
guardian (PEP) of each service and are evaluated by
implementations of reference monitors (PDP) instantiated
on the FE. The user’s service accounting is stored by the CIR
(PIP). The accounting attribute repository is a service
updated by the accounting agents, running on the service
providers of the federation (Fig. 3).

After the consumer configures usage policies, based on
the SLA, and user starts the service consumption, the PIP
begins to store accounting attributes for each user.
Periodically, the broker consolidates usage attributes for
each consumer to evaluate if the services’ SLACo is being
honored. On the CD, the consolidated usage attributes are
analyzed to decide if a user’s usage policy needs to be
tweaked. Using this approach, the consumer is able to
redefine usage policies according to the needs of each user,
optimizing the use of service and minimizing the author-
ization exceptions.

The federation provides interoperability, high availabil-
ity and elasticity, employing an approach based on
distributed shared memory. The shared memory, imple-
mented as a tuple space service, can be accessed by many
accounting agents from the SPs to write user’s usage
attributes. Moreover, the tuple space is used for authoriza-
tion reevaluation requests (from PEPs) and responses
(from PDPs).

The policy evaluation environment is based on the
outsourcing model. In the proposed approach, outsourcing
means the evaluation is made on the FE. However, it is not
in a centralized way, given it is applied a tuple space service
supporting many PDPs working in parallel. According to
our evaluation, the outsourcing model is more suitable to
the context of cloud computing due to the dynamicity
inherent to the environment (i.e., frequent instantiation and
destruction of VMs). In this model, no time is spent
transferring policies and managing cache systems on the
provider’s environment, for each instantiated service.

One can notice that for each service, the policies for the
user from the consumer’s domain should be configured. In
many instantiated services, the “ephemeral requests” for
the user policy evaluation does not justify the cost of
transferring and managing the policy on the provider. In
this proposal, the outsourcing approach stores the policies
on the PAP, thus providing a better control over the
policies, also avoiding policy disparity (inconsistences
caused by cache of policies in provider’s domain).

The expansion or retraction of policy evaluation envir-
onment occurs according to the environment’s demand, i.e.,
according to the amount of consumers making use of the
tuple space. Employing tuple spaces for sharing data on
distributed systems, like cloud computing, aims to create a
temporal decoupling between data consumers and provi-
ders. In this context, the entities that read and write the

contents (tuples) can be asynchronous and does not need to
know each other. The interaction can be carried away as
long as the entities agree on the template form used to store
data on the common space.

The expansion and retraction of services happens
automatically, and it is transparent to the consumer and
provider. The more the consumers, the bigger will be the
pool of servers for the tuple space service, because each
consumer demands providers’ services and management
services for her own domain. The proposal’s cloud-based
approach provides high availability and elasticity, with low
functional coupling between the environment’s entities.
This result is obtained using the cloud’s infrastructure on
the PDP, PIP, PEP, and the tuple space server pool.

5.1 Consumer Domain

The CD congregates the consumer management, an entity
that contracts the offered services on the FE and the
consumer’s users for the contracted service.

The consumer’s management (CADM) writes authenti-
cation credentials for its users on the security mechanism of
consumer domain (SMCD, Fig. 4, event RE).

The definition of usage policies for the users of a CD is
made based on a contracted SLACo obtained from the
broker (Fig. 4, event AD). The policies define each user’s
individual usage constraints for using the services, and the
access credentials the users will employ (event AU) to
request the service reference on the broker (event IS). The
reference informs the user the way to access and use the
services on the providers (SPn), which are associated with
the federation (event AC).

5.2 Federated Environment and Providers

The FE, represented by the broker, offers to a user a single
entry point to reach resources and services provided by all
providers associated with a federation. The broker is the
entity responsible for administrating the contracted SLA
established with the consumer. When a user demands a
service, the broker chooses among the federated providers
the one that fits best the usage policies. It is the broker’s
duty to find out providers to satisfy the needs of consumers,
it should apply scheduling policies for resource allocation
to help in the choice, as proposed by Amit et al. [25].

The SP is an entity associated with the federation. The
association process is managed externally to the context of
this proposal. However, once associated, the provider
starts to enjoy the service management and providing

462 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Fig. 4. The consumer in the proposed architecture.

infrastructure of the FE. Resources and services on
this environment may be scheduled according to the
cloud’s geographic scope or the type of service offered by
each provider.

