
An Approach to Deal with Processing Surges in Cloud Computing

Darlan Segalin, Altair Olivo Santin, João Eugenio
Marynowski

Graduate Program in Computer Science
Pontifical Catholic University of Parana

Curitiba, Brazil
{darlan.segalin, santin, jeugenio}@ppgia.pucpr.br

Liandro Segalin
Computer Science Department

Federal University of South
Border

Chapeco, Brazil
liandrose@hotmail.com

Carlos Maziero
Computer Science Department

Federal Technological University of
Parana

Curitiba, Brazil
maziero@dainf.ct.utfpr.edu.br

Abstract—Processing surges are fast and unexpected
changes in the processing demand that commonly occur
in cloud computing. The cloud elasticity enables to
handle processing surges, increasing and decreasing
resources as required. However, a surge can be very fast,
so that the overhead to provide more resource is greater
than the processing benefit. On the other hand, if the
surge is slow and continuous, and the required resources
are not provided, the application performance may be
impaired or interrupted. This paper presents a machine
learning-based approach to detect and classify
processing surges, in order to improve the cloud
resource management, minimizing losses for the
application and cloud provider. We use a real cloud
dataset to select features, to construct the classifier and
to test our approach, which successfully detected and
classified 99% of the processing surges.

Keywords—Processing Surge; Spike and Flash Crowds;
Pattern Recognition; Support Vector Machine

I. INTRODUCTION

Cloud computing has been changing the way people use
computers as well as the way services are provided. Cloud
computing aims at using computational resources in any
place, regardless the hardware infrastructure, using the
Internet as a communication medium. Cloud computing
dynamically provides resources following each client
demand [1].

The resource dynamic provisioning typically involves:
(i) to build a processing model for prospecting the required
resources for each particular demand; (ii) periodically, to use
the performance model to detect and to classify processing
demands, and (iii) to automate the allocation of the required
resources for each demand.

The processing model can be built using several
techniques, including queueing theory [2], control theory [3]
and statistical machine learning [4]. However, up to now
remains an open issue detecting and classifying processing
surges.

A processing surge can be classified as a spike when it
waste less time to process a demand than to provide more
resources.

A processing surge can be classified as a flash crowd
when it demands an intense, continuous, and lasting usage of
processing resource.

Since an effective resource demand is usually not known
in advance, it becomes necessary to detect as early as
possible whether a processing surge is a spike or a flash
crowd. If the surge is a flash crowd and new resources are
not allocated, the application performance may be impaired
or even interrupted. On the other hand, if additional
resources are allocated but the surge is a spike, resources and
their costs are wasted.

A new resources allocation within the same physical
server is often relatively cheap, and the dynamic resources
allocation can be made even the surge is a spike. However,
with a significant demand for dynamic allocations, the
resource allocation must be made in another physical server
or even in another cloud provider, and its viability can be
only justified when the surge is a flash crowd.

The hypothesis of this work is that it is possible to detect
and classify a processing surge as spike and flash crowd. We
aim at appropriately serving each surge, without impairing
the application processing or wasting resources. Moreover,
the literature does not address this issue on cloud computing
environment.

In this paper, we present an approach to detect and
classify processing surges in cloud computing, in order to
enhance the system overall performance and to optimize the
dynamic allocation of resources. The approach is based on
machine learning and uses SVM (Support Vector Machine)
to analyze a processing workload for evaluating a surge as a
spike or flash crowd.

Initially, during the detection phase and for non-
impairing the application, we adopt a local strategy of
dynamic allocation, assuming that local resources are enough
to meet a spike demand. When the surge is identified as a
flash crowd, resources are re-allocated to dynamically meet
such processing demand.

The remainder of the paper was organized in the
following way. Section II briefly reviews some aspects of
machine learning. Section III discusses related work. Section
IV presents our proposal and obtained results. Section V
brings final considerations.

II. MACHINE LEARNING

A basic principle applied in machine learning is to learn
from a set of examples (feature vectors that are labeled as a
class). The learning based on this principle can be: (i)
supervised – when an expert provides examples for each
class, and (ii) unsupervised – when a technique identifies
patterns or trends from an example set, clusters it and assigns
them to a class [5].

