
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

Journal of Computer and System Sciences 80 (2014) 554–570

Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Algorithms for a distributed IDS in MANETs ✩,✩✩

P.M. Mafra a,b,∗, J.S. Fraga a, A.O. Santin c

a Automation and Systems Department, PGEAS, UFSC, Caixa Postal 476, CEP 88040-900, Florianopolis, SC, Brazil
b Federal Institute of Santa Catarina, Sao Jose, SC, Brazil
c Pontifical Catholic University of Parana, Curitiba, PR, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 November 2012
Received in revised form 30 April 2013
Accepted 14 June 2013
Available online 9 July 2013

Keywords:
Intrusion detection system
Mobile ad hoc networks
Distributed systems
Fault tolerance
Network security

This paper presents a set of distributed algorithms that support an Intrusion Detection
System (IDS) model for Mobile Ad hoc NETworks (MANETs). The development of mobile
networks has implicated the need of new IDS models in order to deal with new security
issues in these communication environments. More conventional models have difficulties
to deal with malicious components in MANETs. In this paper, we describe the proposed
IDS model, focusing on distributed algorithms and their computational costs. The proposal
employs fault tolerance techniques and cryptographic mechanisms to detect and deal with
malicious or faulty nodes. The model is analyzed along with related works. Unlike studies
in the references, the proposed IDS model admits intrusions and malice in their own
algorithms. In this paper, we also present test results obtained with an implementation
of the proposed model.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The last decade has witnessed a great evolution in communication technologies and models that promote mobility and
self-organization. Mobile Ad hoc Networks (MANETs) are an example of self-organized networks where there are no con-
centrator units (gateways) and the environment is highly dynamic with nodes joining and leaving at any time [2]. However,
such networks are susceptible to a great variety of attacks. The challenge that arises is to maintain the MANET free from
the activity of malicious or faulty nodes. In the face of the difficulty of avoiding the effects of malicious activities, mech-
anisms are necessary to at least minimize such effects. Intrusion detection systems (IDSs) can be used as one of these
mechanisms [3]. However, many well-known proposals and experiences of distributed IDSs do not tolerate the presence
of malicious or faulty nodes among its nodes. Most of the studies about this issue in the literature do not employ the
use of cryptographic mechanisms in communications of IDS nodes, even if this communication depends on the coopera-
tion of nodes that do not belong to the system. The key question in those IDSs is to ensure that applications in MANET
environments can always evolve despite of failures, attacks by malicious entities or their own mobility.

Works in this area deal mainly with problems applied to routing protocols in MANETs [4] and some works focus on
problems of malicious behavior [3–6]. These works are limited to monitoring the communications in MANETs and to propose
IDS models, usually having components which centralize its decisions or information. Moreover, in the literature, the IDSs
developed for MANETs usually do not have mechanisms to protect their own information and do not tolerate intrusions into
its various components.

✩ This research has been supported by The National Council for Scientific and Technological Development (CNPq), Grants 310671/2012-4 and
307588/2010-6. Paulo Manoel Mafra wishes to thank the Coordination for the Improvement of Higher Level Personnel (CAPES) for the scholarship granting.
✩✩ An earlier version of this paper was published in [1].

* Corresponding author at: Automation and Systems Department, PGEAS, UFSC, Caixa Postal 476, CEP 88040-900, Florianopolis, SC, Brazil.
E-mail addresses: mafra@das.ufsc.br (P.M. Mafra), fraga@das.ufsc.br (J.S. Fraga), santin@ppgia.pucpr.br (A.O. Santin).

0022-0000/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcss.2013.06.011

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 555

The communication among entities in MANETs can be monitored by distributed components of an IDS in order to detect
faulty or malicious behavior, and to improve security and reliability of such dynamic environments. In this paper we propose
a secure and fully distributed IDS model for MANETs. The algorithms presented in this paper define an IDS with functions
performed by sets of components (fully distributed executions) and with mechanisms and techniques for preventing and
tolerating malicious activities of their own components.

The proposed system is able to deal with various faulty or malicious nodes and mobility without there being interference
in the IDS’s expected correctness. The proposed IDS, unlike other works, uses cryptographic mechanisms to guarantee the
messages authentication between its elements. Moreover, the proposal is able to identify a large number of different attacks
or variations of known attacks. The employment of distributed systems and dependability concepts in the IDS design allows
modeling, within certain limits, a system less susceptible to restrictions.

This paper is organized as follows. Section 2 describes the related works and defines some parameters and attributes
for being used in qualitative analyses. Section 3 introduces the organization of our distributed IDS, defining its components
and their roles in the proposed model. We also describe some assumptions of our model and system dynamics. In Section 4
we present the algorithmic base to support the secure IDS. In Section 5 we describe asymptotic costs of the algorithms and
results of performed tests in a simulator. Finally, in Section 6, we present our conclusions.

2. Related work

During the last decade many intrusion detection systems were proposed. In 2000, Marti et al. [7] proposed “watchdog
and pathrater” mechanisms. The goal of such study was to detect nodes that do not forward packets. Excluding such nodes
from routing caches will reduce their effects on MANET routing protocols. Changes were proposed to the Dynamic Source
Routing (DSR) protocol [8] for including the watchdog and pathrater mechanisms. The behavior of nodes, in forwarding
packets, is observed through the number of dropped packets. If a threshold value for any node is reached, the node is
marked as malicious.

In 2003, Zhang, Lee and Huang [9] proposed a distributed and cooperative IDS architecture for MANETs. In that archi-
tecture, each node has an IDS agent participating in intrusion detection and response activities. These IDS agents act in a
cooperative way by composing a collection of IDSs. The architecture in [9] is merely conceptual and was not implemented.

In [3] Kachirski and Guha proposed an IDS for MANETs using, in each system node, sensor agents that assume functions
of data monitoring, decision making and also responding to the malicious activities. The network is divided into clusters in
that work. A cluster head is defined in each cluster to route data between clusters. The cluster head is selected based on
distances among nodes in the same cluster as well as on the number of neighbors of each node. Monitoring data collected
by all sensor agents are merged for detecting intrusions.

Also in 2003, an IDS based on non-overlapping zones named ZBIDS was proposed by Sun, Wu and Pooch [10]. That
proposition deals with the problem of cooperation among nodes where the network’s nodes are grouped into zones. In
ZBIDS, some nodes act as gateways to inter-zone communications. Each node must know its physical location in order
to be included into a pre-established zone. For that, the authors suggested that each node must have a GPS locator. The
intrusion detection method is based on Markov Chains. Study cases of ZBIDS were simulated using the network simulator
GloMoSim [11].

In 2006, another IDS based on clusters was proposed by Ahmed and his colleagues for collaborative detections of in-
trusions [4]. Cluster compositions are formed and maintained in fixed periods of time. Each cluster has a leader which
monitors all the traffic inside its cluster. This leader is also responsible for inter-cluster communications. Message exchanges
in the IDS are not protected by the use of cryptography, thus making information and decisions of the IDS easily corrupted
under various types of security attacks.

In [12], another model of collaborative IDS was introduced by Razak and Furnell. In the proposal, the node which detects
suspect activity requests opinions from its neighbors concerning the detected activity. After analyzing each neighbor’s vote,
the node makes a decision and informs it to the participating nodes.

Another study introducing an IDS model was presented by Sterne and Lawler [13]. The model is also based on a node
hierarchy where the lowest level collects the data and the higher levels correlate the collected data. However, that study
goes further than previous cited works. The proposed model allows the detection of several malicious nodes in the IDS’s
own composition. However, the malicious nodes may only belong to the lower levels of the proposed hierarchy.

In the work of Rajaram and Palaniswami [14], it was described a proposition of an IDS for MANETs which includes a
trust-based security protocol, taking into account a MAC-layer mechanism. The protocol provides packet authentication and
confidentiality in both routing and link layers of MANETs. In the protocol’s first phase, a trust-based scheme for packet
forwarding is used to detect and isolate malicious nodes. It uses trust values to favor packet forwarding. When a trust
counter value falls below a reliable threshold, the corresponding intermediate node is marked as malicious. In the second
phase of the protocol, a link-layer security scheme was developed using the authentication and encryption CBC-X mode to
provide security in the IDS messages exchange.

Another distributed cooperative IDS for MANETs was proposed by [15]. That IDS relies on local and global analysis.
Each node has a local IDS engine, which runs the network-based IDS Snort that monitors the neighbor nodes network
activity. Once a node detects a suspicious activity, it starts a distributed IDS algorithm that receives all relevant data about
the intrusion detection. In this algorithm, the data received from the IDS engine as well as any other IDS alert message

Author's personal copy

556 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

disseminated from other nodes will be analyzed and correlated. If there is enough evidence of intrusion, an IDS alert
message will be disseminated by broadcast (flooding). If the IDS alert message is from an untrustworthy node, the IDS
message will be ignored. Once a node receives an IDS alert message, intrusion prevention measures are taken and an
evaluation of the node’s reputation is performed, downgrading the trust level of the involved node. This evaluation is done
by all network nodes that received the IDS alert message. Trust management is maintained by watching neighbor node
activities: if they rebroadcast alert messages or not.

