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Abstract—Software-based network security is constantly
challenged by the increase in network speeds and number of
attacks. At the same time, mobile network access underscores
the need for energy efficiency. In this paper, we present
a new way to improve the throughput and to reduce the
energy consumption of an anomaly-based intrusion detection
system for probing attacks. Our framework implements the
same classifier algorithm in software (C++) and in hardware
(synthesizable VHDL), and then compares the energy efficiency
of the two approaches. Our results for a decision tree classifier
show that the hardware version consumed only 0.03% of the
energy used by the same algorithm in software, even though
the hardware version operates with a throughput that is 15
times that of the software version.
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I. INTRODUCTION

Today’s networking systems face two major concerns:
throughput and energy efficiency. Cisco estimates the total
internet throughput at 167 terabits per second, and growing
at 29% a month [1]. At the same time, computing already
accounts for 6% of worldwide electricity consumption [2],
and mobile devices reinforce the need for making the most
of the available energy.

While the network usage of an application can be mea-
sured with great precision, this is not true for energy
consumption. At the current state of the art, there are very
few tools to help build energy-efficient algorithms; one such
example is the LEAP platform [3], which allows measuring
the power consumption of certain elements (e.g., CPU, hard
disk, and RAM) in an Intel Atom motherboard.

A promising approach to improve the throughput and en-
ergy efficiency of networking systems is to move basic algo-
rithms from software to hardware. Using dedicated circuits,
computations that require many instructions in software can
be performed in a single clock cycle in hardware. Because
there is no need to support general-purpose algorithms, the
resulting hardware is leaner and operates at a fraction of the
power consumption of a generic processor.

This paper describes a novel approach to move anomaly
detection algorithms from software to hardware, assessing
the impact on power consumption. Our end goal is to offload

most network security tasks from the system CPU to a
coprocessor or network card. Currently, we have imple-
mented a decision tree algorithm to detect probe attacks, in
both software and hardware. The two implementations are
functionally identical; however, the hardware solution has a
significantly higher throughput, and an energy cost that is
orders of magnitude lower than the software approach.

II. BACKGROUND

A. Anomaly-Based Intrusion Detection Systems

An intrusion detection system (IDS) monitors events in
a network or system, and decides whether each event is
legitimate or unauthorized [4] [5]. There are two basic kinds
of IDS: signature-based and anomaly-based.

In signature-based IDS, the system maintains a list of
known misuse patterns, and monitors network events in
search of those patterns. One advantage of signature-based
systems is that known threats can be detected efficiently and
with a very low false-positive rate [5]. On the other hand, as
the number of misuse patterns increases, the list may grow
too large and some new patterns might be not included.

Anomaly-based IDS consists in creating a model of nor-
mal or anomalous behavior, and classifying each network
event into these categories [5]. An advantage of such systems
is that they can detect previously unknown attacks. On the
other hand, they are susceptible to producing false alarms,
and the model needs to be updated when there are changes
in the definition of normal or attack behavior. Despite these
disadvantages, anomaly detection is an alternative for IDS
because the network is always exposed to new threats. The
challenge lies in designing a classifier with a high accuracy
and low false alarm rate.

B. Machine Learning for Anomaly Detection

One way to detect intrusions in the anomaly-based ap-
proach is to build a prediction model of what constitutes
attack behavior, and then to test all network traffic using this
model [6]. If the model predicts that the analyzed traffic is
a threat, the detector may warn the user or host system.

Machine Learning (ML) techniques are commonly used to
discover underlying models from a set of training data. Such



techniques are known for their adaptability, fault tolerance,
and resilience against noise (information that confuses the
classifier) [5]. They are also well suited for learning tasks
where there is no a priori knowledge of the underlying
patterns [7]. ML applications are commonly built around
classifiers, which are functions that map data points to class
labels. An IDS attempts to classify all traffic as either normal
or attack [7].

The creation and use of a classifier are often two separate
stages. The first stage, or training, uses a training dataset and
a model generation algorithm to choose the features to be
examined in the input data, and produces the attack model.
In intrusion detection, the features are values obtained from
packet data or network activity, and the possible output val-
ues are normal traffic or attack. This stage can be computed
offline, and is often computationally intensive [5].

The second stage, executed in real-time, is classification.
In this phase, the chosen features are extracted from an
actual input vector, and the corresponding values are applied
to the classifier. For intrusion detection, the mostly used
classifiers are Support Vector Machines (SVM), Decision
Tree, and K-Nearest Neighbors (KNN) [6].