A feature is a characteristic of the problem that
differentiates a set of examples from other. The relevance of
each feature under analysis is essential to apply machine
learning. The selection of relevant features also can be made
by an expert or through automated techniques for this
purpose.

Figure 1 shows the vector labeling process, which
consists of the input examples (dataset), the labeled vector (a
set of features or attributes that are assigned to a class), and
the classifier, a machine learning algorithm.

Figure 1. The vector labeling process for machine learning classification.

Adapted from [6].

Labeled vectors are used in a training phase (employed to
learn from input vectors) to build a model. After tested and
validated, the model provides an accuracy, i.e., a success rate
estimation for the model to correctly identify a class. The
classification phase uses the model and a classifier algorithm
to assign a class for input data.

The SVM (Support Vector Machine) classifier is an
algorithm based on statistical learning [6]. SVM has been
widely and successfully used in various areas of knowledge,
including resource allocation in cloud computing for input
data classification [7].

III. RELATED WORK

In the follow, we briefly consider the works of literature
that proposes a way to circumvent allocation or relocation
problem, in order to deal with the resource management
difficulties.

Lagar et al. [8] address elasticity and resource
management in cloud computing. They present an approach
to clone a dozen of Virtual Machines (VMs) in less than one
second, without specialized hardware and using a simple API
programming interface. Bryan et al. [9] also address this
issue, and they propose the cloud micro-elasticity. VM
clones are instantaneous made based on “state coloring”,
enabling to analyze the VMs and identify similarity regions,
and making easier the cloning process. Gulati et al. [10]
address the load balancing issue and present some central

challenges in developing cloud-computing scalability. The
approaches [8, 9, 10] tray to reduce the negative impacts of
allocation or relocation (copy of a VM in a new
environment). However, they did not avoid the resource
allocation if not need.

Eun-kyu et al. [11] offer a strategy to estimate the
resource usage trough an algorithm to control workflows
using the cloud elasticity. The algorithm determines the
execution capacity of a workflow with a minimal resource
and maximal capacity utilization to minimize costs of
resource allocations and to meet deadlines. Bodik et al. [4]
estimate the resource usage by a model and techniques of
analysis based on Statistical Learning Machine (SLM). They
aimed to solve problems of unrealistic performance models
obtained by linear models and queueing theory. The
proposals [4, 11] try to model or estimate resource demand,
but they aim at performance instead of optimizing the
resource allocation.

Liang et al. [13] report that most websites that become
popular without expecting such popularity suffer from flash
crowds. They use metrics to monitor the external usage of
resources from such websites to thereby predict web traffic
surges. Bodik et al. [12] use the changes in the network data
volumes and objects individual popularities to predict surges.
Both approaches [12, 13] characterize spike and flash crowds
creating models and simulations for web services, but they
consider and deal with only web traffic.

In summary, the literature efforts are made to decrease
the impact of spikes and flash crowds in the system
performance, also seeking to estimate the resource usage or
trying to manage its impact. However, only web traffic is
considered to deal with spike and flash crowd surges. None
of the presented proposals analyze different features of
processing and memory usage in an attempt to differentiate,
in runtime, the processing surges (spikes and flash crowd).

IV. PROPOSAL

We propose a strategy to deal with processing surges in
cloud computing and the use of an SVM classifier to identify
spike and flash crowd surges. The dynamic resource
allocation of our proposal follows the strategy of allocating
new resources on local VMs, classifying a processing surge,
and evaluating whether is necessary to migrate the VMs to a
remote domain/infrastructure for attending the demand.
Figure 2 depicts our proposal scheme.

Our allocation strategy is based on the fact of a small
time is spent to instantiate a VM into the same physical
machine (host), given a shared storage (resources for user
data or system storage).

The process to identify a surge starts with collecting a
features set, which is evaluated by a machine learning
technique to classify the surge as a spike or flash crowd. If
the surge is a spike, nothing is done because probably the
surge already is over, and additional resources are no longer
required. If the surge is a flash crowd, the VM is migrated to

another machine, which has resources to serve a more
intense and lasting workload. This strategy was adopted due
to the cost to migrate a VM to a remote host (via network),
which may be within a private or public cloud (e.g. Amazon
and Azure).