On the PaaS, the controlling services intermediates the
web services access requests (SaaS), applying policies for
each request from users belonging to the CD. When the
access is granted on the PaaS, the user is allowed to use the
resources being provided (IaaS). However, the outsourcing
model adopted in the proposal frees the provider and the
consumer from the task of implementing the UCONABC

reference monitor and consumption attributes manage-
ment, which is placed in the FE; policy enforcement (PEP)
and accounting agents can be embedded in the consumer
developed software.

5.3 Attributes

The attributes belonging to the IaaS refers to the total
resources used by a VM (Fig. 5, event RSV) or service
instance. These attributes are related to the resources
allocated to the consumer (e.g., CPU-v, Memory-v, HD-v).
The PaaS provides accounting attributes related to the users
who are using the services (e.g., Attr-User, event UA).

The consumption attributes handled on the PIP are
provided by the accounting agents running on the VMs on
the SPs (event TP). The PIP provides information on the
individual user’s usage to the consumer PIP (CPIP, Fig. 5,
event ST). The usage attributes stored on the PIP are also
provided to the attributes manager on the broker (BPIP
event AR). The broker consolidates the usage attributes for
the whole consumer’s domain, aiming at monitoring
the SLAs.

Considering each user’s attribute (Fig. 5, event ST) and
consolidated usage (event CG), it is possible to identify
which user is using the services on the provider (event UA),
as well as to identify whether there is any idling resources
on the provider’s environment (event RSV). The usage
attributes are provided to the consumer PAP (CPAP) (event
NP); thus, it can generate new policies for CD users, justify
the need for contracting more resources, or optimize the
usage ratio of resources allocated on the provider. There-
fore, from the consolidated usage attributes, it automatically
obtains a balance among the specific instances of a service
during the policies reconfiguration.

5.4 Security Mechanisms

To access the SP, each user receives a credential signed by
the consumer (SMCD, Fig. 4, event AU). The credential
allows the user to get the interface description to access the
service. Moreover, it provides information about the access
authorization needed to use the service.

As the proposal is deployed in a distributed system, the
policy evaluation system applies cryptography in the
entities’ interaction. The policy evaluation messages sent
by the guardian (PEP, event RPE, Fig. 6) to the tuple space
service are signed and encrypted with a group key shared
by the PDPs, as proposed by Harney and Muckenhirn [26].
Any PDP of the group can process a new PEP reevaluation
request that reaches the tuple space (events PR, EPR). The
correspondent policy evaluation decision is encrypted with
the PEP’s public key and sent back to the tuple space service
(event SPR, Fig. 6), after the PDP signed it with the group
key. Every new PDP that integrates the cloud-based elastic
authorization reevaluation system must have the group key
to open the requests sent to the tuple space by the PEPs
(event RK). The key’s management and group membership
is responsibility of the broker.

The accounting attributes sent by the accounting agent
are signed and stored on the tuple space service, after being
encrypted with the PIP’s public keys. The procedures for
signing and encrypting are responsibility of the credential’s
service on the provider (Fig. 3; SMSP).

Consumer and provider have a trust relationship with
the broker. On the provider’s environment, the user needs
to be authenticated by the public key infrastructure of the
credentials’ service (Fig. 3; SMSP). The credential provided
by the user (issued by the consumer) proves that she is part
of the federation, as consumer and provider share a trust
relationship with the broker.

5.5 Usage Control and Policies Management

The CPAP and SMCD (Fig. 7) convert SLA into rules for
defining policies and access credentials (event RE) for users
on the CD (event AU). Users from the CD access the interface
repository (event IS) on the broker, and the respective services
on the provider (WS, event AC) using those credentials.

MARCON JR. ET AL.: A UCONABC RESILIENT AUTHORIZATION EVALUATION FOR CLOUD COMPUTING 463

Fig. 5. Architecture for attributes management.

Fig. 6. Security in the tuple space-based policy evaluation.

Fig. 7. Policies management system.

The policies, derived from an SLA, are stored on the
CPAP and configured on the PAP (event EN, Fig. 7). The
CPAP is a service used for managing access control policies
internal to the CD, after those policies are transferred to the
FE. The PAP receives and stores the policies sent by the
CPAP, to be used afterward by the PDP (event RP) in
authorization evaluation requests—performed by a PEP
(event DC) running in a VM on a (federated) SP. Policies
created by the consumer and stored in the PAP also are
used to setup the user quota.

