
An IdM and Key-based Authentication Method

for providing Single Sign-On in IoT

Adriano Witkovski, Altair Santin, Vilmar Abreu, João Marynowski

Graduate Program in Computer Science

Pontifical Catholic University of Parana

Curitiba, Parana, Brazil

Abstract—Internet of Things (IoT) brings significant

challenges to authentication schemes in a scenario with several

appliances for a smart house that should be accessed by a

technician for maintenance tasks, for instance. An Identity

Management (IdM) can be applied in order to easily authenticate

a technician that intend to access the appliances from the Internet.

However, Internet context is significantly different from IoT,

demanding context adaptation to work. Thus, integrate these

contexts to allow the authentication on the Internet and provide

Single Sign-On (SSO) in IoT is a challenge. The goal is to allow a

technician to access an appliance that is not reachable from the

Internet, using IdM and without create a single compromising

point - a critical entity for security - in the gateway that link the

two contexts. The proposal interact two key-based scheme, one for

Internet and another for IoT to reach integration between both

contexts. A proof-of-concept implementation shows the proposal

is feasible and did not affect the message exchanging with up to

1024 bytes and 50 appliances.

Keywords—Internet of Things; Identity Management; Key-

based Authentication; Single Sign-On; Smart House

I. INTRODUCTION

Internet of Things (IoT) is a network with multi-interconnected
objects called "things". Things may be tags, actuators, sensors,
microprocessors and appliances, which are identifiable by a
unique network address and they have connectivity to interact
with each other, manufacturer and users. Usually, things have
resource constraints, such as low processing, memory and
communication (bandwidth and range) [1].

IoT is present in several areas such as health, transportation,
automation and residential. IoT can be present in a residential
scenario where several appliances (e.g. refrigerators and
washers) can be configured to monitor people habits or to assist
them with daily life tasks, e.g. informing a manufacturer about
an appliance malfunction. In such a case, manufacturers need to
access appliances remotely, either to repair and optimize or to
update its firmware. The obliquity and interconnection of
multiple devices make important appliances isolation, i.e., they
are not directly accessible from the Internet to prevent
unauthorized access and privacy violation. Other security
requirements need to be guaranteed in the IoT, as data secure
communication, application secure access, and Identity
Management [2, 3].

Authentication and access authorization are important
challenges for the IoT because different from the traditional

Internet components, the appliances are based on specific
purpose devices, usually with constrained resources. An Identity
Management (IdM) system provides authentication and access
authorization for Internet users [4]. However, integrating an
Internet IdM with the IoT is not trivial, due to the appliances
resource constraints and the lack of communication security
between Internet context (e.g. stack of protocols, authentication
mechanisms and exchanges, and public key infrastructure) and
IoT contexts (characterized by devices for specific purposes and
predominantly with resource constraints). Thus, integrate
authentication and access authorization from the Internet to the
IoT appliances, focusing on security and using current
technology, is a major challenge.

The authentication and access authorization approaches for
IoT typically use a single password for all appliances or an
authentication service. A single password has the advantage of
requiring fewer resources, but someone can get access to any
appliance once discovered a password, and password updating
in all appliances in not trivial task [3]. An authentication service
permits to solve the shortcomings of the single password. Some
proposals tried to integrate Internet and IoT contexts, but they
lack implementation, requires adaption in the appliances that
inviable its adoption or simplify the mechanisms in a way that
security became infective [11, 12, 13]. Furthermore, no
approach deals with end-to-end security channels and Single
Sign-On (SSO), for temporary access to various appliances from
a single authentication.

Our hypothesis is that it is possible to integrate an Internet
IdM with the IoT, considering the appliances resources
constraint, without exposes the gateway security, as single point
of compromising. For this purpose, we encrypted the data
content using a symmetric key in an end-to-end communication
between appliance and manufacturer. Additionally, to provide
per-message protection we use a secure channel communication
between appliance and gateway, and between gateway and
manufacturer.