Figure 2. Overview of the proposal allocation scheme.

One of the main difficulties for differentiating processing
surges is to characterize them as spike or flash crowd since
both consume the entire CPU resources. Although their surge
lengths are different, it is hard to find, at runtime, the
threshold feature values that are able to distinguish a spike
from a flash crowd. Section A presents a set of features used
to analyze and to define a threshold. We collected features
from a Brazilian data center that offers infrastructure as a
service in cloud computing for customers around South
America. The collected data represents average values
observed in a single VM of the cloud environment, using the
VMware hypervisor.

A. Feature Selection

We selected features from a workload produced in a
controlled environment and using actual processing
demands. We obtained the measured values considering the
tested environment in various situations.

Initially, we considered thirty-eight features, but, after
several manual analyzes, we removed some features because
they remained constant along the time, hindering the
classification. Table I shows the remaining twenty-three
features and a brief description of each one.

TABLE I. MEMORY AND CPU FEATURES MANUALLY SELECTED.

Collected Metric Name Description and Features Enumeration

CpuSystemTotalLoad CPU System – Total Load (1)

CpuSystemLoad CPU System – System Load (2)

CpuSystemLoadAvg CPU System – Average Load (3)

CpuSystemUserLoad CPU System – User Load (4)

CpuSystemWaiting CPU System – Wait Load (5)

CpuPagesIn CPU System – Pages Reads (6)

Collected Metric Name Description and Features Enumeration

CpuInterruptTotal CPU System – Total Interruptions (7)

CpuContextSwitch CPU System – Switch of Context (8)

CpuCore01TotalLoad CPU Core 01 – Total Load (9)

CpuCore01SystemLoad CPU Core 01 – System Load (10)

CpuCore01UserLoad CPU Core 01 – User Load (11)

CpuCore02TotalLoad CPU Core 02 – Total Load (12)

CpuCore2SystemLoad CPU Core 02 – System Load (13)

CpuCore02UserLoad CPU Core 02 – User Load (14)

MemPhyUsed Physical Memory Used (15)

MemPhyApplication Physical Memory Used Application (16)

MemPhyCached Physical Memory Used Cache (17)

MemPhyBuff Physical Memory Used Buffer (18)

MemSwapUsed Physical Memory Used Cache (19)

DiskChangeTotalAcc Disk Access Total (20)

DiskRateTotalAcc Disk Rate Total Access (21)

DiskRateReadAcc Disk Rate Read Access (22)

DiskRateWriteAcc Disk Rate Write Access (23)

We used System Monitor or System Guard [14] to collect

23 features of local VMs, storing them in text files. We
collected the features records every one-second and for
around 13.33 minutes – enough time to observe the
occurrence of processing surges like spikes and flash crowds.
We generated 800 records for each workload.

Figure 3 depicts a log fragment generated by the System
Monitor for the System CPU total load feature
(CpuSystemTotalLoad, Table I).

Mar 22 11:27:35 localhost cpu/system/TotalLoad: 100
Mar 22 11:27:36 localhost cpu/system/TotalLoad: 32.5
Mar 22 11:27:37 localhost cpu/system/TotalLoad: 21.0526
Mar 22 11:27:38 localhost cpu/system/TotalLoad: 28.2051
Mar 22 11:27:39 localhost cpu/system/TotalLoad: 23.0769
Mar 22 11:27:40 localhost cpu/system/TotalLoad: 28.2051

Mar 22 11:27:41 localhost cpu/system/TotalLoad: 22.5

Figure 3. Log fragment for the CpuSystemTotalLoad feature.

B. Data Collection

We obtained a normal workload by running LAMP
(Linux, Apache, MySQL, and PHP) applications because
they are considered typical in a local cloud VMs of a
datacenter. Figure 4 presents the visualization of a typical
workload obtained in this case.

One can noticed that the average CPU load is around
40% (ranging from 20% to 60%) and does not have a

particular pattern because the user behavior for processing
demand is out of our control.