Recently, it has been proposed by Su [16] a cooperative IDS to detect suspicious activity using neighbor nodes monitoring.
When the number of such suspicious packets sent by a node exceeds a threshold, the monitoring node broadcasts an alert
message to all nodes in the network. The alert message is first authenticated with the id of the monitoring node and carries
information indicating the malicious node.

The proposals concerning IDS for MANETs show that the majority of the proposed approaches are capable of identifying
few types of attacks or some problems of routing protocols in these networks [6]. Some aforementioned IDS architectures
assume a hierarchical component stratification by introducing the idea of clusters [3,4,13]. Sharma, Khandelwal and Singh
[17] proposed a new clustering layer for MANETs through an efficient distributed algorithm that uses location metrics for
cluster composition. In the work of Ahmed, Samad and Mahmood [4] a time period was established for cluster composition
and leaders election through a voting process.

Most of the above mentioned works do not deal with the joining and leaving of nodes or even the node mobility within
the composition of the IDS. In related works, we were unable to find convincing results of tests on simulations or implemen-
tations that describe the dynamic features of MANETs. Moreover, just some of the cited proposals [9,13,14] considered the
use of encryption mechanisms to ensure the properties of authenticity, confidentiality and integrity of messages exchanged
between IDS nodes. Proposals which use clustering mechanisms centralize in the cluster leaders operations of the dis-
tributed decision and inter-cluster communication. Thus, these leaders must be reliable. Finally, the proposals in the related
works do not consider malicious behavior in IDS components or limit it to the lower nodes of the proposed hierarchies.

3. A fault tolerant and secure distributed IDS for MANETs

In this section, it will be described our experiences in developing the model of a fully distributed IDS for MANETs. Com-
munication protocols for MANETs rely on the collaboration of user devices that compound the nodes of such spontaneous
arranged networks. As such, in the proposal, it is also assumed a distributed and collaborative nodes environment. How-
ever, this collaboration is not limited only to the communications: all network nodes participate in the intrusion detection
system.

In addition to the distribution, the proposed IDS model must assume a hierarchical topology in order to meet the diverse
IDS functions. Two classes of nodes are distinguished in these spontaneous arranged networks: the “leader nodes” which
perform higher level functions such as analysis; and the “collector nodes” that assume the IDS’s lower level functionalities
like collecting data for future analysis.

In the proposed approach, f denotes a threshold for the anomalies occurrence. While f is not surpassed, the IDS and
its distributed functions will continue presenting the correct and expected behavior. Therefore, f value delimits the cluster
number of occurrences for failed and corrupted nodes and path disconnections due to nodes’ mobility. For maintaining node
connectivity in the IDS, we also assume that all the network nodes are connected to at least 2 f + 1 neighbors. Thus, the
proposed algorithms should be reliable even in presence of at most f failures, intrusions or node disconnections.

3.1. Characterization of the IDS model

The hierarchical topology of the model introduces the idea of clusters, as well as in the works in the literature [3,18,
10,4–6]. However, in this proposed model, we consider each cluster as having various leaders. These leaders compose what
we denominate as cluster leadership (or just leadership). The leaders are chosen by considering its connectivity and available
energy. Any node can be chosen as a leader. The collecting nodes send a summary of the data collected from the MANET to
the leaders. The leadership, which defines a cluster domain, is constituted by at least 2 f + 1 leaders – without this leaders’
quorum, the leadership and the corresponding cluster no longer exist.

The collector nodes constitute the largest part of the cluster components. In order to belong to a cluster, a collector node
needs to be connected with at least f + 1 leaders of a cluster.1 The data gathered by a collector node always are related
to its neighborhood. In other words, collector nodes capture data from each neighbor and store this information in internal
tables for subsequent dissemination in the cluster leadership. The information may be, for example, the quantity of received
and sent packets by the neighbor node i.

The leader nodes analyze the data sent by the collector nodes of the same cluster. Based on the analysis of these
monitoring data, they make their own decisions concerning malicious nodes. These partial decisions are in turn registered
in local lists (suspect lists) which are later shared, compared, and synchronized with other leaders of the corresponding

1 Each cluster node i needs to have at least f + 1 disjoint routes to the cluster leadership. Disjoint routes are considered paths in the network that start
in the considered node and arrive in nodes of leadership. These routes have no shared nodes, except the first one (node i).

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 557

Fig. 1. Time slots used between update rounds.

cluster. Since the leadership is composed for at least 2 f + 1 leaders, the same decision of f + 1 leaders about a node
malicious behavior of a given node is enough for excluding it from the IDS composition.

3.2. IDS assumptions

Some assumptions are taken into account in the proposed distributed IDS in order to ensure that our algorithms work
as expected:

Assumption 1 (Connectivity). All cluster nodes have at least 2 f + 1 neighbors and f + 1 disjoint routes to the leadership. The leader-
ship composition is not characterized by disconnected graphs.

Assumption 2. Each node must have a pair of asymmetric keys to take part in a cluster of a distributed IDS. The node’s public key is
available as a certificate, signed by a trusted entity of the system.2

Assumption 3. The leadership and, consequently, the corresponding cluster cease to exist when a leadership has less than 2 f + 1
leaders.

Assumption 4. The clocks of the IDS components behave according to a monotonic function.

Although the clocks may have differences among granularities and drift rates, they do not need to be periodically syn-
chronized. The only assumed requirement in the IDS model is that clocks increase continuously in relation to time.

3.3. The system dynamics

Changes are usual in spontaneous arranged networks (MANETs). Random joining and leaving in the system (churn),
energy containments – that can cause sporadic failures of components – and node mobility are determinants for changes
in the composition and topology of these networks. Therefore, the dynamic characteristics of the MANETs should be taken
into account when modeling a distributed IDS for these mobile networks. In other words, the IDS should be self-organized.

For controlling dynamic changes and, therefore, adapt our distributed IDS model to the system changes, we introduced
some time notions in the model that help to capture dynamic changes in the system and make the behavior of the algo-
rithms suitable even when changes occur. The time periods that define the synchronization for the model components are:
Epoch, Update Rounds (URs) and Data Transmission Time (DTT).

An epoch corresponds to a period of time that succeeds other epoch; during the epoch a cluster “freezes” its composition:
changes or requests for changing which may occur in an epoch are not considered in the cluster composition at the same
period (see Fig. 1). Possible changes are taken into account in cluster composition in the next epoch.

At the end of each epoch, the cluster components should synchronize with each other. Thus, the Update Round (UR) is
initiated. URs define a time period for cluster leaders to exchange information in order to update their knowledge concerning
the current composition of the cluster. Therefore, changes or changing requests that occurred in the cluster at the last epoch
are considered in the subsequent period of synchronization (an update round). Based on changes, the composition for the
new epoch is then defined.

IDS decisions taken during the update rounds are based on collected monitoring data. It is supposed that collectors (or
sensors) must have sent periodical summaries of collected data to the cluster leadership in the previous epoch. These data

2 A trusted entity of the system could be an administration committee or any other entity responsible for the spontaneous arranged network.

Author's personal copy

558 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

are sent at the end of a period called Data Transmission Time (DTT). Each leader merges and analyzes the data received from
collectors at the end of each DTT. In each epoch, monitoring data are collected several times. DTT period is assumed to
occur n times in each epoch (DTT = epoch/n).

During an epoch, the composition and topology of a cluster does not change. Requests for leaving or joining the cluster
in an epoch are only taken into account (and implemented) in the next synchronization period (next UR). Even the effects
of faults, mobility and possible malicious actions that occur in an epoch period are only counted during the next UR. A node
that tries to leave the cluster in a disorderly manner, during an epoch period, without waiting for the next update round, is
considered faulty. All events mentioned above determine a new composition for the new epoch.

4. Algorithmic support for the IDS

We developed a set of distributed algorithms to support an infrastructure that allows the IDS to tolerate up to f mali-
cious nodes.

4.1. Data analysis

The local analyses take into account the monitoring data sent from neighbors of a node, and are implemented based
on the system Octopus-IIDS system [19]. Each leader makes the analysis of each network node based on the data that it
received from the collectors. If the analyses of f + 1 nodes point to node i as suspect, then it is considered suspect by the
corresponding leader.

Local analyses are done by all the leaders present in a leadership. In the next update round an encrypted and authen-
ticated message is exchanged among leaders. Global decisions are performed in the leadership at each update round by
comparing these local analyses. Whether f + 1 leaders agreeing upon the analysis results, these results will be considered
by the leadership. As the leadership is composed by at least 2 f + 1 leaders, it eventually decides for a result among the
analyses about each cluster node, even in the presence of f malicious leaders.

4.2. Data dissemination

A leader only belongs to a cluster and to the cluster leadership: if it has disjoint routes to at least f + 1 leaders of
this cluster (Assumption 1). In order to reach a cluster leadership, monitoring data must be sent by using a dissemination
primitive. For sending these messages to the leadership, it was proposed Algorithm 1 which is based in a reliable multicast
presented in [20], adapted from [1].