The proposal inherits SSO from IdM, in the context of
Internet, between technician and gateway and allows a key-
based SSO for IoT, between technician and appliance. This
scheme is feasible because manufacturer’s technician and
gateway share the same authentication and access authorization
server, and appliance and manufacturer’s technician share the
same symmetric key server, the Customer Service. The

proposed scheme is based on IT standards and the prototype uses
well-known technologies for Internet and IoT integration.

The paper is organized as follows. Section 2 shows the
fundamentals for IdM and key management. Section 3 addresses
related work. Section 4 presents the proposal. Section 5 shows
prototype and evaluation and Section 6 draws conclusions.

II. FUNDAMENTS

Identity Management (IdM) aims at providing authentication
and access authorization for users in the Internet environment
[4]. It has four components: entity (users or devices), identity
(entities identifiers), Identity Provider (IdP) and Service
Provider (SP). An IdP manages the users' identities and the
authentication attributes, providing credentials for the access
authorization. A credential comprehends the entities and actions
a user is authorized to access. An SP provides services to
authorized users according to their identity and credentials. An
example of IdP is OpenID Connect [5], which allows to integrate
authentication and access authorization so that an application
does not have to manage the identities, passwords and access
authorizations of users. OpenId Connect is an identity
management system that uses the OAuth protocol [5] for the
access authorization.

An IdM system also allows deploying Single Sign-On (SSO)
service [5]. This service allows a user to authenticate once in a
period, and its authentication credentials remain valid for the
usage in various SPs. Thus, each SP validates the identity and
credentials with an IdP, preventing the user needs to enter its
identifier and password to access each service or resource.
However, an IdM is designed for Internet environment, where
the components do not have constrained resources. Thus,
integrate IdM to IoT environment remains a challenge.

The IoT stack of protocols is suitable the appliances
constrained resources. The IEEE 802.15.4 standard is used in the
physical layer due to it allows wireless communication with low
power consumption, but it has low range and low transmission
rates [6]. The IPv6 Over Low Power Wireless Personal Area
Networks (6LoWPAN) is the protocol used in the network layer
due to it applies compression and encapsulation mechanisms
and it allows receiving and sending Internet packages (IPv6)
using IEEE 802.15.4 [6]. The User Datagram Protocol (UDP) is
used in the transport layer due to the overhead of the
Transmission Control Protocol (TCP), commonly used on the
Internet.

Appliances communicate using Constrained Application
Protocol (CoAP). CoAP is based on the Representational State
Transfer (REST) architecture, where the resources controlled by
a server are identified and accessed by Uniform Resource
Identifier (URI) [7]. CoAP uses UDP in the transport layer and
it can use the Datagram Transport Layer Security (DTLS) to
provide per-message protection, including integrity and
confidentiality. CoAP integrated with DTLS is also called
CoAPs [8].

The ANSI X.9.17 [9] is a standard for manage symmetric
key encryption. The standard defines a scheme to distribute
keys, establishing three-level hierarchy between key pairs. The
highest level uses Master Key Encrypting Key (KKM), which is
distributed offline and manually between pairs. The

intermediate level uses Key Encrypting Key (KEK), which is
distributed online, during communication. The lower level uses
Key Data (KD), which is also distributed online and encrypted
the communication data. KEK and KD are periodically changed
and encrypted with KKM.

III. RELATED WORKS

Liu et al. [10] propose an authentication architecture and access
control for devices and users of IoT. In the proposal, the devices
are considered final nodes of the Internet architecture and can
communicate through global unique addresses as IPv6. For
authentication and authorization, the authors propose,
respectively, the use of OpenID and the Role-Based Access
Control (RBAC). The proposal does not address SSO issues and
also does not present results that can validate the proposal.

Thuan et al. [11] propose a user-centered identity
management, integrating IoT to Internet. The appliances access
control is performed from an external authentication mechanism
using the IoT and an identification structure. The proposal aims
to use IdM in IoT without considering security aspects.
Fremantle et al. [12] propose to control access to the appliances
through the OAuth protocol and a protocol based on message
queue for an intermediary between Iot and Internet contexts.
Battisti et al. [13] proposed a federated architecture model in the
context of Smart House. The authors propose the use of an
intermediary component between the Internet and IoT based on
Web Services and providing messaging security using WS-
Security (Web Services Security), to provide integrity and
confidentiality of messages. The proposals [11, 12, 13] do not
consider end-to-end security interaction between IoT and
Internet, secure channels and neither SSO.