Figure 4. Normal workload.

We obtained a controlled workload by running a data
encryption standard application with a 168 bits key
encryption algorithm to consume memory and CPU. We
used a shell script program to schedule the time intervals in
which the application was executed. We developed 13 essays
(Figure 5 to Figure 17).

Initially, the interval between generated processing
surges (CPU processing below 20%) was 26 seconds, and
the processing surge (CPU processing above 80%) was 2
seconds. In the next essays, we reduced the interval by 2
seconds and increased the surge processing time by the same
2 seconds.

This procedure enabled us to create processing surges
from two seconds to twenty-six seconds. We stored the
processing results in files named as “Spike” or “Flash”
followed by a sequential number. Figure 5 to Figure 17 show
the CPU and memory usage that were obtained from the
System Monitor, in those essays.

In Figure 5, we start to control the CPU processing
demand, assigning a workload with around 2 seconds of
processing surge and around 26 seconds of the interval
between generated processing surges.

Figure 5. Spike 01 workload.

In Figure 6, the intervals were around 24 seconds
and the processing surges were around 4 seconds. In other
essays (Figure 7 to Figure 17), we continue to increase the

processing surge length and to reduce the intervals in 2
seconds.

Figure 6. Spike 02 workload.

Figure 7. Spike 03 workload.

Figure 8. Spike 04 workload.

Figure 9. Spike 05 workload.

Figure 10. Spike 06 workload.

Figure 11. Spike 07 workload.

Figure 12 shows the last workload considered by a
datacenter administration expert as a spike (Spike 08
workload). The intervals length has around 12 seconds, and
the processing surge has around 16 seconds.

Figure 12. Spike 08 workload.

Figure 13 shows the first workload considered by
datacenter expert as flash crowd. The surges considered as
flash crowd start with around 10 seconds of intervals length
and around 18 seconds of processing surges.

Figure 17 shows the last workload for flash crowd with
around 2 seconds of intervals length and around 26 seconds
of processing surges.

Figure 13. Flash 09 workload.

Figure 14. Flash 10 workload.

Figure 15. Flash 11 workload.

Figure 16. Flash 12 workload.

Figure 17. Flash 13 workload.

The information about the processing surge, given by a
datacenter administration expert – to classify the surge as a
spike or flash crowd, was used to label the feature vectors
used in the SVM training phase.

The next section presents the process to get the surge
model for the SVM classifier.

C. Applying Machine Learning

We developed a script to preprocess the System Monitor
log file, to eliminate irrelevant information and to generate
the feature vectors. Figure 18 shows an example of three
lines (from 0 to 2) of a System Monitor log file.

Each line has the assigned numbers for each feature,
from 1 to 23 (according to Table I), followed by a colon (':')
and a feature value. For example, the highlighted ‘7:
1134.22’ means that the feature ‘CPU System - Total
Interruptions (7)’ has the value 1134.22. Figure 18 shows
other examples regarding other features and processing
values.

0 1: 18.1818 2: 10 3: 1.27 4: 25.9259 5: 0 6: 0 7: 2050.62 8: 2747.1
9: 0 10: 0 11: 0 12: 81.8182 13: 0 14: 30.7692 15: 2.03603e+06 16:
1.00913e+06 17: 873676 18: 152080 19: 0 20: 0 21: 0 22: 0 23: 0

1 1: 71.0526 2: 19.5122 3: 1.58 4: 76.9231 5: 0 6: 0 7: 1134.22 8:
38481.1 9: 100 10: 0 11: 66.6667 12: 0 13: 0 14: 92.3077 15:
1.07724e+06 16: 1.2555e+06 17: 445008 18: 84136 19: 0 20: 0 21:
0 22: 0 23: 0

2 1: 100 2: 25 3: 2.19 4: 76.25 5: 0 6: 0 7: 830.044 8: 19300.6 9:
100 10: 17.3913 11: 77.7778 12: 100 13: 0 14: 0 15: 2.55831e+06
16: 1.99384e+06 17: 476340 18: 88248 19: 0 20: 0 21: 0 22: 0 23:
0

Figure 18. File fragment with feature vectors.