C. Datasets for Intrusion Detection

The dataset used in the training phase is fundamental to
the creation of a good attack model. The training algorithm
iterates over a large number of input vectors, which must be
previously labeled as either normal or attacks.

There has been intense research in creating representative
datasets for security applications. The publicly available
NSL-KDD dataset [8] is an improved version of KDD 99,
and it is aimed at detecting four types of attacks: denial of
service (DoS), probing, remote-to-local (R2L), and user-to-
root (U2R).

D. Decision Tree Classifiers

Decision Trees (DTs) are appropriate for intrusion detec-
tion for several reasons: the input data can be discrete or
continuous; it is not computationally intensive; and it can
be easily implemented in real-time systems [9].

The basic principle behind DTs is a successive parti-
tioning algorithm, which partitions the original dataset into
nodes [10]; the C4.5 algorithm is a common choice for
constructing the model [11]. DTs are implemented as sets of
if-then rules, and they classify each input by traversing the
tree from the root until it reaches a leaf node, with which
a class label is associated. Each non-terminal node specifies
a test of an attribute, and the branches correspond to the
possible attribute values [11].

E. Implementation of Security Algorithms in Hardware

Machine learning techniques have shown limitations to
achieve at the same time a high detection accuracy and
fast processing time. Because of the increasing network

speeds and number of attacks, the execution of security
solutions purely in software is reaching its limit, and the
sequential execution imposed by software can prevent real-
time analysis at today’s network speeds [5]. The inherent
parallelism provided by hardware makes such algorithms
ideal candidates for a hardware implementation.

Another reason to use hardware is immunity from soft-
ware infections. Hardware circuits are very hard to mod-
ify unintentionally, and can be isolated from the software
environment. On the other hand, an IDS implemented in
hardware loses the software flexibility, so it must provide
mechanisms for reconfigurability [12]. A feasible alternative
for hardware updates is to use an FPGA, whose reconfigu-
ration can be made as hard (to prevent malicious changes)
or as easy as desired (to allow for end-user updates).

Systems-on-a-Chip (SoC) are another promising field for
IDS. SoCs connected to the internet should total 50 billion
by 2020 [13]. Because SoCs are associated with mobility
and battery power, energy efficiency is a topic of concern.

F. Power Measurement and Estimation

Despite the great interest in energy efficiency, there are
few tools to analyze the power consumption of individual
algorithms or applications. One of the first platforms for
energy measurement of an algorithm is LEAP [3], developed
at UCLA’s Laboratory for Advanced Systems Research.

The LEAP platform measures the power consumption of
sections of code running in an Intel Atom motherboard. It
uses the CPU timestamp counter and an external analog-
to-digital converter to measure the power consumption at
specific points in the motherboard. The system reports the
energy consumed in individual modules such as CPU, RAM,
hard disk, north bridge, USB, and power supply [3].

As for FPGAs, there are tools for both power estimation
and power monitoring. Altera, for instance, provides the
PowerPlay and Power Monitor tools. PowerPlay calculates
the total power consumption of a circuit by summing up the
estimates of each circuit element, considering the element’s
capacitance model and switching activity. However, this
estimate may be off by up to 32%, or even 209% in
similar tools from other manufacturers [14]. An alternative
to estimation is to measure the actual consumption of the
FPGA, using the Power Monitor tool. However, this tool
requires a circuit board instrumented with several current
sensors and analog-to-digital converters.

III. METHODOLOGY

A. General Workflow

In order to create the hardware and software for probing
detection, we developed an automated process that starts
with a dataset specification, and produces two classifier
implementations, one in C++ and the other in VHDL. Fig. 1
shows the general workflow of our approach. This section
describes the steps involved in this process.



Figure 1. General workflow, from dataset specification to hardware and software implementations.

1) Dataset: The first step in creating the attack model
is to choose a dataset. In our work, we have used two
datasets: the publicly available NSL-KDD dataset, and a
custom dataset aimed at detecting probe attacks.

The NSL-KDD dataset was used primarily to test our
workflow and to develop our tools and methodology. This
dataset uses 41 attributes, such as connection duration,
protocol type, service type, and number of data bytes.

Our custom dataset was used in all of our energy mea-
surements. It was created using an audit tool (Nessus) to
produce probing attacks, and workload tools to generate
different types of normal traffic (SSH, SNMP, IMAP, and
HTTP). The resulting dataset has 66 attributes. The records
were split in a training dataset (with 150,189 instances) and
a test dataset (with 37,548 instances). Both datasets have a
similar proportion of normal and attack traffic records.