Cirani et al. [14], present an architecture for an external
authorization service based on the OAuth, called IoT-OAS. The
proposal addresses the integration of IoT with an Internet
authorization scheme using a secure communication channel
between the peers. However, the work does not have the end-to-
end security integration between Internet and IoT, allowing the
intermediary to be a single point of security compromising.
Moreover, it does not addresses SSO.

Chibelushi et al. [15] proposed an IdM system for IoT
considering health context. However, the proposal focuses on
using Mobile Ad Hoc Networks (MANETs) and does not
provide secure communication, exposing all devices directly to
the Internet.

Other proposals aim to provide authentication in different
ways. Hummen et al. [16] present authentication checking
certificates, using DTLS, aiming performance and to reduce
communication overhead. However, the proposal does not
consider the SSO. Li et al [17] propose the use of the
Lightweight Directory Access Protocol (LDAP) and Kerberos
to provide authentication and SSO in IoT. However, the
proposal does not consider a gateway to adapt the Internet
context to IoT. Yao et al. [18] present a lightweight mechanism
for multicast authentication for a small scale IoT, but they did
not address SSO.

Although several works proposed to use an IdM in IoT and
other authentication and access authorization schemes, several
issues remain open, as feasible scheme to integrated both

context. Some proposals do not consider security aspects, such
as secure communication channels, use of IoT protocol stack
and symmetric keys encryption. Other proposals aim to integrate
Internet and IoT contexts, but do not consider end-to-end
security integration, allowing single points for security
compromising, e.g. exploiting a vulnerability to intercept and
manipulate messages. Many proposals do not applies SSO and
many did not show experimental results, hindering their viability
evaluation.

IV. PROPOSAL

In this section, we present a key-based authentication and access
authorization scheme for end-to-end security in IoT. Our
approach securely integrates an IdM with IoT, considering the
appliances resource constraints and providing SSO. The
gateway between Internet and IoT is not characterized as critical
from security viewpoint, because communication occurs
encrypted symmetrically, between the end parties, preventing
the interception and manipulation of message contents. In the
following sections, we present the proposed scheme in more
details, starting with the architecture overview, and after the
messages exchange between proposal components.

A. Overview

The proposal involves six components (Figure 1): Appliance,
Customer Service, Gateway, Appliance Technician,
Authentication Server, and Access Authorization Server.
Appliance (App) is a "thing" of the IoT used in a smart house,
for instance, which has limited resources and without direct
access to the Internet. We aim at preserving privacy and
unauthorized App access by making it inaccessible directly from
the Internet. App has an identifier attribute (e.g. serial number)
and a symmetric key, provided by the manufacturer during its
assembly line production. The symmetric key and serial number
are stored in Customer Service. The Customer Service (CS) is a
service provided (SP) by the manufacturer that performs the
communication interface between App and a technician, to
response the requested demands, such as product (App)
activation, monitoring, maintenance and firmware upgrade. The
Gateway (GW) is the element responsible for linking Internet to
IoT, enabling the messages exchange between App and CS.

Appliance Technician

P
u

b
li

c-
k

e
y

E
n

cr
yp

ti
o

n

P
u

b
li

c-
k

e
y

E
n

cr
yp

ti
o

n

Secret-key EncryptionCustomer Service

Master-keyAppliance
A
B
C

Secret-key EncryptionPublic-key Encryption Gateway

Appliance

Appliance

Appliance

Master-key

Authentication
Server

Access
Authorization Server

 IdM
SSO

Figure 1. Overview of IdM and key-based authentication scheme to provide

SSO in IoT.