After we had generated the feature vectors and their
labeling (composing the dataset), we applied the SVM
method to create a classifier.

The hypothesis was that the labeling made by an expert
was correct. Moreover, the threshold of both surges (spike
and flash) was successfully identified if the training and test
set had obtained a success rate close to 100% for several
surge combinations (spike and flash).

Otherwise, the labeling should be made again, meaning
that the labeling once defined as spike could be a flash crowd

or vice-versa, or even, that both surges could have been
misunderstood with a normal demand. Therefore, the
difficulty was to choose the surge workload combinations to
test and to confirm the hypothesis, considering that it would
be hard to test all the combinations of thirteen processing
demands among themselves.

We used the k-fold cross-validation method to evaluate
the generalization ability of the surge model to classify an
independent dataset. The k-fold method divides the training
dataset into k subsets. We assumed k=3, since we have three
classes to train: normal, spike and flash crowd. Then, the
training uses three vector subsets.

Figure 19 depicts the applied cross-validation scheme,
using 3-fold. The cross-validation process consists of
repeating the tests three times. We used the average result to
estimate the parameters and to calculate the model accuracy
(success rate).

Figure 19. Applied cross-validation scheme.

All datasets were split in a proportion of 50% for the
model training and 50% for the model testing, i.e., we used
400 records in the training phase and other 400 records in the
testing phase.

Table II shows a set of tests that involves a combination
of surge processing demands and the results obtained during
the training and testing phases.

Initially, we considered the first six tests, from Test01 to
Test06, and we concluded that spike and flash crowd were
detectable and distinguishable, once the success rates were
greater than 99%.

We used Test07 to Test12 to investigate the border
between the spike and flash surges. Only Test12 presented
the accuracy rate lower than 99%. Then, we executed Test13
and Test14, and Test14 got an error.

The Spike09 workload, that contained a previously
labeled spike processing demand in Test13, was relabeled as
Flash09 because its surge of processing demand was
characterized as a flash crowd instead of a spike.

From Test01 to Test06 the processing demand was
incrementally reduced. Test01 presented a surge
characterized by extreme surges of processing demands,
combining Spike01 with Flash13. After that, in each test a

lower surge of processing demands were considered, toward
the border between spike and flash crowd surges.

TABLE II. TRAINING AND TESTING RESULTS FOR THE DATASET

DEMANDS COMBINATION.

Test
name

Demand
Cross-validation

rate: training
(%)

Accuracy
rate: test

(%)

Test01 Normal, Spike01, Flash13 100.00 100.00

Test02 Normal, Spike02, Flash12 99.92 99.92

Test03 Normal, Spike03, Flash11 99.34 99.83

Test04 Normal, Spike04, Flash10 99.92 100.00

Test05 Normal, Spike05, Flash09 100.00 100.00

Test06 Normal, Spike06, Spike08 100.00 99.33

Test07 Normal, Spike06, Spike07 100.00 100.00

Test08 Normal, Spike07, Spike08 100.00 100.00

Test09 Normal, Spike07, Flash09 100.00 100.00

Test10 Normal, Spike08, Flash09 100.00 100.00

Test11 Normal, Spike08, Flash10 100.00 99.92

Test12 Normal, Spike09, Flash10 100.00 88.67

Test13 Normal, Flash09, Flash11 100.00 99.92

Test14 Normal, Spike09, Flash12 99.75 91.83

The goal is to prove that the labeling made by the experts

are confirmed when the model was obtained in training
phase, and the success rate of the test vectors was kept high,
i.e., greater than 99%.

The results in Table II show that, in all tests, the demands
identified by the experts as spike, stored in files from
Spike01 to Spike08, are confirmed as spikes, due to the
success rates obtained.

Observe that the experts classified these vectors as
spikes, and the training model and the tests confirmed the
features vectors labeling. The model was generated from the
examples extracted from respective collection files for the
spike workload. We obtained the previously commented
confirmation with the classifier tests and success rates
greater than 99%.