Algorithm 1 Dissemination primitive
1: Init
2: Receivedi ← {};
3: upon Disseminate(msg j , Leadership j) at node j do % node j is any node
4: for all i ∈ Leadership j do % for all i known and reachable by j
5: send 〈DISSEMINATION,msg j〉 to nodei

6: end for

7: upon receive(〈DISSEMINATION,msg j〉) at nodei do{ % received at node i
8: if (〈DISSEMINATION,msg j〉 /∈ Receivedi) then{
9: Receivedi ← Receivedi ∪ {〈DISSEMINATION,msg j〉};

10: Disseminate(msg j , Leadershipi) % Dissemination in Leadershipi
11: deliverDisseminate(msg j); }} % msg j is locally delivered

Algorithm 1 describes the steps for disseminating messages in the leadership. In this algorithm, node i sends the message
msgi (line 5) to leaders who match i’s knowledge about cluster leadership (Leadershipi). When receives msgi , each leader k
resends the message to her own leadership knowledge (Leadershipk , line 10) and then delivers it locally (line 11).

We have assumed that the leadership does not compose disconnected graphs (Assumption 1). Thus, considering timing
conditions in message routing and that we also have assumed a limit f for malicious activities and path disconnections
(disconnections due to nodes’ mobility), a message sent by Disseminate() (Algorithm 1) reaches a correct leader. In this way,
under these favorable conditions of connectivity, failure and timing, all the leaders of the cluster have a high probability of
also receiving this message.

4.3. Cryptographic mechanisms

Leaders which compose the leadership in a cluster use secure channels to exchange information and alerts among them-
selves. Also, collectors make use of secure channels to send monitoring data to the leadership of the cluster. These secure
channels are based on cryptographic techniques for authenticating, encrypting and sending IDS messages (in both cases:
collector-to-leader and leader-to-leader communications). It is also assumed that communication for exchanging messages

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 559

which do not belong to the IDS occurs in an insecure way. Symmetric encryption and session keys are used to encrypt
messages in the secure channels.

Each node participating in the cluster must have an asymmetric key pair (asymmetric encryption). The public key of
each node is signed by the management committee of the system (trusted entity), generating a certificate (cred) for node’s
authentication. The exchange of certificates allows participants, using the corresponding public keys to establish session keys
necessary to secure channels.

4.3.1. Leadership authentications
Cluster leadership should also authenticate its messages in many activities of the proposed model. Leadership authen-

tications are founded on threshold signature scheme (TSS) [21]. In that threshold scheme, a trusted distributor generates
n partial keys (PK1, . . . ,PKn), n verifying keys (VK1, . . . ,VKn), the group verification key VK and the leadership’s public
key El . The last one is used to validate leadership signatures. Furthermore, the distributor sends those keys to n different
leader nodes. Thus, each leader i receives its partial key PKi and its verification key VKi . The public key El and the group
verification key VK are available to any node of the system.3

In the process of generating a leadership signature of data, each leader node i generates a partial signature sigi of data.
Subsequently, a combiner receives at least t valid partial signatures (sig1, sig2, . . . , sigt)4 and generates the final signature
Sign of data through these t partial signatures (using the function threshCombineS()). A fundamental property of threshold
schemes is the impossibility of generating valid signatures from less than t partial signatures. The threshold scheme used
for leadership authentications is based on the following primitives [21]:

• threshSign(PKi,VKi,VK,data): function used by a leader i to generate the partial signature of data, i.e., sigi .
• threshVerifyS(data, sigi,VKi,VK, El): function to verify if the partial signature sigi , presented by node i, is valid.
• threshCombineS(data, sig[1, . . . , t], El): this function performs the combination of t valid partial signatures (sig[1, . . . , t])

to obtain the leadership signature Sign.
• verifiedSignature(data, Sign, El): function applied to verify the validity of leadership signature Sign. It can be used to

verify node’s credentials.

Algorithm 2 DSignMessage(data, group)
1: Init
2: buffSigni ,partial_sigsi ← ∅
3: upon DSignMessage(msg, Leadershipc) at nodec do{ % coordinator asks for signature
4: Signc ← SignMessage(〈DSIGN, idc , tURc,msg, credc〉, Dc) % coordinator signs the message
5: dSignMsgc ← 〈DSIGN, idc , tURc,msg, Signc , credc〉
6: Disseminate(dSignMsgc , Leadershipc)}
7: upon deliverDisseminate(dSignMsgc) at nodei : idi ∈ clusterLeaders do{
8: if (dSignMsgc /∈ buffSigni) ∧ (dSignMsgc .tUR = tURi) then{
9: if ValidateSign(dSignMsgc .Sign,dSignMsgc .cred) then{

10: buffSigni ← buffSigni ∪ {dSignMsgc}
11: sigi ← threshSign(PKi ,VKi ,VK,dSignMsgc .msg)

12: repDsignMsgi ← 〈REPDSIGN, idi ,dSignMsgc .msg, sigi ,VKi〉
13: send repDsignMsgi to nodec}}} % partial signature is sent to coordinator

14: upon receive(repDsignMsgk) at nodec do{
15: if threshVerifyS(msg, sigk,VKk,VK, El) ∧ (sigk /∈ partial_sigsc) then{
16: partial_sigsc ← partial_sigsc ∪ {sigk}
17: if |partial_sigsc | � f + 1 then{ % coordinator has at least f + 1 partial signatures
18: Signl ← threshCombineS(msg,partial_sigsc , El) % c generates the complete signature
19: return Signl}}}

Algorithm 2 is based on the primitives defined above to perform leadership’s distributed signature (DSignMessage(data,

group)) of messages. In this algorithm, a leader node coordinates the distributed signature of a message. The coordinator
disseminates a message (dSignMsgc , line 6 in Algorithm 2) which proposes the distributed signature of msg. Upon receiving
dSignMsgc (line 7), a leader verifies if this message has already been received and if it is not an old one (line 8), aiming
to prevent replay attack. Then, it generates the partial signature (sigi) through the function threshSign() (line 11). These
partial signatures are sent to the coordinator which executes the function threshVerifyS() to check the partial signature
validity (line 15 in Algorithm 2). If the partial signature is valid and the number of valid signatures received is greater
than f + 1 then the coordinator executes the function threshCombineS() to generate the signature Signl of the message msg.

3 Also, the verification keys (VK1, . . . ,VKn) are easily obtained from the partial key (PKi) and the group verification key VK that is available and known
by all nodes of the IDS.

4 In order to ensure the inviolability of the authentication scheme of the cluster leadership, it is necessary that the limit f does not exceed t of the
threshold scheme (f < t < n). In this way, we assumed t = f + 1 partial keys in the proposed IDS model.

Author's personal copy

560 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

The function ValidateSign() used by Algorithm 2 (line 9) validates the leader’s signature of a message by using the cred (its
public key) of each leader.

4.3.2. Updates of partial keys in leadership
It is necessary to perform partial keys’ updates before each new epoch, due to the node’s joining and leaving from a

cluster. As a result, the leader nodes for the next epoch can obtain their new partial keys.
A transition of the current epoch scheme (n, t)-TSS to a scheme (n′, t′)-TSS corresponding to the new epoch is performed

by the partial keys update process, according to the definitions presented by [22]. In the transition process, each leader
node of epoch n generates n′ shares and proofs of its partial key (for each leader of the new epoch) and sends these shares
to leaders of the new epoch n′ . Each leader of the new schema should get at least t valid shares to generate its new partial
key.

A fundamental requirement for this protocol is that new partial keys (PK′
1, . . . ,PK′

n′) should be compatible. In other
words, it is necessary that the shares will be generated by the same set of at least t leaders from (n, t)-TSS (the threshold
scheme of current epoch, in the configuration with n components) [22]. Therefore, the proposed algorithm for updating
partial keys is based on the following primitives:

• th_share(PKi, j,n′): function used by node i to generate the share ̂k ji from his partial key PKi . This share is used by j
to generate its new partial key.

• th_generateProof(i, r): this function is used by node i to create the proof set {eri: 0 � r < n′} which is used to certify
the validity of the generated parts (shares ̂k ji) of partial key.

• th_verifyShare(̂k ji, {e0i, e1i, . . . , e(n′−1)i}): function used by node j to verify the validity of share ̂k ji generated by i. The
proof set {eri: 0 � r < n′} is used in this verification.

• th_combineShares(̂ki1,̂ki2, . . . ,̂kit ,qualified): function employed by node i to obtain its new partial key PK′
i from the

combination of t valid shares and proofs generated from partial keys of the current epoch. The qualified list is formed
by identifiers (ids) of nodes whose shares are correct and may be used in this function to create partial keys of the new
epoch.

• th_generateVK(PKi,VK): function used for node i to generate its new verification key VK′
i from its partial key PK′

i and
the group verification key VK .