Appliance Technician (AppTec) is a system operated by a
manufacturer technician to respond consumer demands and App
after-sales needs. AppTec does not have direct access to the

App, it uses CS as bridging element for that. Authentication
Server (AS) and Access Authorization Server (AAS) compose
an IdP. AS provides authentication service that validates
AppTec credentials and provides SSO for the scheme. AAS is
an access authorization service that provides tokens for an
authenticated AppTec to access CS and several GW. Therefore,
GW is accessed securely, mitigating the attacks possibilities,
because if an entity is not authenticated and authorized it cannot
access the GW, once entities must be previously registered in
AAS to reach GW.

We use two key-based encryption level to provide end-to-
end security communication between CS and App. In the first
level, CS and App use a secret-key encryption based on a
symmetric master key (KKM) to distribute the session key
(KEK), used also as KD, due to its short usage lifetime. In the
second level, CS, AppTec, GW, AS and AAS use public-key
encryption, and GW and App use secret-key encryption to
protect the transmitted data, including KEK, per message. CS
and App share KKM that is manually stored into CS system and
App firmware, following the ANSI X.9.17 standardization.
KKM is linked to the App serial number in the CS, made in the
appliance production process, as said before. Messages
exchanged between CS and App are encrypted by KKM, not
allowing any intermediate access to the message content, in this
case, transporting the session key (KEK). Same protection is
obtained after, when KEK encrypts the message data. We
assume that KKM is immutable; however, it could be easily
updated in the CS and App, if need, without affecting the
proposed scheme and technician work.

Our proposal presents substantial protection from IdM in the
Internet context by using an asymmetric key, protecting the
messages exchanged between CS, AppTec, and GW. In the IoT
context, we use a symmetric key to encrypt message data
because it is appropriate to the limited resources of appliances,
although it provides an additional per-message protection, using
DTLS.

B. Message Flow

We consider two possible end-to-end communications between
App and CS, one started by App and responded by a technician,
and another started by AppTec and responded by an App. The
communication initiated by App implies a service request to CS,
e.g. an appliance activation or maintenance task request. The
communication initiated by AppTec implies a service requested
previously by an App or a required intervention, e.g. a firmware
update.

Figure 2 shows a sequence diagram of an end-to-end
communication initiated by App. In general, the sequence of the
messages is the same for any request. A Subject requests to the
App a service provided by CS (event 1), supplying a request
content (requestValue). App generates and uses a KEK to
encrypt the content of messages exchanged during the request
lifetime. App also uses KKM to encrypt such KEK and a nonce
(e.g. a current timestamp). Then, App sends the encrypted value
(encryptedValue) to the GW together with its serial number
(serialNumber) and the CS address (costumerURL). GW
translates the IoT message to the Internet and forwards the
message to the CS (event 1.1.1).

CS retrieves the App KKM from the serial number present
in the message and decrypts the data (encryptedValue). CS
validates the App KEK, using the nonce to avoid replay attack.
CS stores the App KEK and uses it to encrypt and decrypt future
App messages for same session. CS replies to App the session
key index (a numeric value that identifies the stored KEK) and
a replay nonce (nonce + 1). The nonce is used to guarantee the
CS authenticity, ensuring that only KKM holder can decrypted
and reencrypted a message containing the replay nonce. GW
receives the reply and maps the KEK index with the App
address. Then, GW parses the Internet message to an IoT
message and forwards the message to the App.

App receives message encrypted with KEK, decrypts the
message, and validates reply nonce, through its value. App
encrypts the request with a new nonce and forwards to the GW
(event 1.2), supplying the session key index which will be used
to communicate to CS. CS retrieves the session key based on the
session key index, decrypts and stores the request to be replied
asynchronously by a technician. CS returns the session key
index and the reply nonce. App receives, validates the reply
nonce, and informs the Subject a status of the request.

Figure 3 shows a sequence diagram that represents the
authentication and access authorization process for a technician
to access the AppTec. A technician requests access to AppTec
(event 1) and is redirected to AS with its requested credentials
(event 2). AS validates the technician credentials and replies a
code (with a short valid time) to be used to request an access
token to AAS (event 3.1). AAS returns a token to be used by the
Technician to respond an App request.

Figure 3. Authentication and access authorization for a technician.