In the subsequent workload after Spike08, there is a
“gray region” mainly identified in the Flash09 workload.
Based on the learning model provided by the classifier, the
processing demand tends to indicate that a spike surge may
be present in the workload that was predefined as a flash
crowd by experts. This situation will be better discussed in
Section D.

The proposal hypothesis would fail if the surge
classification did not occur with high accuracy, so a spike
would not be easily distinguishable from a flash crowd as the
literature suggests [12, 13].

In other words, labeling would be incorrect, or the
features vectors would not represent features for
characterizing spike and flash crowd surges. This issue will
be further explored in Section E.

D. Analyzing the Datasets Vectors

Based on the results reported in Section C, we mixed all
feature vectors (files) and created a single dataset with 1/3 of
the records from each workloads (normal, spike, and flash
crowd).

We executed the training with 50% of the new dataset,
running the k-fold cross-validation with k=3, and the others
50% of the new dataset we reserved for the model testing.
Table III shows the obtained results for the cross-validation
and accuracy rates, considering the new dataset, i.e., all
processing demand surges together.

TABLE III. RESULTS CONSIDERING ALL PROCESSING SURGES

TOGETHER.

Test
no.

Demands
Cross-Validation
rate: training (%)

Accuracy rate:
test (%)

Test00
Normal, Spike01-

spike08, Flash09-Flash13
98.82

98.41
(5511/5600)

The goal of this evaluation was to ensure that all

collected feature vectors correctly represent spike, flash
crowd, and normal processing demands. All previously
reported tests had considered these processing demands and
they were separately recorded in the Spike01 to Flash13
files. Then, if the result of this evaluation does not generate a
high success rate, many noises could be collected.

A noise would be wrong labeled records, which did not
represent the processing demand in a discriminant way. The
test results showed the dataset validity to represent the
problem under study. They present a low noise rate (2.18%)
in the total of collected and labeled vectors for all processing
workloads (1 normal, 8 spikes, and 5 flash crowds).

E. Feature Selection Filter

We executed feature selection to reduce the noise (the
classification imprecision) and to improve the classifier
performance. We used the 23 features presented in Section A
to apply the feature selection filter provided by Weka tool
(www.cs.waikato.ac.nz/ml/weka/).

The Weka filter uses data characteristics to evaluate and
select the features. Appling the Weka filter allows us to
reduce from 23 to 15 the number of features. Table IV shows
the discriminant features obtained after using the Weka filter.

We repeated all tests from Table II using the 15 selected
features. The results (Table V) show a little improvement
from Test01 to Test11 since the success rate were already
excellent. However, in this case, the tests were made again to
ensure that the 15 features did not negatively affect the
previous results (considering the 23 features, Table I).

TABLE IV. SELECTED FEATURES OBTAINED BY WEKA FILTER.

Collected Metric Name Description

CpuSystemTotalLoad CPU System – Total Load (1)

CpuSystemLoad CPU System – System Load (2)

CpuSystemLoadAvg CPU System – Average Load (3)

CpuSystemUserLoad CPU System – User Load (4)

CpuSystemWaiting CPU System – Wait Load (5)

CpuCore01TotalLoad CPU Core 01 – Total Load (9)

CpuCore01SystemLoad CPU Core 01 – System Load (10)

CpuCore01UserLoad CPU Core 01 – User Load (11)

CpuCore02TotalLoad CPU Core 02 – Total Load (12)

CpuCore2SystemLoad CPU Core 02 – System Load (13)

CpuCore02UserLoad CPU Core 02 – User Load (14)

MemPhyUsed Physical Memory Used (15)

MemPhyApplication Physical Memory Used Application (16)

MemPhyCached Physical Memory Used Cache (17)

MemPhyBuff Physical Memory Used Buffer (18)

The main goal was to precisely study the behavior of

Flash09 workload since the imprecision resulting from the
classification in Test12 and Test14 from Table II. Once, the
imprecise classification caused doubts about the border
between spike and flash crowd surges, defined by an expert.

The selection of features was used to reduce the doubt
related to the noise resulting from features that could be
hindering the classification since they were not discriminant
enough.