As the access control is implemented using an out-
sourcing model, the user must be authorized by the PDP
and released on the PEP (event AT) to carry on the service
usage (event AC, Fig. 7). The authorization evaluation
process is executed on the federation (event AV). The
policies retrieved from the PAP (event RP) are evaluated on
the PDP. When the evaluation response is positive (access
allowed, event R-DC, Fig. 7), the user is authorized to access
the resource available on the IaaS (event AR), and this
decision is enforced by the PEP.

The service’s access requests received by the PEP (event
AT) are forwarded to the tuple space service on the
federation. The tuple space is constantly monitored by the
PDPs. Thus, a PDP server (any reference monitor from
the pool of PDP servers) retrieves the request from the tuple
space service. After evaluation, it addresses the response to
the requesting PEP through the tuple space service (event
R-AV). The requesting PEP monitors the tuple space service
to obtain the policy evaluation response. The authorization
evaluation uses usage attributes available on the attribute
repository (PIP, Fig. 5).

6 PROTOTYPE AND EVALUATION TEST

The following section presents the technology used to
implement a proof-of-concept prototype and to make
experimental evaluations with it.

6.1 Prototype

The proposed prototype was implemented using a cloud
operating system, web services, and tuple spaces. The cloud
operating system employed on the proposed environment
was the VMWare vSphere 4.1 (vmware.com/products/vsphere/
overview.html). In the prototype, the attributes were accessed
with help from the following application libraries: VMware
Infrastructure Java API (vijava.sourceforge.net); APIs for

accessing the Java virtual machine (JVM) provided by the
Java development kit (java.lang.management); the projects
JavaSysMon (jezhumble.github.com/javasysmon), and SIGAR
(hyperic.com/support/docs/sigar). Usage policies were created
and manipulated using XACML [18] from the Sun XACML
API (sunxacml. sourceforge.net).

The services provided by the VMs are hosted on an
Apache Tomcat (tomcat.apache.org), being accessed through
the SOAP [27] engine Apache Axis2 (axis.apache.org/axis2/
java/core). The Rampart module (axis.apache.org/axis2/java/
rampart) integrated into Axis2 provides the security
(signature and encryption) needed on the SOAP messages
(specifications WS-Security [28] and WS-Trust [29]). The
tuple spaces used to implement the FE’s shared memory
employ the technology provided by JavaSpaces, developed
on the project River (river.apache.org).

The tests were performed on an environment that
implements the proposal (Fig. 3) with the following
specifications: The CD runs on an Intel Core i7 2-GHz
CPU, 6 GB of RAM, and Windows 7 x64 as operating system.
The provider’s server employed an Intel Xeon 2.6-GHz dual
processor with six cores, 48 GB of RAM, and 3 TB of storage.
The FE server used an Intel 2.0-GHz dual processor with
four cores, 16 GB of RAM, and 3.3 TB of storage. The servers
were handled using VMware vSphere ESX 4.1, hosting the
VMs and services described in this proposal (Fig. 3) for the
two environments. The machines were connected through a
Gigabit Ethernet network.

6.2 Evaluation Tests

The service offered to the user in this scenario is simulated
as an e-commerce, running in a JVM, and the CPU load had
to be synthesized using cryptographic algorithms. The key
sizes were adjusted to create different CPU load ranges
(load < 10%, 40% < load < 60% and load > 90%). In this
scenario, each accounting agent (Fig. 8) submits 17 different
usage attributes to the tuple space.

The measurements (Fig. 8) were obtained running 1,000
iterations and computing the mean of them for each item
presented in the graph; similar procedure was adopted in
the case of Tables 1 and 2; the variance was below 5 percent
in all cases. The tests were performed on a controlled local
network environment; thus, it was possible to know the
system’s behavior without external interferences.

The CPU time was obtained using the class Java
ThreadMXBean. The CPU load on the VM was measured
using the SIGAR APIs and Java SysMon (Section 6.1).

464 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Fig. 8. The best periodicity of usage attributes monitoring.

TABLE 1
Stress Testing of Tuple Space

We made time measurements for the accounting agent
monitoring thread (Fig. 8). The measuring presented in the
graph refers to a testing scenario, measuring the CPU time
spent for delivering the service to a user (user time) and the
time spent by the system to support the thread (overhead
time).

The label presented in the x-axis represents the sleep
time (periodicity) of the monitoring thread (accounting
agent implementation)—S0 means the monitoring thread
did not sleep, processing “continuously” (according to the
JVM scheduling priority scheme). On the other hand, x 6¼ 0
in Sx means the time (in milliseconds), between consecutive
monitoring tasks, the thread slept (e.g., S2 means thread
slept for � 2 ms and S2048 thread slept for �2 s).