After being authenticated and authorized, the technician has
access, using AppTec, to the data request (sent previously by an
App). AppTec allows retrieving KEK and its index and decrypts
the request, processes it and forwards the encrypted response to

the GW. GW receives the end-to-end encrypted response along
with an access token, which after being validated, allows GW to
parse the message and forward the encrypted response to the
App. App receives the encrypted response and get KEK based
on its index, decrypts the response, and processes it.

The second type of communication, initiated by a technician,
is applicable when she/he wants to collect information or
perform a maintenance task, e.g. an App firmware upgrade. This
communication follows the Call Back procedure (Figure 4).
Assuming an authenticated and authorized technician, as shown
in Figure 3, she/he uses AppTec to request to CS some App data
(event 1.0), supplying a token and a serial number
(serialNumber). CS validates the token (event 1.1) and answers
App data, including the GW address (gatewayAddress)
associated to the App. AppTec requests to GW of an App to start
a communication with it (event 2.0). GW validates the access
token (event 2.1) and notifies the App (event 2.2). App will start
a session following the communication steps mentioned in
Figure 3.

V. PROTOTYPE

In this section, we present a prototype that implements the
authentication scheme based on IdM and the proposed access
authorization. The prototype uses IT standard, well-known
technologies and open-source coding libraries.

A. Implementation

The Manufactor Domain consists of two components, AppTec
and CS. AppTec was implemented using the framework Vaadin
[19], taking advantage of a rich and interactive user experience
besides support for smartphone. CS was implemented as a
RESTful web service using the JAX-RS API [20].

The Customer Domain consists of one GW and several
Apps. The GW interfaces with Internet context were deployed
through an HTTP server implemented in Java. IoT interfaces
were deployed through a CoAP server implemented using the
Californium library [21]. Thus, GW is able to parse messages
between HTTP and CoAP protocols and vice-versa.

The App was implemented in Java, also based on
Californium project, and can be executed on ContikiOS
(Operating System for IoT) [22]. We use AES 128-bit algorithm
to perform encryption used for KKM and KEK. Scandium, a
subproject of Californium, is used to make communication
between App and GW, since it supports DTLS version 1.2.

Figure 2. Message flow for a request initiated by an Appliance.

The Authentication Server (AS) was implemented following
the OpenID Connect specification, using the Nimbus library
[23] - a java library that besides implementing OpenID Connect
implements the OAuth 2.0 specification. Nimbus provides IdM
for AppTec, CS and GW, and ensures that only authenticated
and authorized users access App. The Access Authorization
Server (AAS) was implemented following the OAuth 2.0
specification and Nimbus, in order to issue access tokens for an
authenticated AppTec to access the CS and several GWs.

In the network level, we assume that IPv6 address do not
change, but could be dynamically updated without affecting the
proposed scheme. In the IoT context, we used software control
to reduce the bandwidth allowing the use of 6LoWPAN on IEEE
802.15.4.

Figure 5 shows the prototype architecture highlighting
secure communication between components and the used
protocol stack. From the Internet viewpoint, communication is
made using HTTPS and from IoT using CoAPs.

H
T

T
P

S

Customer Domain

Customer Domain

Customer DomainH
T

T
P

S

Internet Internet of Things

Gateway

HTTP-CoAP
Parser

TLS

Ethernet

IPv6

HTTP

DTLS

802.15.4

6LowPAN

CoAP

Manufactor Domain
Appliance

Appliance

Appliance

DTLS

802.15.4

6LowPAN

CoAP

CoAPs

Customer
Service

TLS

Ethernet

IPv6

HTTP

Appliance
Technician

TLS

Ethernet

IPv6

HTTP

HTTPS HTTPS

OpenID Connect

H
T

T
P

S

HTTPS

Figure 5. Prototype architecture.