As we did not identify a problem related to the features,
since the classification results were improved, we re-
executed Test12 and Test14. Then, we considered the
examples labeled as flash crowd by the experts, and that
were relabeled as spike. The goal was to evaluate whether
the results were improved, in order to verify a mistaken
feature vector labeling hypothesis.

The results remained approximately the same, which
enabled us to conclude that the problem was not with
irrelevant features, neither about wrong labeling. Therefore,
the hypothesis failure reported in Section C was not
confirmed.

Thus, we concluded that the Flash09 workload actually
represents a border between spike and flash crowd, due to
the insignificant changes in the results of the success rate
(Table II and Table V).

Test15 represents the same test Test00 from Table III,
but considering the 15 selected features. In Test16, we took
out the vectors of the Flash09 workload from the dataset of
training and test, and we observed an increased classification
with success rate, what clearly shows that the records of
Flash09 workload mix spike and flash crowd vectors. Then,

it has been proven that Flash09 workload contains vectors
that identify the border between both processing demands.
Therefore, the hypothesis of this study has been confirmed:
spike and flash crowd are detectable and distinguishable.

TABLE V. TRAINING AND TESTING RESULTS FROM DEMANDS

COMBINATION AND REDUCED FEATURES

Test no. Demands
Cross-Validation

rate: training (%)
Accuracy rate:

test (%)

Test01 Normal, Spike01, Flash13 100.00 100.00

Test02 Normal, Spike02, Flash12 100.00 100.00

Test03 Normal, Spike03, Flash11 99.91 99.91

Test04 Normal, Spike04, Flash10 100.00 100.00

Test05 Normal, Spike05, Flash09 100.00 100.00

Test06 Normal, Spike06, Spike08 100.00 100.00

Test07 Normal, Spike06, Spike07 100.00 100.00

Test08 Normal, Spike07, Spike08 100.00 100.00

Test09 Normal, Spike07, Flash09 100.00 100.00

Test10 Normal, Spike08, Flash09 99.83 99.83

Test11 Normal, Spike08, Flash10 100.00 100.00

Test12
Normal, Spike09 (label

changed), Flash10 92.5 91.41

Test13 Normal, Flash09, Flash11 100.00 97.83

Test14
Normal, Spike09 (changed

label), Flash12 91.66 92.66

Test15
Normal, Spike01-Spike08,
Flash09, Flash10-Flash13 98.53 98.58

Test16
Normal, Spike01-Spike08,

Flash10-Flash13 99.34 99.34

The best results for the classification accuracy were

obtained after the features selection – that eliminated eight
features considered in the evaluation made through manual
features selection, which improved the results obtained
previously.

An important result from this tests phase was the
confirmation that the features selection and the processing
demands labeling were precise.

After the development of this work, it was concluded that
only fifteen features, which refer to the CPU usage and
memory, are necessary to differentiate spike (from Spike01
to Spike08 workloads) from flash crowd (from Flash10 to
Flash13 workloads).

The processing demand collected in Flash09 is not
conclusive and, therefore, should not be considered in the
characterization of any processing surge. Thus, we consider
the values of the Flash09 workload as the border between
both kinds of processing surges.

In summary, if a surge is a spike, a local VM is
instantiated. If the surge is a flash crowd, the VM can be
migrated to another host, maybe in a public cloud
infrastructure. This strategy minimizes the costs for the cloud

provider without impairing the application performance
since the workload of VM provisioning that is unnecessary
will be minimized or eliminated.

V. CONCLUSION

This paper presented an approach to deal with processing
surges in cloud computing. We used machine learning to
detect and classify spike and flash crowd surges in
processing demands, an issue the literature has not
addressed.

Data center experts have pre-characterized spikes and
flash crowd surges, and we tuned such characterization
through a surge model obtained by applying an SVM
algorithm. The model enabled us to find a border to
distinguish processing surges.

We applied Weka feature selection filter to reduce and
improve the classifier performance and the classification
rate. The filter eliminated eight features that were taken into
account in the manual selection, improving the previous
results significantly.

We concluded that only fifteen features, which refer to
CPU and memory usage, are required to differentiate spike
from flash crowd surges. The tests phase enabled us to
confirm that the features and the labeling of demands were
precise, exempting the Flash09 workload, which is not
conclusive. Thus, a mixed vector of spike and flash crowd in
a particular demand enabled us to define the values of those
features as the border between both demands of processing
surges.