2) Machine Learning Algorithms: For the training, evalu-
ation, and test of our models, we used the Weka framework,
an open-source collection of machine learning algorithms
for data mining [15]. To generate the trees, we used the J48
algorithm, a Java implementation of the C4.5 DT algorithm.

To build our first DT, based on the NSL-KDD dataset,
we used the partial training set (with 20% of the in-
stances), and nine manually chosen attributes: protocol type,
flag, is guest login, srv count, srv serror rate, rerror rate,
srv rerror rate, diff srv rate, srv diff host rate. We chose
a small confidence factor to reduce overfitting of the model
on training data and to obtain a smaller tree. The resulting
tree had 18 internal nodes and 40 leaves.

To build our second DT, which was based on our custom
dataset, we used a genetic algorithm to select the 12 most
relevant attributes. We also used the J48 algorithm with
the standard value of 0.25 for the confidence factor. The
resulting tree had 68 internal nodes and 70 leaves.

3) Attack Model: The output of the J48 algorithm is a
model, which includes a list of the attributes used in the
classification and a tree structure (Fig. 2).

4) Code generation scripts: To support the translation of
our model into hardware circuits, we created a framework
of VHDL code suitable for both simulation and synthesis.
The simulation code ensures that the hardware and software
versions have exactly the same behavior and accuracy. The
synthesis code can be directly synthesized into an FPGA.

Figure 2. Example of a tree model output by the J48 algorithm.

Our custom scripts include a code generator which parses
the model description obtained from Weka and outputs code
in VHDL and C++. We use the VHDL code to synthesize
the classifier hardware, and the C++ code for execution in an
x86 CPU. This allows us to compare the two implementa-
tions of the same decision tree. Fig. 1 illustrates this process,
with our custom script in the center of the diagram.

B. Classifier Implementation in Software

We compiled the generated C++ code on a desktop
workstation and uploaded it to a separate Intel DN2800MT
desktop board, which runs an Atom CPU at 1.8 GHz.

Our tests used a subset of 2,000 input vectors (1,000
attack vectors and 1,000 normal vectors) out of the total
37,548 entries. We limited the number of vectors in order
to use the same entries in software and hardware, and this
was the number possible with the RAM available in the
FPGA. Our test program initially reads the input vectors
from the disk and stores them in RAM. Next, it applies all
input vectors to the classifier routine, repeating the whole
process 100,000 times. This gives a total 2·108 classifying
operations and a running time of approximately 15 seconds.

C. Classifier Implementation in Hardware

To evaluate the DT circuit in operation and to measure its
power consumption, we created a test circuit composed of:

a) A configurable number of instances of the classifier
circuit. Because the power consumption of a single classifier



was too small to measure, most of the experiments were run
with 100 classifiers operating simultaneously (Fig. 3-d).

b) A ROM containing 2,000 vectors (the same vectors
from software implementation) from our dataset (Fig. 3-b).
Each vector has 12 attributes and is 218 bits wide.

c) Clock management (PLL) and timing circuits, to select
the operating frequency and the number of vectors/second.

d) Additional circuitry, including a FIFO memory, to read
the input vectors from the ROM, and to use them as inputs
for the classifier instances (Fig. 3-c).

Because it was not possible to measure the power con-
sumption of a single classifier instance, we designed a FIFO
to store the input vectors and to apply them to 100 copies
of the classifier circuit. The address increment circuit, the
ROM memory, and the FIFO are clocked circuits; the DT
classifiers are combinational circuits.

The test circuit implemented in the FPGA has the fol-
lowing characteristics: configurable number of decision tree
classifiers (1 to 100), configurable operating frequency via a
PLL (50, 100, 150, or 200 MHz), and configurable number
of vectors classified per second (one operation every 1, 2, 5,
or 10 clock cycles). The test vectors stored in the ROM are
read continuously, repeating the test set every 2,000 vectors.

IV. RESULTS

A. Decision Tree Accuracy

We used the training and test datasets of NSL-KDD to
verify the accuracy of our first decision tree. The number of
correct and incorrect classifications is shown in Table I.

Our tests showed that the hardware version of the clas-
sifier based on NSL-KDD has the same accuracy of the
software version. To make certain that the software and hard-
ware implementations are truly equivalent, we performed
an instance-by-instance inspection, and all vectors were
classified identically in software and in hardware.