B. Evaluation

The evaluation was performed using two machines in a local
network to get a controlled environment and to avoid interfering
with time measurements. One machine hosts OpenID Connect
server, CS, AppTec and GW, and another machine hosts Apps
instances. Each machine, Intel i7, has eight cores, 16 GB
memory, 1 TB disk, and ran Ubuntu 14.04.2 LTS, Java 1.7.0_75
64 bits. In the Apps machine, we reduced the bandwidth to 40
Kbps in the frequency of 915 MHz, in order to mimic more
accurately an App communication, following the 6LoWPAN
protocol specification.

The tests are intended to measure the impact of the end-to-
end authentication scheme taking into account three issues: (i)
the impact of request size in the response time; (ii) the impact of
Apps number in the response time; and (iii) the impact of CoAPs
in the communication between GW and Apps.

In the tests, we used message sizes vary from 32 bytes to
4096 bytes and the appliances number from 10 to 50, which
represents a feasible value in the Smart House context using
CoAP and CoAPs.

Figure 6 shows that for the message size from 32 to 1024
bytes, using CoAPs, the response time stays below 1500 ms per
request. This observation indicates the proposal works very
well, with a nearly constant overhead, even for a large number
of 30 or 50 Apps. However, we noted an increased overhead to
be raised for messages that have over 1024 bytes, reaching a
response time of 1600 ms, when using messages of 2048 bytes.
Additionally, messages of 4096 bytes have a response time
approximately of 2000 ms per request, but still adequate for the
Apps number.

Figure 6. Prototype Evaluation

We also could observe that using CoAP or CoAPs with
message size greater than 1024 bytes, the response time
increased more for 10 Apps than for 30 or 50 Apps. This result
suggests that SSO provides some time advantage when the
number of Apps increases over than 10.

We conclude that GW has a good performance when
considering a realistic number of App. Furthermore, the results
show the seamless integration between the two contexts, without
major impact to IoT. Meaning, there is no significant difference
between the response time from 10 to 50 Apps, about 7% to
CoAPs and 6% to CoAP.

Figura 4. Sequence diagram for Call Back procedure.

Considering the size of requests, we can observe that there
was an overhead for messages greater than 1024 bytes.
However, since it was used symmetric key, suitable for IoT,
COAP or COAPs, the proposal did not affect importantly the
response time, showing its feasibility in real world applications.

VI. CONCLUSION

We presented an authentication method integrating IdM from
Internet context to IoT for provide it with SSO. The link between
the two contexts is provided by a gateway that cannot access
message contents, but acts parsing the context from IoT and
Internet, and vice-versa.

We were concerned about a single point of compromising
from the security perspective, the gateway. Therefore, we used
symmetric key, suitable for IoT to protect messages end-to-end,
from appliances to Customer Service. The Technician
authentication in the gateway, aims to mitigate the possible
attacks coming from Internet. Thus, the gateway provides an
appliance isolation from Internet, preventing attacks to IoT
devices, less powerful in terms of resources to protect
themselves.

The way SSO is provided in the proposal, we can say
“encapsulated in IdM”, is suitable to IoT, without requiring from
IoT appliance an extra effort to interact with an Internet server
as proposed in the literature. Furthermore, technician can access
multiple Appliances from a single authentication, not requesting
to know a different password for each appliance nor to use the
same password on all appliances - practice that submit the
appliances to risk, if password is discovered.

The additional protection provided by per-message
mechanism improves qualitatively the method, while it adapts
to each context. Moreover, it makes hardly the content violation,
since the more sensible parts of message content is protected
also by an end-to-end asymmetric key.

The proposed scheme was based on IT standards and with a
prototype that uses consolidated technologies for Internet and
IoT context.

We show the feasibility of our approach analyzing its
response time, varying the number of appliances and the size of
messages. The proposed approach presented no significant
overhead for response time from 10 to 50 appliances and from
32 to 1024 bytes per message. Moreover, the overall response
time stays below 1500 ms per request, an acceptable overhead,
taking into account it is been provided a key-based IdM for end-
to-end security in IoT.

As future work, we will test the proposal with ContikiOS and
consider other measures, such as energy consumption.