We also introduced a strategy to improve cloud
computing elasticity performance, minimizing the costs for
the cloud provider without impairing the application.

The strategy is to allocate additional resource locally and
after remotely, depending on the detected processing surge.
If a surge is a spike, it is processed in a local datacenter VM.
If the surge is a flash crowd, the VM can be migrated to
another host (maybe in a public cloud infrastructure).
Therefore, the VM migration for an unnecessary processing
surge (spike) will be minimized or eliminated.

In future studies, we are looking towards to confirm that
the use of this approach in load balancing can reduce the
overhead in other service providers.

ACKNOWLEDGEMENT

This work was partially sponsored by the Brazilian
National Council for Scientific and Technological
Development (CNPq), grants 310671/2012-4 and
404963/2013-7. Darlan Segalin thanks Eduardo Viegas for
helping with Machine Learning and the Coordination for the
Improvement of Higher Level Personnel (CAPES) for the
scholarship granting.

REFERENCES

[1] Buyya, R., Chee Shin Yeo, Venugopal, S. Market,
“Oriented Cloud Computing: Vision, Hype, and Reality
for Delivering IT Services as Computing Utilities”, in
Proc. of the HPCC, 2008.

[2] Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., and
Wood, T. “Agile dynamic provisioning of multi-tier
Internet applications”, ACM Trans. Auton. Adapt. Syst.,
vol. 3, no. 1, 2008.

[3] Kalyvianaki, E., Charalambous, T. and Hand, S., “Self-
adaptive and self-configured CPU resource provisioning
for virtualized servers using Kalman filters”, in Proc. of
the ICAC, 2009.

[4] Bodík, P., Griffith, R., Sutton, C., Fox, A., Jordan, M. and
Patterson, D., “Statistical machine learning makes
automatic control practical for Internet datacenters”, in
Proc. of the USENIX HotCloud, 2009.

[5] Bishop, C. M. “Pattern recognition and machine learning”,
New York: Springer, vol. 1, 2006.

[6] Vapnik, V. “The nature of statistical learning theory”, 2nd
ed., Springer Verlag, ISBN: 0387987800, 1999.

[7] Krieger, A. and Simon, J., “Autonomic Resource
Management with Support Vector Machines”, in Proc. of
the Lyon Conference, 2011.

[8] Lagar-Cavilla, H. A., Whitney, J., Scannel, A., Patchin, P.,
Rumble, S. M., Lara, E., Brudno, M. and Satyanarayanan,
M., “SnowFlock: Rapid Virtual Machine Cloning for
Cloud Computing”, in Proc. of the EuroSys, 2009.

[9] Bryant, R., Tumanov, A., Irzak, O., Scannell, A.,
Kaustubh, J., Hiltunen, M., Lagar-Cavilla, A., and Lara,
E., “Kaleidoscope: Cloud Micro-Elasticity via VM State
Coloring”, AT&T Labs Research, University of Toronto,
2011.

[10] Gulatti, A., Shanmuganathan, G., Ahmad, I. and Holler,
A., “Cloud Scale Resource Management: Challenges and
Techniques”, Vmware Labs, 2009.

[11] Eun-kyu, B., Yang-Suk, K., Jin-Soo, K. and Seungryoul,
M., “Cost optimized provisioning of elastic resources for
application workflows”, Korea Advanced Institute of
Science and Technology, Oracle, 2010.

[12] Bodik, P., Fox, A., Franklin, M. J., Jordan, M. I. and
Patterson, D. A., “Characterizing, Modeling, and
Generating Workload Spikes for Stateful Services”, EECS
Department, UC Berkeley, Berkeley, CA, 2010.

[13] Liang, C., Hiremagalore, S., Stavrou, A. and Rangwala,
H., “Predicting Network Response Times Using Social
Information”, Center for Secure Information Systems,
George Mason University,Technical Reports, 2007.

[14] “KDE System Monitor – ksysguard”. Available:
http://userbase.kde.org/KSysGuard