Algorithm 3 is used in the proposed IDS model to generate a new partial key for each leader node of the new leadership
(for the new epoch). The purpose of this algorithm is to keep the same pair of asymmetric keys (El and Dl) of the leadership
while updating the set of private partial keys (PK′

r: 1 � r � n′) and verification keys (VK′
r: 1 � r � n′) that are used for

signing messages in the new leadership. The algorithm starts when a coordinator disseminates a message updateKeysc (lines
from 7 to 9, Algorithm 3). Each leader node i, upon receiving this message, verifies its validity and generates the shares (̂k ji)
and proof set ({eri: 0 � r < n′}) for the new partial keys (PK′

j) for all leaders j of the next epoch (clusterLeaderse+1) (lines
from 10 to 18). After, node i disseminates to the leadership of the new epoch the shares (encrypted with the corresponding
leaders’ public keys) and the respective proofs in the signed message sharesi (lines from 19 to 20).

Upon receiving a shares j message, each node i decrypts it, verifies its validity, and saves it (lines from 22 to 24 and 28). If
the share ̂kij is not valid, the sender (node j) is included in the list suspect_Listi and the receiving node (node i) disseminates
a message invalidKeyi with the received share and proofs, informing that the share and proofs are invalid (lines from 25
to 27).

When a node i receives an invalidKeyk message, it verifies the validity of the indicated share and, if it is invalid, i includes
the node that generated the share in its own suspect list (lines from 36 to 37).

The coordinator must indicate which shares should be used in partial keys generation. All partial keys must be com-
posed by the shares that were generated from the same set of leaders. The coordinator indicates which shares should
be used through the qualified list. Using the shares received from leaders included in the qualified list, each leader per-
forms the operation th_combineShares() to generate its partial key (PK′

i) for the next epoch. Also, with the new partial PK′
i

and VK (group verification key), each leader of the new leadership calculates its new verification key (VK′
i) by using the

th_generateVK() operation (line 41). Thus, it must have at least f + 1 correct leaders that participate in the current epoch
for performing this algorithm to ensure the necessary shares to compose the partial keys for the next epoch’s leaders.

4.4. Nodes’ synchronization

In order to deal with the dynamic aspects of the MANET and to ensure the correction of the collecting data for the
detection process, it was necessary to define time periods for nodes’ synchronization. As the IDS model works essentially
with time periods, clock synchronization is not necessary to start operations to keep as close as possible the cluster nodes’
view of the IDS status.

Node’s synchronization is reached by using Algorithm 4. In this algorithm, the end of each epoch is controlled using
local timers (parameter d; line 4, Algorithm 4). When period d expires, a leader node starts sending a sync message to the
leadership (lines from 4 to 8). Upon receiving a sync, node i verifies the message validity, saves it and checks how many sync

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 561

Algorithm 3 UpdatePartialKeys(idc, clusterLeaderse, clusterLeaderse+1)
1: Init
2: n′ ← 0 % size of new leadership
3: key_Listi , V _Listi , receivedi , received_VK′

i ,qualified ← ∅
4: proofSharesi ← ∅
5: upon UpdatePartialKeys(idc , clusterLeaderse, clusterLeaderse+1,Old_Leadershipc) at nodec do{
6: n′ ← |clusterLeaderse+1|
7: Signc ← SignMessage(〈UPDATE_KEYS, clusterLeaderse+1, tURc , idc ,n′, credc〉, Dc)

8: updateKeysc ← 〈UPDATE_KEYS, clusterLeaderse+1, tURc , idc ,n′, Signc , credc〉
9: Disseminate(updateKeysc ,Old_Leadershipc)}

10: upon deliverDisseminate(updateKeysc) at nodei : idi ∈ clusterLeaderse do{
11: if (updateKeysc .id = c) ∧ ValidateSign(updateKeysc .Sign,updateKeysc .cred) then{
12: if (updateKeysc .tUR = tURi) ∧ (updateKeysc /∈ receivedi) then{
13: receivedi ← receivedi ∪ {updateKeysc}
14: for all id j ∈ updateKeysc .clusterLeaderse+1 do{
15: ̂k ji ← th_share(PKi , id j ,updateKeysc .n

′)
16: proofSharesi .encrypted_̂k ji ← encrypt(̂k ji , cred j .E)}
17: for all r: 0 � r < updateKeysc .n

′ do{
18: proofSharesi .eri ← th_generateProof (idi , r)} % the proof of share is generated
19: sharesi ← 〈SHARES, idi ,proofSharesi ,n′, tURi , Signi , credi〉
20: Disseminate(〈sharesi , idi〉, Leadershipi)}}} % node i disseminates shares and proofs

21: upon deliverDisseminate(〈shares j , id j〉) at nodei : idi ∈ clusterLeaderse+1 do{
22: if (shares j .tUR = tURi) ∧ ValidateSign(shares j .Sign, shares j .cert) then{
23: ̂kij ← decrypt(proofShares j .encrypted_̂kij, Di) % the received shares are decrypted

24: if ¬(th_verifyShare(̂kij,proofShares j .e0 j , . . . ,proofShares j .e(n′−1) j)) then{
25: suspect_Listi ← suspect_Listi ∪ {〈id j , tURi〉}
26: invalidKeyi ← 〈INVALID_KEY, idi , tURi , 〈proofShares j , id j〉, Signi , credi〉
27: Disseminate(invalidKeyi , Leadershipi)}
28: else key_Listi ← key_Listi ∪ {〈̂kij, id j〉}
29: if (idi = c) ∧ (|key_Listi | � f + 1) then{
30: for all idk ∈ key_Listi do{
31: qualified ← qualified ∪ {idk}} % the list of qualified leaders is generated
32: qualifLidc ← 〈QUALIF_LID, idc , tURc ,qualified, Signc, credc〉
33: Disseminate(qualifLidc , Leadershipc)}}}
34: upon deliverDissiminate(〈invalidKeyk〉) at nodei : idi ∈ clusterLeaderse+1 do{
35: if (invalidKeyk .tUR = tURi) ∧ ValidateSign(invalidKeyk .Sign, invalidKeyk .cred) then{
36: if ¬(th_verifyShare(̂kkm,proofSharesm.e0m, . . . ,proofSharesm.e(n−1)m)) then{
37: suspect_Listi ← suspect_Listi ∪ {〈idm, tURi〉}}}}
38: upon deliverDisseminate(qualifLidc) at nodei : idi ∈ clusterLeaderse+1 do{
39: if (qualifLidc .tUR = tURi) ∧ ValidateSign(qualifLidc .Sign,qualifLidc .cred) then{
40: PK′

i ← th_combineShares(key_Listi ,qualifLidc .qualified)

41: VK′
i ← th_generateVK(PK′

i ,VK)}}

Algorithm 4 Synchronization(tURi) at nodei

1: Init
2: receivedi , Synci ← ∅ % buffers of messages
3: δ ← time() % timer is activated

4: upon ((time() − δ) � d) do{ % at the end of period d
5: if (idi ∈ clusterLeaders) then{
6: Signi ← SignMessage(〈SYNC, tURi , idi , credi〉, Di) % signs the sync message
7: synci ← 〈SYNC, tURi , idi , Signi , credi〉
8: Disseminate(synci , Leadershipi)}} % i disseminates sync

9: upon deliverDisseminate(synck) do{
10: if (synck .tUR = tURi) ∧ ValidateSign(synck .Sign, synck .cred) then{
11: if (synck /∈ Synci) then{
12: Synci ← Synci ∪ {synck} % synck is saved in Synci
13: if (|Synci | � f + 1) ∧ (idi ∈ clusterLeaders) then{
14: Disseminate(synck, Leadershipi) % call other leaders to synchronize
15: UR(tURi)}}}} % starts UR synchronized

messages it has received from different leaders (lines from 9 to 12). If the number of syncs is greater than f +1, then node i
sends again a sync message to force those nodes that still have not received f + 1 messages to get in the synchronization
period (lines from 13 and 14). After this last message is sent, node i starts participating in the Update Round (UR).

The processing during Data Transmission Time (DTT) and Update Rounds (URs) require specific algorithms, presented in
the following.

Author's personal copy

562 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

4.5. Data transmission times DDTs

At the end of a data transmission times, collector nodes must send a summary of data collected about neighbor nodes.
Algorithm 5 (function DTT()) describes the activities of collector and leader nodes at the end of this period.