The threads were executed with the same priority to
avoid disparities on the measuring due to scheduling
priorities on the algorithm adopted by the JVM.

In Fig. 8, it is possible to observe that the experiments
show the best periodicity for service accounting on the
developed scenario. In this case, we can see that around S32
(accounting monitoring periodicity of 32ms), it achieved the
best tradeoff between overhead and processing time (user
time) for the three CPU loads considered in a testing
scenario. Thus, this period (32 ms) defines the maximum
amount of time that a given user may be under an exception
condition and, therefore, the best reevaluation periodicity.

Fig. 8 shows that a high frequency monitoring may
degrade the service’s performance (from S0 to S8, on
average, the overhead time is higher), because the monitor
will use system’s resources in a more intensive manner.

We executed some stress testing on tuple space (Table 1)
aiming to identify the number of tuples it can store
consecutively. One can notice that, as a rule, while the tuple
size (consumption attributes) doubles the number of tuples
stored reduces to a half. However, the time spent to store such
a number of tuples varies significantly, yelding the best
throughput for tuples of size between 4KB and 16KB.

In the case of the experiment reported in Fig. 8, the
accounting agent sent tuples with �2 KB (17 usage
attributes).

An analogous test was performed on the PDP for
reevaluation policies (Table 2). But, in such a case, the
PDP retrieved the policy reevaluation request from tuple
space with �2 KB (considering a tuple header has about
1 KB) and the policy set from PAP; a simple XACML policy
(defining one authorization rule) is about 4 KB.

Next, the PDP evaluates the request and posts the
response back to the tuple space with �2 KB (considering a
tuple header has about 1 KB). Thus, the experiment results
the PDP power to serve policies reevaluation requests
(Table 2, “No. of parallel policies reevaluated before
crashing”) and the time spent to do it (Table 2, “Time
spent to evaluate a policy”).

We could evaluate the time spent by the PIP to get
attributes from the tuples space and store it locally, which is
very similar to the PDP’s spent time to evaluate a policy
(Table 2). Moreover, the time spent by the PEP to write an
evaluation request on the tuple space is very similar to that
spent by accounting agents for writing a consumption
attribute. Therefore, considering the time for policy reeva-
luation request on the tuple space added to the time
required by the PDP to evaluate and answer the request, we
conclude that for many combinations of request size and
policy size the total time spent to complete the process of
reevaluation stays below 32 ms (Fig. 8).

Taking into account the time spent to store a consump-
tion tuple, from accounting agent, added to the time spent
by PIP to store it locally, we can conclude that these
attributes will be available for the PDP to retrieve it and
consider it only in the reevaluation period (after 32ms).

We can infer that the real time needed to get a
consumption attribute stores it on the PIP and effectively
uses it on the reevaluation of a policy will take two periods
of 32ms, one to have the accounting attributes available and
another to use them in the reevaluation. Thus, we are
reconsidering 64ms to be the best reevaluating period.

The measurements shown in Tables 1 and 2 provide an
idea about the proposal’s “elasticity trigger,” meaning the
number of servers in the pool should be increased when
the demand is close to provoking a crash on the servers. The
tuple space together with the distributed evaluation scheme
(many PDPs instantiated on demand) provides elasticity to
the UCONABC. The space for managing attributes, respon-
sibility of the PIP, follows the same approach, providing
elasticity to the accounting system for UCONABC.

7 CONCLUSION

This work presented an innovative approach to reevaluation
of ongoing authorization for usage control. The continuous
service accounting and reevaluation of authorization attri-
butes allowed the identification of disparities between
authorizations and policies. Moreover, it provided resilience
(relaxing the policy rules) to authorization attributes in some
circumstances without any loss to the consumer (SLA
violation). When a disparity is identified and resilience is
not possible, the user will be under an exception condition. In
this case, the consumer’s will have some alternatives to fix the
situation that is very advantageous in comparison to
traditional approaches present in the literature.

The proposed accounting service and continuous reeva-
luation for each user provides fine-grained accounting and
access control for the cloud computing environment.

The resilience applied on the proposal made the
authorization attributes (quotas) defined for each consu-
mer’s user more flexible. Besides, control policy violations
are monitored and treated by the management environment
at the federation (SLAs) and consumer level (exception

MARCON JR. ET AL.: A UCONABC RESILIENT AUTHORIZATION EVALUATION FOR CLOUD COMPUTING 465

TABLE 2
Stress Testing for PDP Policies Reevaluation

conditions). This scheme allows the flexible usage of
computational resources, tweaking the quotas without
waste, idling or abuse of contracted services.