ACKNOWLEDGMENTS

This work was partially sponsored by the Brazilian National
Council for Scientific and Technological Development (CNPq),
grants 310671/2012-4 and 404963/2013-7. João Marynowski
wishes to thanks the Coordination for the Improvement of
Higher Level Personnel (CAPES) for the scholarship granting.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Comput. Networks, vol. 54, no. 15, 2010, pp. 2787–2805,

[2] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad, “Proposed
security model and threat taxonomy for the Internet of Things (IoT),” in
Proc. of the CCIS - Communications in Computer and Information
Science, 2010, pp. 420–429.

[3] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
2012, pp. 1497–1516.

[4] A. Belapurkar, A. Chakrabarti, H. Ponnapalli, N. Varadarajan, S.
Padmanabhuni, and S. Sundarrajan, “Distributed Systems Security:
Issues, Processes and Solutions”, John Wiley & Sons, 2009.

[5] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,
“OpenID Connect Core 1.0,”. [Online]. Available:
http://openid.net/specs/openid-connect-core-1_0.html.

[6] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview,
Assumptions, Problem Statement, and Goals,” RFC4919.

[7] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), IETF RFC 7252.

[8] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2.”, IETF RFC 6347.

[9] ANSI, “X9 Encryption Collection”. [Online]. Available:
http://webstore.ansi.org/RecordDetail.aspx?sku=X9+Encryption+Collec
tion

[10] J. Liu, Y. Xiao, and C. L. P. Chen, “Authentication and Access Control
in the Internet of Things,” in Proc. of the ICDCSW - Intl. Conf. on
Distributed Computing Systems Workshops, 2012, pp. 588–592.

[11] D. Van Thuan, P. Butkus, and D. Van Thanh, “A user centric identity
management for Internet of things,” in Proc. of the ICITCS - IT
Convergence and Security, 2014, pp. 1–4.

[12] P. Fremantle, B. Aziz, J. Kopecky, and P. Scott, “Federated Identity and
Access Management for the Internet of Things,” in Proc. of the Int.
Workshop on Secure Internet of Things, 2014, pp. 10–17.

[13] M. Leo, F. Battisti, M. Carli, and A. Neri, “A federated architecture
approach for Internet of Things security,” in Proc. of the EMTC - Euro
Med Telco, 2014, pp. 1–5.

[14] S. Cirani, M. Picone, P. Gonizzi, L. Veltri, G. Ferrari, and S. Member,
“IoT-OAS: An OAuth-Based Authorization Service Architecture for
Secure Services in IoT Scenarios,” IEEE Sens. J., vol. 15, no. 2, pp. 1224–
1234, 2015.

[15] C. Chibelushi, A. Eardley, and A. Arabo, “Identity Management in the
Internet of Things : the Role of MANETs for Healthcare Applications,”
Comput. Sci. Inf. Technol., vol. 1, no. 2, pp. 73–81, 2013.

[16] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle,
“Towards viable certificate-based authentication for the internet of
things,” in Proc. of the HotWiSec - Hot topics on Wireless network
Security and privacy, 2013, p. 37.

[17] N. Li, Q. Wang, and Z. Deng, “Authentication framework of IIEDNS
based on LDAP & Kerberos,” in Proc. of the IC-BNMT - Int. Conf. on
Broadband Network and Multimedia Technology, 2010, pp. 695–699.

[18] X. Yao, X. Han, X. Du, and X. Zhou, “A lightweight multicast
authentication mechanism for small scale IoT applications,” IEEE Sens.
J., vol. 13, no. 10, 2013, pp. 3693–3701.

[19] Vaadin, “OpenID Integration.” [Online]. Available:
https://vaadin.com/directory#!addon/openid-integration.

[20] “Java API for RESTful Services.” [Online]. Available: https://jax-rs-
spec.java.net/.

[21] Eclipse Foundation, “Californium.” [Online]. Available:
https://www.eclipse.org/californium/.

[22] “The Contiki Operating System.” [Online]. Available: http://contiki-
os.org/.

[23] “Nimbus OAuth 2.0 SDK with OpenID Connect extensions.” [Online].
Available: http://connect2id.com/products/nimbus-oauth-openid-
connect-sdk.