Algorithm 5 DTT(tURi) at nodei

1: Init
2: γ ← time()
3: Collected_datai , suspects_Listi ← ∅
4: tDTTi ← 1
5: timeout ← p/3 % initial timeout is established in 1/3 of p

6: upon ((time() − γ) � p) at nodei : idi ∈ Collectorsi do{
7: monitoring_datai ← 〈MONITORING_DATAi , tURi , tDTTi , idi ,datai , Signi , credi〉
8: Disseminate(monitoring_datai , Leadershipi)

9: tDTTi ← tDTTi + 1
10: γ ← time()}
11: upon deliverDisseminate(monitoring_datak) at nodei : idi ∈ clusterLeaders do{
12: if (monitoring_datak .tUR = tURi) ∧ (monitoring_datak .tDTT = tDTTi) then{
13: if ValidateSign(monitoring_datak .Sign,monitoring_datak .cred) then{
14: Collected_datai ← Collected_datai ∪ {monitoring_datak}
15: if (|Collected_datai | � |Collectorsi | − f) ∨ ((time() − tDTTi ∗ p) � timeout) then{
16: reachedTimeout ← (time() − tTti ∗ p)

17: for all (idn ∈ Cluster(Leadershipi)) do{
18: analysisn

i ← Data_Analysis(Collected_datai , idn)

19: if (analysisn
i = is_suspect) then{

20: suspects_Listi ← suspects_Listi ∪ {idn}}}
21: tDTTi ← tDTTi + 1
22: timeout ← EstimatedTime(timeout, reachedTimeout) % a new timeout is calculated
23: Collected_datai , suspects_Listi ← ∅}}}}

In the DTT() algorithm, when p period expires, each collector node sends a summary (monitoring_datai) of collected data
to the leadership (lines from 6 to 10, Algorithm 5). Upon receiving a monitoring_datak message, the leader node i verifies
if the message is not old (by comparing the time values of tDTT and tUR) and if the message signature is valid. Therefore,
if the message is correct, node i saves monitoring_datak in the corresponding buffer (lines from 11 to 14). If the number of
received messages in the Collect_datai buffer is greater or equal to the number of correct collectors (|Collectorsi | − f) or if
timeout has been reached (line 15), then the leader node stores the reached timeout and starts analyzing each cluster node
by checking the received data (lines from 16 to 18). If a node is considered suspect by most of its neighbors (f + 1 at least),
it is inserted into the list of suspects (suspects_Listi) by leader node i (lines from 19 to 20).

With the purpose of estimating an adequate timeout to ensure that most of the monitoring_datak messages sent by
collectors reach leader nodes, it was adopted an adaptive timeout for adjusting values over time. The adaptive timeout is
based on the mechanism used in TCP protocol proposed by Jacobson [23]. This adaptive timeout is implemented by using
the EstimatedTime() function, in which the observed error from last timeout (the difference between calculated and reached
timeouts) is used to calculate the value of the next timeout (an estimated value).

4.6. Update rounds

An Update Round (UR) is defined as a period of time where the cluster nodes update their views about the cluster
status. A view is composed by a set of lists (list of malicious nodes, list of cluster leaders, list of cluster collectors, etc.)
and represents the IDS state during an epoch. During these URs, the information about nodes participating of the IDS and
suspected nodes is shared among cluster leaders. Also, during an UR, joining and leaving nodes are considered for composing
the new epoch view.

Algorithm 6 describes the activities executed by leader nodes in UR periods. When a leader node i starts to execute in
an UR, it first sends a listi message with its list of suspect nodes (generated from DTTs of the last epoch) to the remaining
leaders through the protocol Disseminate() (line 12, Algorithm 6).

At receiving a listk , through primitive deliverDisseminate, leader node i verifies if the message is not outdated and is a
correct message (by comparing values of epoch counters and verifying message signature, line 14). In case of the message
validity confirmed, listk is then saved in buffer Group_suspectsi (line 15). If the number of valid messages saved in this
buffer is greater or equal to 2 f + 1, then leader node i executes the identify_Suspects function, which makes an analysis of
each cluster node and reports which are suspects according to at least f + 1 leaders. Nodes indicated as suspects are then
included into the list of malicious nodes (malicious_List, line 17). Thereafter, node i disseminates a message requesting the
election of a leader to coordinate the update of the current view of the cluster status.

In line 18, leader i assumes the initial value of the election counter (int), which is defined in order to indicate the
number of rounds in the process of choosing a coordinator. Under favorable environment conditions, this number of rounds

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 563

Algorithm 6 UR(tURi)
1: Var
2: Leadershipi
3: Collectorsi

4: clusterLeaders % list of cluster leaders
5: certi

6: suspect_Listi

7: tURi % epoch counter
8: view
9: count_msgint

i

10: upon UR() at nodei : idi ∈ clusterLeaders do{
11: listi ← 〈LIST, tURi , idi , suspect_Listi , Signi , credi〉
12: Disseminate(listi , Leadershipi)}
13: upon deliverDisseminate(listk) at nodei : idi ∈ clusterLeaders do{
14: if (listk .tUR = tURi) ∧ ValidateSign(listk .Sign, listk .cred) then{
15: Group_suspectsi ← Group_suspectsi ∪ {listk}
16: if|Group_suspectsi | � 2 f + 1 then{ % if received at least 2 f + 1 messages
17: malicious_List ← identify_Suspects(Group_suspectsi , tURi)

18: int ← 1 % node i starts election counter
19: new_ci ← 〈NEW_COORDINATOR, tURi , idi , int, Signi , credi〉
20: Disseminate(new_ci , Leadershipi)}}}
21: upon deliverDisseminate(new_ck) at nodei : idi ∈ clusterLeaders do{
22: if (new_ck /∈ count_msgint

i) then{
23: if (new_ck .tUR = tURi) ∧ ValidateSign(new_ck .Sign,new_ck .cred) then{
24: count_msgint

i ← count_msgint
i ∪ {new_ck}

25: if |count_msgint
i | � (�|clusterLeaders|/2
 + 1) then{ % majority of leaders are reached

26: c ← elect_Coordinator(clusterLeaders, int) % c is the new coordinator
27: α ← time() % timer is activated
28: deadlineUR ← InitialValue
29: if (c = idi) then{
30: view ← new_view(inactive_nodesi , leaving_nodesi , certi ,malicious_List, tURi)

31: viewc ← 〈VIEW, tURc , idc ,view〉
32: gbroadcast(viewc)}}}}} % broadcasts the new view

33: upon deliver_gbroadcast(viewc) at nodei do{
34: if (viewc .tUR = tURi ∧ ValidateSign(view.Sign,view.cred)) then{
35: if VerifiedValidity(viewc .view) then{
36: Vizi ← (neighborsUpdate() ∩ view.Col ∪ view.Lid)

37: for all id j ∈ Vizi do{
38: routeCachei ← routeDiscovery(id j)

39: neighbors_Listi ← neighbors_Listi ∪ {id j}}
40: malicious_List ← view.black_List
41: Collectorsi ← view.Col
42: if (idi ∈ clusterLeaders) then{
43: Old_clusterLeaders ← clusterLeaders
44: clusterLeaders ← view.Lid % the list of leaders for next epoch is updated
45: Old_Leadershipi ← Leadershipi
46: Leadershipi ← RouteUpdate(clusterLeaders)
47: Keysi ← UpdatePartialKeys(c,Old_clusterLeaders, clusterLeaders,Old_Leadershipi)

48: count_msgint
i ← ∅

49: α ← ⊥
50: tURi ← tURi + 1
51: Synchronization(tURi)}
52: else{
53: Leadershipi ← RouteUpdate(view.Lid)

54: tURi ← tURi + 1
55: tDTTi ← 1
56: DTT(tURi)}}}}
57: upon ((time() − α) � deadlineUR) at nodei : idi ∈ clusterLeaders do{
58: if |count_msgint

i | < (�|clusterLeaders|/2
 + 1) then{
59: reachedDeadline ← (time() − α)

60: deadlineUR ← EstimatedTime(deadlineUR, reachedDeadline) % new deadline is estimated
61: int ← int + 1
62: count_msgint

i , count_msgint−1
i ← ∅

63: new_ci ← 〈NEW_COORDINATOR, tURi , idi , int, Signi , credi〉
64: Disseminate(new_ci , Leadershipi)

65: α ← time()}}

Author's personal copy

564 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

is limited for having a new coordinator chosen (int � f + 1). When running the lines 19 and 20 of Algorithm 6, a leader
node i prepares and disseminates a new_ci message to the current leadership (clusterLeaderse). This message requests the
election of a new coordinator and carries out the current values of epoch (tUR) and election (int) counters and i’s credential
(credi) and signature (Signi).

When node i receives a new_ck message requesting for a new coordinator, it first checks the message validity. If new_ck
is correct and current, node i stores this message in the buffer count_msgint

i (lines from 22 to 24, Algorithm 6). If the recep-
tion number of new_ck messages (|count_msgint

i |), reaches the limit �|clusterLeaderse|/2
 + 1, then it ensures the necessary
quorum for election (knowing that �|clusterLeaderse|/2
 + 1 � f + 1). Given this condition, a leader is elected coordinator
(lines 25 and 26). This election is based on identifiers’ order of leader nodes in clusterLeaderse . In line 27, a timer for con-
trolling timeouts is activated, thus establishing a time period in which the coordinator must fulfill its attributions during
the Update Round (UR).

The elected coordinator processes the joining and leaving requests from cluster nodes and generates a new cluster view
including nodes which have solicited joining in the current epoch, as well as the removal of malicious nodes and those
which have requested leaving during the current epoch (lines from 29 to 30). The new cluster view is thus sent in a signed
message by using the communication primitive gbroadcast (which provokes a flooding) to all network nodes, including
nodes in other clusters (lines from 31 to 32). The function new_view() is used to generate a new cluster view which will
determine the node composition for the next epoch (line 30, Algorithm 6).5

Upon receiving the message with the new cluster view of the network (viewc), each cluster node verifies the correction
of the message (line 34). After, line 35, the function which checks the validity of the received viewc is executed. Once the
validity of the received viewc is confirmed, it is implemented (through the updating of the local lists on the receiving node).
Next, the node updates its list of neighbors, line 36 (using the neighborsUpdate() function). In the following, the neighbor
routes are established (lines from 37 to 39). The primitive routeDiscovery() is part of the network support offered in the DSR
protocol. The final list obtained (neighbors_List), in line 39, corresponds in fact to the set of 2 f + 1 neighbors to which the
node has established routes. Malicious nodes list (malicious_List) and collectors list (Collectorsi) are then updated based on
the decision obtained through messages exchanged during UR, it is centered on the chosen coordinator and on the view it
disseminated (lines 40 and 41).