We repeated the same tests for the second classifier,
derived from our custom dataset. Using the test dataset, only
three instances were classified incorrectly. This performance
is significantly better than NSL-KDD’s; however, it should
be noted that our custom dataset is specifically tailored for
the detection of a single type of attack (probing attacks).

Figure 3. Hardware diagram of the classifier circuit: a) address increment
circuit; b) ROM memory; c) FIFO memory; d) 100 decision tree classifiers.

Table I
CLASSIFIER ACCURACY USING THE NSL-KDD DATASET

Dataset Instances Correctly classified Incorrectly classified

KDDTrain 20%.txt 25,192 24,288 (96.4%) 904 (3.6%)

KDDTrain.txt 125,973 121,508 (96.5%) 4,465 (3.5%)

KDDTest.txt 22,544 17,548 (77.8%) 4,996 (22.2%)

B. Circuit Area

The circuit synthesized for the classifiers is purely combi-
national, based on multiplexers and comparators. The NSL-
KDD classifier uses 39 logic elements, representing 0.03%
of the capacity of the EP4CGX150DF31C7 Cyclone IV
FPGA. The circuit built from our probing dataset used 327
logic elements, or 0.2% of the FPGA.

C. Hardware Power Measurements

To measure the FPGA’s power consumption, we used a
Cyclone IV GX Development Kit and the Power Monitor
tool from Altera. This tool measures the current consumption
in the 8 tracks that supply power to the FPGA, and sends
the results continuously to a PC via a JTAG interface.

We confirmed experimentally that the only power rail
affected by changes in the hardware was VCCcore, which
supplies power to the FPGA’s core and hard IPs. Therefore,
in the subsequent experiments, we used this value in all
power consumption measurements.

Our first goal was to examine how the power consumption
varies with the clock frequency and with the number of
operations per second. The hardware for this experiment had
100 instances of the decision tree classifier. The results are
shown in Table II. An active cycle of 100% means that one
classification occurs on every clock cycle, whereas active
cycles of 50%, 20% and 10% represent one classification
at every 2, 5 and 10 clock cycles, respectively. The energy
per classification (ETASK) was calculated by multiplying the
FPGA core voltage (1.2V) by the change in current when
the circuit alternates between idle and normal operation,
dividing this number by 100 (number of classifiers) and by
the input vectors rate (number of vectors per second).

The first conclusion is that the energy to classify one input
vector (ETASK) is approximately constant, and independent of
the operating frequency or the number of vectors classified
per second. This is valid within the limits of our tests:
between 50 and 200 MHz, and between 5·106 and 200·106

vectors per second. On average, it takes 23.8 pJ to classify
a vector under these conditions, as shown in (1).

Evector(J) = average(ETASK) = 23.8pJ (1)

Fig. 4 shows in a 3D graph the energy needed to classify
one vector, as a function of both the operating frequency and
the active cycle. The graph is essentially flat, indicating that
the energy per operation is practically constant. However,
from the values in Table II, it is possible to observe a small



Table II
ENERGY PER CLASSIFICATION TASK AS A FUNCTION OF THE

OPERATING FREQUNECY AND ACTIVE CYCLE.

FCLK (MHz) Active cycle (%) Vectors/sec ∆Icore (A) ETASK (pJ)

50 10% 5·106 0.011 25.2

50 20% 10·106 0.020 24.0

50 50% 25·106 0.051 24.2

50 100% 50·106 0.099 23.6

100 10% 10·106 0.020 24.0

100 20% 20·106 0.040 23.7

100 50% 50·106 0.100 23.9

100 100% 100·106 0.196 23.5

150 10% 15·106 0.031 24.4

150 20% 30·106 0.060 23.8

150 50% 75·106 0.147 23.5

150 100% 150·106 0.289 23.1

200 10% 20·106 0.040 24.0

200 20% 40·106 0.079 23.6

200 50% 100·106 0.194 23.2

200 100% 200·106 0.381 22.8

Figure 4. Energy spent to classify one vector as a function of the operating
frequency and active cycle.

increase in the energy efficiency as the operating frequency
increases and the active cycle approaches 100%.

The power measurements presented in Table II do not
account for the total energy consumption of the classifier,
because they only measure the difference in consumption
when the circuit is idle from when it is operating. To fully
characterize the energy consumption, we need to add the
idle current because the FPGA draws a significant amount
of current even when no operation is performed.