The proposal’s approach showed that it is possible to
perform attributes management and consolidation by using
loosely coupled and open standards (e.g., web services).
Moreover, it is adequate to the access level allowed
nowadays on the infrastructure (IaaS), not requiring
changes on this environment, as the management is made
by services that work according to the consumer’s demand.
This means that, without the proposal, the consumer would
not have usage control over the cloud as no IaaS provider
offers similar service. Furthermore, we could not find
similar proposals to this one on the technical literature, not
even for the PaaS or SaaS.

ACKNOWLEDGMENTS

This work was partially sponsored by the Program Center
for the Research and Development on Digital Technologies
and Communication (CTIC/MCTI), grant 1313 and the
National Council for Scientific and Technological Develop-
ment (CNPq), grants 310671/2012-4 and 478285/2011-6.

REFERENCES

[1] N. Li, Q. Wang, and M. Tripunitara, “Resiliency Policies in Access
Control,” ACM Trans. Information and System Security, vol. 12,
article 20, 2009.

[2] Q. Wang and N. Li, “Satisfiability and Resiliency in Workflow
Authorization Systems,” ACM Trans. Information and System
Security, vol. 13, no. 4, article 40, 2010.

[3] M. Stihler, A.O. Santin, A.L. Marcon Jr., and J.S. Fraga, “Integral
Federated Identity Management for Cloud Computing,” Proc.
Fifth IFIP NTMS, pp. 1-5, 2012.

[4] “Security Guidance for Critical Areas of Focus in Cloud
Computing,” CSA, http://www.cloudsecurityalliance.org/
guidance/csaguide.v3.0.pdf, Mar. 2013.

[5] M. Yildiz, J. Abawajy, T. Ercan, and A. Bernoth, “A Layered
Security Approach for Cloud Computing Infrastructure,” Proc.
Int’l Symp. Pervasive Systems, Algorithms, and Networks, pp. 763-767,
2009.

[6] “Web Services Architecture,” W3C, www.w3.org/TR/ws-arch,
Mar. 2013.

[7] X. Yang, B. Nasser, M. Surridge, and S.A. Middleton, “Business-
Oriented Cloud Federation Model for Real-Time Online Inter-
active Applications,” Future Generation Computer Systems, vol. 28,
pp. 1158-1167, 2012.

[8] M. Stihler, A.O. Santin, A. Calsavara, and A.L. Marcon Jr.,
“Distributed Usage Control Architecture for Business Coalitions,”
Proc. IEEE 44th IEEE ICC/CISS, pp. 1-6, 2009.

[9] J. Park and R. Sandhu, “The UCONABC Usage Control Model,”
ACM Trans. Information and System Security, vol. 7, no. 1, pp. 128-
174, 2004.

[10] R. Teigão, C.A. Maziero, and A.O. Santin, “Applying a Usage
Control Model in an Operating System Kernel,” J. Network and
Computer Applications, vol. 34, pp. 1342-1352, 2011.

[11] �I. Goiri, F. Julià, J.O. Fitó, M. Macı́as, and J. Guitart, “Supporting
CPU-Based Guarantees in Cloud SLAs via Resource-Level QoS
Metrics,” Future Generation Computer Systems, vol. 28, pp. 1295-
1302, 2012.

[12] S. Capizzi and A.A. Messina, “Tuple Space Service for Large Scale
Infrastructures,” Proc. IEEE 17th Workshop Enabling Technologies:
Infrastructure for Collaborative Enterprises, pp. 182-187, 2009.

[13] A. Michael, F. Armando, G. Rean, D.J. Anthony, H.K. Randy, K.
Andrew, L. Gunho, A. David, A.R. Patterson, and Z. Matei,
“Above the Clouds: A Berkeley View of Cloud Computing,”
technical report, 2009.

[14] J.S. Erickson, S. Spence, M. Rhodes, D. Banks, J. Rutherford, E.
Simpson, G. Belrose, and R. Perry, “Content-Centered Collabora-
tion Spaces in the Cloud,” IEEE Internet Computing, vol. 13, no. 5,
pp. 34-42, Sept./Oct. 2009.

[15] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” NIST Information Technology Laboratory, 2009.