Each leader node i begins to instantiate the new cluster view, saving the list of leaders (clusterLeaderse) from the
current view in Old_clusterLeaders. Thus, a new list of leaders (clusterLeaderse+1 for the next epoch) is uploaded based
on the received view (lines 43 and 44, Algorithm 6). The routes from leader i to the leadership in the current view
(Leadershipi) are saved (line 45), and the function RouteUpdate() is executed using as argument the next epoch’s list of
leaders (clusterLeaderse+1), line 46. This function defines the new routes from the leader node i (Leadershipi) to the new
leadership (clusterLeaderse+1).

The leader node executes the UpdatePartialKeys() function (Algorithm 3), which updates partial keys for the new lead-
ership, line 47, Algorithm 6. The arguments to this function call are: the coordinator (c), the current leadership list (i.e.,
clusterLeaderse saved in Old_clusterLeaders), the next leadership list (clusterLeaderse+1), and the leadership routes in the cur-
rent epoch (saved in Old_Leadershipi). Then, the buffer count_msgint is initiated, the timeout is deactivated, and the epoch
counter (tURi) is incremented in order to point out to the new epoch (lines from 48 to 50). Finally, leader i executes the
Synchronization function (Algorithm 4) in order to start a new epoch. Collector nodes conclude their updates for the new
cluster view, creating their routes towards new leadership, determining the value of their epoch counters for the new epoch
(tURi), initiating the counter of data transmission time which is used for sending data collections (tDTTi), and finally calling
the DTT() function (lines from 53 to 56, Algorithm 5).

The thread which is defined between lines 57 and 65 of Algorithm 6, controls the coordinator timeout that is used to
limit the activities of calculating and coordinating of the new view instantiation. This thread is executed among leaders of
the current epoch. A leader node i defines the new timeout value for the deadlineUR (line 60) executing the EstimatedTime()
function with the used timeout (deadlineUR) and the period reached in the timer (reachedDeadline) as arguments. The
election counter int is incremented to the new election round and the buffers are reset (line 62). Further, the leader node
disseminates a new message requesting a new coordinator, line 64. Finally, the timer used in the timeout control is initiated,
line 65.

The deadlineUR also establishes limits for controlling bad behavior of the current coordinator. For example, if the co-
ordinator does not generate a new view or if its validation fails, or even if the coordinator suddenly leaves the network,
the remaining leaders can request the election of another leader as coordinator and the IDS continues to operate the new
epoch’s instantiation.

A node does not instantiate a view established by the coordinator when the viewc message (lines from 33 to 56) or the
request for a new coordinator election (lines from 21 and 32 of Algorithm 6) did not reach the considered node. If any
of these situations happen, the node would not be considered by the remaining nodes (its tUR will be different from the
remaining nodes). When this node receives the view of another epoch with epoch count larger than tUR, it will consider
that it is outdated and need to send a join request to the IDS composition.

5 The new cluster view includes information about collectors, leaders, and malicious nodes lists, as well as the cluster’s certificate lists and the corre-
sponding value of the epoch counter (tUR). These data will be applied to all cluster nodes and will be valid during the next epoch.

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 565

4.6.1. Initial update round (UR0)
The initial update round (UR0) is the period in which the system is composed: the cluster and its leadership are defined,

and the IDS starts to operate. In this phase, with the assistance of the network administrator, the public key of the leadership
is created, as well as each leader’s partial keys. In the final stage of this period, the data transmission time (tDTT) and the
update rounds (tUR) counters are initialized in each node of the cluster.

4.7. Route discovery

The discovery and updating of routes are essential for the correct operation of the IDS and communications in the
MANET described in our model. The DSR routing protocol [8] was adopted for routing messages in the system. DSR is an
on-demand routing protocol widely used in MANETs with a local routing cache. We adapted the DSR algorithm for updating
local route caches by inserting f + 1 disjoint routes to the leadership in each demand to routes for the leadership.

Algorithm 7 RouteUpdate(clusterLeaders) at nodei

1: Init
2: Routesi ← ∅
3: RouteCachei ← ∅
4: LeadersListi ← ∅
5: upon RouteUpdate(clusterLeaders) at nodei do{
6: LeadersListi ← clusterLeaders
7: while LeadersListi �= 0 do{
8: idl ← random(LeadersListi) % a leader is randomly chosen
9: RouteCachei ← RouteDiscovery(idl) % gets all routes from i to l

10: LeadersListi ← LeadersListi�{idl} % removes l from LeadersListi

11: for all ril ∈ RouteCachei do{
12: if disjointRoute(ril,Routesi) then{
13: Routesi ← Routesi ∪ ril

14: if idi ∈ Collectorsi then{
15: if |Routesi | � f + 1 then{
16: RouteCachei ← Routesi % updates DSR local cache
17: return Routesi}} % returns disjoint routes from collector i to leadership
18: break }}} % a disjoint route from i to l was found
19: RouteCachei ← Routesi % updates DSR local cache
20: return Routesi}

The adapted protocol is presented in Algorithm 7 where all existing routes from node i to a leader l are obtained through
the Route Discovery mechanism of the DSR. If the node i which is running this algorithm is a leader, it attempts to get the
maximum possible number of disjoint routes to the leadership (f + 1 at least). Otherwise (node i is a collector), it gets just
f + 1 disjoint routes.6 The Disseminate() algorithm depends on these disjoint routes to spread a message in the leadership.

4.8. IDS nodes joining and leaving

Node identification process in the network should be secure enough for not allowing the creation of multiple identities
to nodes, thus avoiding attacks like Sybil [24]. In the proposed architecture, node identification is based on certificates.
A certifying authority (CA) known and trusted by the network nodes, generates a certificate with the public key of a node i
when it joins the system (credi).7 The CA role in our model is assumed by an entity that manages the ad hoc network.8

With this model, we can identify the user and associate her to her equipment. Therefore, it cannot have users with multiple
devices on the network.

Algorithm 8 presents the steps involved in joining a new node in a network cluster. When joining, a new node i needs
to do the prospection of 0 10 0 42 its neighbors (through the function neighborsUpdate()), building its list of neighbors and
sending a request for joining the network. This request is done by using the message REQIN (reqini), sent to each neighbor
(lines from 6 to 13, Algorithm 8). When a neighbor j receives a message reqini , it verifies the message signature and if the
sender (node i) is not in the malicious list. If the verification succeeds, it disseminates the message to the leadership and
saves a copy of it in the buffer of inactive_nodes (lines from 14 to 19).

The dissemination of this message should reach the cluster leadership informing its identification (the identity idi of
node i) and its credential (its public key in a certificate format). The new node i will join the IDS composition as it receives
the new view of the leadership. The view received (line 20, Algorithm 8) has verified its validity. If it succeeds, the cluster
view is instantiated assuming the role assigned to node i by the leadership9 (lines from 20 to 24). After that, the new node

6 Collector nodes need to reach just one correct leader that will disseminate the message in the leadership using Algorithm 1 (Disseminate() function).
7 These certificates must have the public key and attributes of the user and also the MAC address of his mobile device.
8 This certifying entity will not necessarily need to be an official PKI. It may be a system administration committee or an administrator, etc.
9 The role of a new node is defined based on the needs for leaders to maintain the cluster, node’s connectivity and available energy.

Author's personal copy

566 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

Algorithm 8 Joining of node i into the cluster
1: Var
2: clusterLeadersi

3: Collectorsi

4: rolei ← null

5: Init
6: Vizi ← neighborsUpdate()
7: for all id j ∈ Vizi do{
8: routeCachei ← routeDiscovery(id j)

9: neighbors_Listi ← neighbors_Listi ∪ {id j}}
10: Signi ← SignMessage(〈REQIN, idi , credi〉, Di)

11: reqini ← 〈REQIN, idi , Signi , credi〉
12: for all id j ∈ neighbors_Listi do{
13: send reqini to id j}
14: upon receive(reqini) ∨ deliverDisseminate(reqini) at node j do{
15: if ValidateSign(reqini .Sign, reqini .cred) then{
16: if (idi /∈ malicious_List) then{
17: Disseminate(reqini , Leadership j)

18: if (id j ∈ Leadership j) ∧ (reqini /∈ inactive_nodes j) then{
19: inactive_nodes j ← inactive_nodes j ∪ {reqini}}}}}
20: upon deliver_gbroadcast(viewc) at nodei do{
21: if ValidateSign(viewc .Sign,viewc .cred) then{
22: malicious_List ← viewc .black_List
23: Collectorsi ← viewc .Col
24: clusterLeaders ← viewc .Lid
25: Vizi ← (neighborsUpdate() ∩ viewc .Col ∪ viewc .Lid)

26: for all id j ∈ Vizi do{
27: routeCachei ← routeDiscovery(id j)

28: neighbors_Listi ← neighbors_Listi ∪ {id j}}
29: Leadershipi ← RouteUpdate(viewc .Lid)

30: tURi ← viewc .tUR + 1
31: if idi ∈ clusterLeaders then{
32: rolei = leader
33: α ← ⊥
34: int ← ⊥
35: Synchronization(tURi)}
36: else if (idi ∈ view.Col) then{
37: rolei = colector
38: DTT(tURi)}}}

updates its list of neighbors and routes to the leadership, its counters of data transmission time (tDTT) and update round
(tUR), executes the synchronization algorithm and starts a data transmission time (lines from 25 to 38).