To measure this idle current, we disconnected the clock
input from the test circuit. Different versions of our test
circuit were compiled, using 1, 25, 50, 75, and 100 classifier
instances. Fig. 5 shows the variation in idle current with
the number of instances. The idle current consumption is
directly proportional to the number of classifier circuits.
Though this conclusion seems obvious at first (it means that
the static power consumption is proportional to the circuit
area), we must remember that in an FPGA this relation is

Figure 5. Idle consumption of the FPGA core, as a function of the number
of classifier circuits.

not always straightforward, and needed to be checked.
A linear regression on the data shows that the idle current

is approximately (21.96 + 0.0685n) mA, where n is the
number of classifier circuits. The intercept value of 22
mA corresponds to the idle power consumption with zero
classifier instances, and is due to the test harness circuits and
the FPGA’s base consumption. On top of that, each classifier
instance adds an idle consumption of 68.5 µA.

This allows us to calculate the total power consumption
for one instance of the classifier circuit, as a function of the
number of operations performed per second. Adding the idle
consumption (68.5 µA · 1.2 V = 82.2 µW) to the operating
power consumption (23.8 pJ per vector/s), we obtain:

Pclassifier(W ) = 82.2 ·10−6 +23.8 ·10−12 ·#vectors/s (2)

As a final remark, the most important value obtained in
these experiments is the energy required to classify one input
vector (23.8 pJ, on average). In the final application, this
will correspond to the energy cost of classifying a network
packet as normal or attack. Even though the hardware and
software implementations are completely different, the fact
that they perform the same task gives us a number that can
be compared across platforms, as long as we can calculate
the energy required per classifying operation.

D. Software Power Measurements

To measure the power consumption of the classifier in
software, we measured the total current drawn from the
power supply by the Atom motherboard, using an Agilent
34401A 6 1/2 digit multimeter.

We first determined the idle power consumption of the
Atom desktop board running the Ubuntu 12.10 operating
system. The average current was 972 mA and the power
supply was set to 15 VDC (a total power consumption of
approximately 14.6 W).

After measuring the baseline power, we ran our test
program, which took 15.4s to classify 2·108 vectors. During



this period, the average current was 1,040 mA. As in the
FPGA experiment, we calculated the current and power
differences (∆I = 68 mA, ∆P = 1.02 W). With those values,
we could calculate the energy expense to classify one vector:

Evector(J) =
68 · 10−3A× 15V × 15.4s

200, 000, 000
= 78.5nJ (3)

E. Comparison Hardware vs. Software

Because of the many differences between the hardware
and software platforms, a direct comparison of most per-
formance characteristics would be risky. However, since
all implementations have the same ultimate goal, a direct
comparison is possible if we focus on the energy required
to classify one input vector. This approach abstracts away the
influences of operating frequency, rate of vectors per second,
power supply voltage, and even the hardware platform.

Table III compares the energy required to classify one
vector in hardware and in software. The results indicate
that the power consumption of the hardware classifier is
0.03% of the power consumption of the software classifier to
perform the same task. Furthermore, it should be noted that
the hardware version operates at a much higher rate than the
software version. The FPGA classifies 200,000,000 vectors
in one second, while the Atom CPU takes 15.4 seconds to
classify the same number of vectors. In other words, the
energy measurements were taken with the FPGA operating
15.4 times faster than the software implementation.

V. CONCLUSION AND FUTURE WORK

We have created the entire infrastructure to implement
simultaneously a hardware and a software version of the
same decision tree classifier, for use in anomaly-based
intrusion detection. Our experimental setup allows us to
measure the power consumption of classifier algorithms in
software and hardware. The energy measurements indicate
that the power consumption of the hardware version is only
0.03% that of the software version, even though the hardware
version was tested with a throughput 15.4 times higher.

We intend to improve our energy measurement method-
ology and to further evaluate the advantages of hardware
versus software implementations. For this purpose, we plan
to compare the energy efficiency of other machine learning
algorithms, such as Naive Bayes, KNN, and SVM.

The next big step is to develop the hardware architecture
for a complete network intrusion detection system (NIDS).

Table III
ENERGY COST TO CLASSIFY ONE VECTOR - SOFTWARE VS.

HARDWARE.

Platform Energy/vector (J) Energy/vector (%)

Software (Atom CPU) 78.5 nJ 100 %

Hardware (Cyclone IV FPGA) 23.8 pJ 0.03 %

We will use the PCIe bus to communicate between the
FPGA and the CPU, and gradually offload computation
(packet filtering, feature extraction, and vector assembly)
from the Atom processor. This will allow us to evaluate
which distribution of tasks between hardware and software is
the most energy-efficient for network security applications.
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