[16] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues,
Security Threats, and Solutions,” ACM Computing Survey, vol. 45,
no. 2, article 17, 2013.

[17] B. Grobauer, T. Walloschek, and E. Stöcker, “Understanding
Cloud-Computing Vulnerabilities,” IEEE Security and Privacy,
vol. 9, no. 2, pp. 50-57, Mar./Apr. 2011.

[18] OASIS, eXtensible Access Control Markup Language, www.oasis-
open.org/committees/xacml, Mar. 2013.

[19] L.J. Zhang and J. Zhang, “An Integrated Service Model Approach
for Enabling SOA,” IT Professional, vol. 11, no. 5, pp. 28-33, Sept./
Oct. 2009.

[20] H.C. Lim, S. Babu, J.S. Chase, and S.S. Parekh, “Automated
Control in Cloud Computing: Challenges and Opportunities,”
Proc. First Workshop Automated Control for Datacenters and Clouds,
pp. 13-18, 2009.

[21] S. Bertram, M. Boniface, M. Surridge, N. Briscombe, and M. Hall-
May, “On-Demand Dynamic Security for Risk-Based Secure
Collaboration in Clouds,” Proc. IEEE Third CLOUD, pp. 518-525,
2010.

[22] P. Goyal and R. Mikkilineni, “Policy-Based Event-Driven Services-
Oriented Architecture for Cloud Services Operation & Manage-
ment,” Proc. IEEE Second CLOUD, pp. 135-138, 2009.

[23] T. Tavizi, M. Shajari, and P.A. Dodangeh, “Usage Control Based
Architecture for Cloud Environments,” Proc. IEEE 26th Int’l
Parallel and Distributed Processing Symp. Workshops, pp. 1528-1533,
2012.

[24] C. Danwei, H. Xiuli, and R. Xunyi, “Access Control of Cloud
Service Based on UCON,” Proc. First Int’l Conf. Cloud Computing,
pp. 559-564, 2009.

[25] N. Amit, C. Sanjay, and S. Gaurav, “Policy Based Resource
Allocation in IaaS Cloud,” Future Generation Computer Systems,
vol. 28, pp. 94-103, 2011.

[26] H. Harney and C. Muckenhirn, “Group Key Management
Protocol (GKMP) Specification - RFC 2093 and Architecture -
RFC 2094,” 1997.

[27] W3C, SOAP Version 1.2., www.w3.org/TR/soap, Mar. 2013.
[28] OASIS, Web Services Security SOAP Message Security 1.1.,

http://docs.oasis-open.org/wss/v1.1, Mar. 2013.
[29] OASIS, WS-Trust 1.4, http://docs.oasis-open.org/ws-sx/ws-

trust/v1.4/, Mar. 2013.

Arlindo Luis Marcon Jr. received the BS
degree in informatics from União da Vitória
College in 2004, the MSc degree in 2008 and
the PhD degree in 2012 in computing science
from the Pontifical Catholic University of Paraná.
He has been an associated professor at the
Federal Institute of Paraná, PR, Brazil, since
2010. His main research interests include
security, access control, distributed systems,
web services, and cloud computing.

Altair Olivo Santin received the BS degree in
computer engineering from the Pontifical Catho-
lic University of Paraná in 1992, the MSc degree
in electrical engineering and industrial computer
from the Technological Federal University of
Paraná in 1996, and the PhD degree in electrical
engineering from the Federal University of Santa
Catarina, Brazil, in 2004. He is a full professor of
computer science at the Pontifical Catholic
University of Paraná. His research interests in

computer security include usage and access control models and
mechanisms for distributed systems, web services and cloud computing
security, intrusion detection systems and digital forensics. He is a
member of the IEEE, ACM, and the Brazilian Computer Society.

466 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Maicon Stihler received the BS degree in
information systems from Unidavi College in
2004 and the MSc degree in computer science
from the Pontifical University of Paraná in
2009. He is currently working toward the PhD
degree in Graduate Program of Computer
Science at the Pontifical University of Paraná.
His main research interests include computer
security, usage control, distributed systems,
and cloud computing.

Juliana Bachtold Jr. received the BS degree
in computer science from the University of
Santa Catarina State in 2002 and the MSc
degree in computing science from the Pontifical
Catholic University of Paraná in 2012. Her main
research interests include information technol-
ogy management, information security, and
computer network.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MARCON JR. ET AL.: A UCONABC RESILIENT AUTHORIZATION EVALUATION FOR CLOUD COMPUTING 467

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