Algorithm 9 Leaving of node i
1: upon leaving(tURi) do{
2: Signi ← SignMessage(〈REQOUT, idi , tURi , credi〉, Di)

3: reqouti ← 〈REQOUT, idi , tURi , Signi , credi〉
4: Disseminate(reqouti , Leadershipi)} % i disseminates reqouti

5: upon deliverDisseminate(reqouti) at nodek: idk ∈ clusterLeaders do{
6: if (reqouti .id /∈ malicious_List) ∧ (reqouti .tUR = tURk) then{
7: if (reqouti /∈ inactive_nodesk) then{
8: leaving_nodesk ← leaving_nodesk ∪ {reqouti}}}} % node k waits for a leadership response during next UR

9: upon deliver_gbroadcast(viewc) at nodei do{
10: if ValidateSign(viewc .Sign,viewc .cred) then{ % signature and credential of c are valid
11: if VerifiedValidity(viewc) ∧ (viewc .tUR = tURi) then{
12: nodei leaves the system}}}

Algorithm 9 presents the steps involved in the procedure for a node leaving the IDS. In this algorithm, the node i
which wants to leave the network, disseminates a message REQOUT (reqouti) to the cluster leadership (lines from 2 to 4,
Algorithm 9). When a leader k receives the message, it verifies if the sender is not a malicious node and if the message
is not old (outdated), adding the message to a list of leaving nodes (leaving_nodes) (lines from 6 to 8). In the next UR,
when the node wanting to quit the network receives the new view, it checks the view signature and can then leave the
system. The IDS’s joinings and leavings are always processed during periods of Update Rounds (URs). If a node leaves the
IDS disrespecting this procedure, in the middle of an epoch, the system will consider it as a malicious node.

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 567

Table 1
Communication costs.

Joining of a node in the network (l2 − l)/2
Data Transmission Time (DTT) nl2 − l3

Update Round (UR) n2 + 6l3 + ln

Fig. 2. Tradeoff between demanding messages and amount of leaders.

5. Results and corresponding analysis

This section analyzes the model’s communication costs and presents results obtained based on simulation tests.

5.1. Communication costs

The communication costs of the proposed algorithms depend mainly on the size of the cluster and its leadership. As
such, the costs were computed in terms of issued messages for each algorithm. Table 1 summarizes these costs, in which:
n is the number of nodes and l is the number of leaders in the cluster. We adopted the values of the limit f being defined
by f = (l/2) − 1. In other words, the number of malicious or faulty nodes is one half of the cluster’s leadership size minus
one; this determination establishes the limits for the IDS’s proper operation.

In the joining procedure (Algorithm 8), a node sends a request to its neighbors (f + 1 messages). Upon receiving the
request, each neighbor node retransmits the request to the other leaders of the leadership using the protocol Disseminate().
The cost of this protocol is given by D = (l2). Thus, the total cost for a node joining the network is then D ∗ (f + 1) or
(l3 − l2)/2, where f = (l − 1)/2. In order to calculate the costs for Data Transmission Time (DTT), each collecting node (n − l)
sends a message with monitoring data to the leaders using the Disseminate() primitive. Thus, the total costs are at the order
of (n − l) ∗ (l2) or (nl2 − l3).

To calculate the costs of an update round, it is necessary to consider that each leader disseminates, to the leadership,
a message containing the result of its analysis concerning each of the cluster’s node. The message cost to do it is around
l ∗ D or l3. Also, when receiving this message, each leader disseminates another message demanding a new coordinator,
with costs of l ∗ D or l3. In the sequence, the coordinator generates the new view and sends it to all cluster nodes through
a broadcast that generates messages at the order of n2. Next, each node i updates its routes leading to the new leadership
with costs of ln. Algorithm 3 (UpdatePartialKeys()) is then executed by the leaders (with costs of l ∗ 4D or 4l3). Thus, the
total cost of Algorithm 6 (UR()) is then n2 + 6l3 + ln messages.

Fig. 2 presents an example of estimated costs (in terms of messages) to the joining operation, data transmission time
and update round. Considering the communication costs obtained, it is always possible to find more adequate values for the
number of leaders in a cluster. In a 100-node MANET arrangement, merely one cluster, the adequate ratio between leaders
and collectors should be approximately 20 leaders per 100 nodes. In Fig. 2, one can observe that when more than 30 leaders
are present in the MANET, the number of necessary messages during the Update Round (UR) grows exponentially. A similar
behavior is not noticed when one considers the algorithms of Data Transmission Time (DTT) and joining operation. These
algorithms, in terms of the size assumed for the leadership, are not dependent on message costs like the update round, for
instance.

Whenever possible, in the proposed algorithms, it is used the primitive Disseminate() for sending messages to the leader-
ship, with a cost of l2 for spreading messages to the leadership. One could use the broadcast primitive, which has complexity
of n2 messages, but such cost would always be greater when Disseminate() is used, since n > l.

Author's personal copy

568 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

Table 2
Tests’ results.

Observed feature 0% mal. 10% mal. 20% mal. 30% mal. 20% surp. f 30% surp. f
Loss of messages 6.52% 13.56% 20.63% 29.67% 29.69% 35.43%
Disseminated msg 100% 100% 100% 99.99% 99.68% 98.03%
Detection rate 100% 100% 100% 96.03% 95.08% 91.26%

Table 3
Tests’ results without malicious nodes.

Observed feature 5% lea. 10% lea. 15% lea. 20% lea.
Loss of messages 7.03% 7.54% 14.31% 15.01%
Disseminated msg 100% 100% 93.66% 92.06%
Detection rate 100% 100% 97.13% 97%

Table 4
Tests’ results with 10% of malicious nodes.

Observed feature 5% lea. 10% lea. 15% lea. 20% lea.
Loss of messages 15.91% 16.55% 21.63% 23.12%
Disseminated msg 100% 100% 93.37% 93.05%
Detection rate 100% 100% 97.07% 96.73%

5.2. Implementation and tests

For verifying the features of the proposed IDS model, we developed simulation tests for their propositions. Also, some
tests were developed for verifying the thresholds that the IDS should deal with.

The implementations and simulations were performed using the simulator Omnet++ (version 4.1) with a Mixim (ver-
sion 1.1) wireless network module, considering a 300 × 400 meter rectangular area. The period for data transmission time
was established as 60 seconds, and each epoch’s time was set at 300 seconds. Those parameters were adopted based on
tests executed for verifying the simulator’s limitations. Based in these values, the IDS is not saturated with messages dur-
ing data transmission times and update rounds. The total simulation time was limited to 6010 seconds (corresponding to
20 URs). Such total time was considered as enough for observing the proposed model’s behavior. Node’s mobility rate was
assumed at 2.0 mps,10 which is similar to the parameters employed in [25].

Malicious activity was defined to be nodes which perform random actions on messages being routed. In other words,
sometimes malicious nodes take part by correctly forwarding messages in the MANET routes and, sometimes, they do not
cooperate in such task. This behavior was simulated by following a uniform probability distribution, in which 80% of the
messages were not relayed by the malicious nodes. We chose this type of behavior because it is more difficult to detect
it than a node which simply discards all the messages that it receives, or than nodes which retransmit only to malicious
nodes (routing messages merely to a list of nodes which are also corrupted).

In the aforementioned tests, first, it was measured the rate of message losses in collector-to-leader and leader-to-leader
communications (Loss of messages). The corresponding results showed the MANET’s behavior in terms of failures. Next, we
quantified the amount of message delivery in the leadership when the Disseminate() protocol is used (Disseminated msg). In
other words, we observed whether a message sent using the sender’s leadership knowledge (i.e., the set of disjoint routes of
the sender node) is delivered to the leadership when it reaches at least one correct leader. Finally, we verified the detection
rate of malicious nodes in the MANET (Detection rate).

Three tests were performed to get measurement data. The first test used 100 nodes, while the second and third tests
began with 100 nodes, however, the rates of nodes’ joining and leaving are considered to provoke dynamic changes in the
MANET’s node composition.

In the first test, three distinct scenarios regarding malicious nodes were observed, (i) without malicious nodes, (ii) con-
sidering 10%, 20%, and 30% of malicious nodes but respecting the f limit, and (iii) assuming 20% and 30% of malicious
nodes, but keeping the leadership at 10% (the number of malicious nodes do not respect the f limit). The results of these
tests are presented in Table 2. The mentioned tests showed that even with the loss of messages caused by MANET problems,
node’s mobility, or malicious activities, the message dissemination rate among leaders remained very close to 100% (even
when the f limit was surpassed), yielding a high malicious activity detection rate. One can notice that even when the f
limit supported by the proposed model is exceeded (Table 2, 20% surp. f and 30% surp. f), the system continues to work,
with a very high message delivery rate and a very low false negative detection rate.

In the second and third simulated tests, two distinct scenarios were observed: without malicious nodes and considering
10% of the malicious nodes (respecting the 2 f + 1 leader limit in leadership but do not respecting the 2 f + 1 neighborhood
limit) respectively. In these tests, we adopted a fixed number of nodes joining at rate of 10% on each update round, but
making the leaving rate (lea.) equal to 5%, 10%, 15%, and 20%. The test results, presented in Table 3 and Table 4, showed the
IDS’s behavior regarding the nodes joining and leaving.

10 Meters per second.

Author's personal copy

P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570 569

Evaluating the tests we were able to observe, as expected, that IDS message loss was greater with 10% malicious nodes
than without any malicious node. However, the rate of messages spread throughout the leadership was similar (considering
10% maliciousness and without such activity). We also observed that with a leaving rate greater than its joining rate, some
messages were not widespread among the leadership. Such situation may be explained by a low MANET density of nodes
over a time. In such a case, the nodes have fewer connections. As a consequence, some messages may not reach any correct
leader (the probability of disseminated messages decreases with MANET density reduction). Additionally, we observed that
the detection rate follows the observed behavior for message dissemination rate. Therefore, when some messages are not
spread throughout leadership, the detection system will not perform the correct detection. Finally, we could consider the
set of tests produced satisfactory with results which evidence the limits and effectiveness of our proposals.

6. Concluding remarks

The node’s mobility associated with the absence of a communication infrastructure, demands collaborative communi-
cation protocols for spontaneously arranged networks like MANETs. In such environments, it is hard to maintain and to
guarantee security at message levels that are relayed using MANET’s nodes (users’ devices). Malicious activities may preju-
dice service access or even disrupt the MANET’s composition.

This paper focuses on the development of an IDS model for dynamic environments. In the proposed model, we have
centered our efforts on identifying malicious activity in MANET communications and in services available on this network.
A number of distributed algorithms were introduced in order to support this dynamic and distributed IDS model, which
continues to work even under a certain malicious activity rate.

The IDS described in this paper, unlike other related models, may adapt itself to MANET’s topological and nodes compo-
sition changes. To deal with the dynamic features of the MANET, the deployment of distributed IDS was divided into time
periods called epoch, where the IDS status is considered unchanged. Moreover, nodes requests for joining and leaving the
IDS and nodes failures are only processed during synchronization periods, identified as update round.

The proposed IDS model innovates by considering intrusion and fault occurrences in their own components. Which
means the model was conceived taking into account that malicious behavior can be present in certain IDS’s components.

This proposal is centered on a hierarchical IDS model for malicious behavior detection in MANETs. But unlike other
approaches which make use of hierarchies, in our approach, there is no dependence on a single node for developing the
IDS functionality. Thus, the proposed IDS is able to identify and circumvent malicious nodes, since each MANET node is
connected to at least f + 1 correct neighbors (nodes that have no malicious activity). Furthermore, each cluster view needs
to have a leader composition (cluster leadership) of at least f + 1 correct leaders.

The tests simulation showed that in some scenarios, even when the f limit is exceeded by the number of faulty and
malicious nodes, the IDS continues to work correctly. Thus, the simulation developed based on the model showed the
viability of the proposal.

An important aspect should be noticed in the proposal’s assumptions, that while the f limit for faulty or malicious
nodes is not exceeded, the proposed model behaves with certain determinism in IDS detections and decisions (detections
were around 100%, without false positives). Unfortunately, we were not able to find other related works in IDS for MANET
with simulation or real environment tests’ measurements for comparing with the results obtained in our proposal.

References

[1] P.M. Mafra, J.S. Fraga, A.O. Santin, Distributed algorithms for the creation of a new distributed IDS in MANETs, in: Proceedings of the 5th International
Conference on Internet and Distributed Computing Systems, IDCS’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 29–42.

[2] D. Djenouri, L. Khelladi, A. Badache, A survey of security issues in mobile ad hoc and sensor networks, IEEE Communications Surveys and Tutorials 7
(2005) 2–28.

[3] O. Kachirski, R. Guha, Effective intrusion detection using multiple sensors in wireless ad hoc networks, in: Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS’03), Track 2, vol. 2, IEEE Computer Society, 2003, pp. 1–8.

[4] E. Ahmed, K. Samad, W. Mahmood, Cluster-based intrusion detection architecture for mobile ad hoc networks, in: Asia Pacific Information Technology
Security Conference, AUSCERT2006, Australia, 2006, pp. 1–11.

[5] L. Bononi, C. Tacconi, Intrusion detection for secure clustering and routing in mobile multi-hop wireless networks, International Journal of Information
Security 6 (6) (2007) 379–392, http://dx.doi.org/10.1007/s10207-007-0035-9.

[6] A. Nadeem, M. Howarth, Protection of manets from a range of attacks using an intrusion detection and prevention system, Mobile Computing tech-
nologies of Telecommunication System Journal (2011) 1–12.

[7] S. Marti, T.J. Giuli, K. Lai, M. Baker, Mitigating routing misbehavior in mobile ad hoc networks, in: The 6th ICMCN, 2000, pp. 255–265.
[8] D.B. Johnson, D.A. Maltz, J. Broch, DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks, Addison–Wesley, 2001.
[9] Y. Zhang, W. Lee, Y. Huang, Intrusion detection techniques for mobile wireless networks, Wireless Networks 9 (5) (2003).

[10] B. Sun, K. Wu, U. Pooch, Alert aggregation in mobile ad hoc networks, in: ACM Workshop on Wireless Security (WiSe), 2003, pp. 69–78.
[11] X. Zeng, R. Bagrodia, M. Gerla, GloMoSim: a library for parallel simulation of large-scale wireless networks, in: The 12th Workshop on Parallel and

Distributed Simulations, Banff, Canada, 1998, pp. 154–161.
[12] S.A. Razak, S.M. Furnell, Friend-assisted intrusion detection and response mechanisms for mobile ad hoc networks, Ad Hoc Networks 6 (7) (2008)

1151–1167.
[13] D. Sterne, G. Lawler, A dynamic intrusion detection hierarchy for manets, in: Sarnoff Symposium, 2009, IEEE, 2009, pp. 1–8.
[14] A. Rajaram, S. Palaniswami, Malicious node detection system for mobile ad hoc networks, IJCSIT International Journal of Computer Science and Infor-

mation Technologies 2 (1) (2010) 77–85.
[15] S. Mutlu, G. Yilmaz, A distributed cooperative trust based intrusion detection framework for manets, in: The Seventh International Conference on

Networking and Services, Venice, Italy, 2011, pp. 292–298.

Author's personal copy

570 P.M. Mafra et al. / Journal of Computer and System Sciences 80 (2014) 554–570

[16] M.-Y. Su, Prevention of selective black hole attacks on mobile ad hoc networks through intrusion detection systems, Computer Communications 34 (1)
(2011) 107–117.

[17] K. Sharma, N. Khandelwal, S.K. Singh, New proposed classic cluster layer architecture for mobile adhoc network (cclam), International Journal of
Computer Science and Security 6 (2012) 94–102.

[18] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade, C. Ko, R. Balupari, C. Tseng, T. Bowen, K. Levitt, J. Rowe, A general cooperative intrusion
detection architecture for manets, in: Proceedings of the 3rd IEEE IWIA, 2005, pp. 57–70.

[19] P.M. Mafra, V. Moll, J.S. Fraga, A.O. Santin, Octopus-IIDS: An anomaly based intelligent intrusion detection system, in: ISCC, Italy, 2010, pp. 405–410.
[20] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, Journal of the ACM 43 (2) (1996) 225–267.
[21] V. Shoup, Practical threshold signatures, in: B. Preneel (Ed.), Advances in Cryptology – EUROCRYPT 2000, in: Lecture Notes in Computer Science,

vol. 1807, Springer, 2000, pp. 207–220.
[22] T.M. Wong, C. Wang, J.M. Wing, Verifiable secret redistribution for archive systems, in: Proceedings of the 1st International IEEE Security in Storage

Workshop, 2002, pp. 94–105.
[23] V. Jacobson, Congestion avoidance and control, SIGCOMM Computer Communication Review 18 (4) (1988) 314–329, http://dx.doi.org/10.1145/

52325.52356.
[24] A. Vora, M. Nesterenko, S. Tixeuil, S. Delaët, Universe detectors for sybil defense in ad hoc wireless networks, arXiv:0805.0087.
[25] J.-H. Böse, Atomic transaction processing in mobile ad-hoc networks, Master’s thesis, Freie Universität, Berlin, 2009.

