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Abstract—Processing surges are fast and unexpected 
changes in the processing demand that commonly occur 
in cloud computing. The cloud elasticity enables to 
handle processing surges, increasing and decreasing 
resources as required. However, a surge can be very fast, 
so that the overhead to provide more resource is greater 
than the processing benefit. On the other hand, if the 
surge is slow and continuous, and the required resources 
are not provided, the application performance may be 
impaired or interrupted. This paper presents a machine 
learning-based approach to detect and classify 
processing surges, in order to improve the cloud 
resource management, minimizing losses for the 
application and cloud provider. We use a real cloud 
dataset to select features, to construct the classifier and 
to test our approach, which successfully detected and 
classified 99% of the processing surges. 

Keywords—Processing Surge; Spike and Flash Crowds; 
Pattern Recognition; Support Vector Machine 

I. INTRODUCTION 

Cloud computing has been changing the way people use 
computers as well as the way services are provided. Cloud 
computing aims at using computational resources in any 
place, regardless the hardware infrastructure, using the 
Internet as a communication medium. Cloud computing 
dynamically provides resources following each client 
demand [1].  

The resource dynamic provisioning typically involves:  
(i) to build a processing model for prospecting the required 
resources for each particular demand; (ii) periodically, to use 
the performance model to detect and to classify processing 
demands, and (iii) to automate the allocation of the required 
resources for each demand. 

The processing model can be built using several 
techniques, including queueing theory [2], control theory [3] 
and statistical machine learning [4]. However, up to now 
remains an open issue detecting and classifying processing 
surges.  

A processing surge can be classified as a spike when it 
waste less time to process a demand than to provide more 
resources.  

A processing surge can be classified as a flash crowd 
when it demands an intense, continuous, and lasting usage of 
processing resource. 

Since an effective resource demand is usually not known 
in advance, it becomes necessary to detect as early as 
possible whether a processing surge is a spike or a flash 
crowd. If the surge is a flash crowd and new resources are 
not allocated, the application performance may be impaired 
or even interrupted. On the other hand, if additional 
resources are allocated but the surge is a spike, resources and 
their costs are wasted.  

A new resources allocation within the same physical 
server is often relatively cheap, and the dynamic resources 
allocation can be made even the surge is a spike. However, 
with a significant demand for dynamic allocations, the 
resource allocation must be made in another physical server 
or even in another cloud provider, and its viability can be 
only justified when the surge is a flash crowd. 

The hypothesis of this work is that it is possible to detect 
and classify a processing surge as spike and flash crowd. We 
aim at appropriately serving each surge, without impairing 
the application processing or wasting resources. Moreover, 
the literature does not address this issue on cloud computing 
environment. 

In this paper, we present an approach to detect and 
classify processing surges in cloud computing, in order to 
enhance the system overall performance and to optimize the 
dynamic allocation of resources. The approach is based on 
machine learning and uses SVM (Support Vector Machine) 
to analyze a processing workload for evaluating a surge as a 
spike or flash crowd.  

Initially, during the detection phase and for non-
impairing the application, we adopt a local strategy of 
dynamic allocation, assuming that local resources are enough 
to meet a spike demand. When the surge is identified as a 
flash crowd, resources are re-allocated to dynamically meet 
such processing demand.  

The remainder of the paper was organized in the 
following way. Section II briefly reviews some aspects of 
machine learning. Section III discusses related work. Section 
IV presents our proposal and obtained results. Section V 
brings final considerations. 



 

 

II. MACHINE LEARNING 

A basic principle applied in machine learning is to learn 
from a set of examples (feature vectors that are labeled as a 
class). The learning based on this principle can be: (i) 
supervised – when an expert provides examples for each 
class, and (ii) unsupervised – when a technique identifies 
patterns or trends from an example set, clusters it and assigns 
them to a class [5].  

A feature is a characteristic of the problem that 
differentiates a set of examples from other. The relevance of 
each feature under analysis is essential to apply machine 
learning. The selection of relevant features also can be made 
by an expert or through automated techniques for this 
purpose. 

Figure 1 shows the vector labeling process, which 
consists of the input examples (dataset), the labeled vector (a 
set of features or attributes that are assigned to a class), and 
the classifier, a machine learning algorithm. 

 

 
Figure 1.  The vector labeling process for machine learning classification. 

Adapted from [6]. 

Labeled vectors are used in a training phase (employed to 
learn from input vectors) to build a model. After tested and 
validated, the model provides an accuracy, i.e., a success rate 
estimation for the model to correctly identify a class. The 
classification phase uses the model and a classifier algorithm 
to assign a class for input data.  

The SVM (Support Vector Machine) classifier is an 
algorithm based on statistical learning [6]. SVM has been 
widely and successfully used in various areas of knowledge, 
including resource allocation in cloud computing for input 
data classification [7]. 

III. RELATED WORK 

In the follow, we briefly consider the works of literature 
that proposes a way to circumvent allocation or relocation 
problem, in order to deal with the resource management 
difficulties. 

Lagar et al. [8] address elasticity and resource 
management in cloud computing. They present an approach 
to clone a dozen of Virtual Machines (VMs) in less than one 
second, without specialized hardware and using a simple API 
programming interface. Bryan et al. [9] also address this 
issue, and they propose the cloud micro-elasticity. VM 
clones are instantaneous made based on “state coloring”, 
enabling to analyze the VMs and identify similarity regions, 
and making easier the cloning process. Gulati et al. [10] 
address the load balancing issue and present some central 

challenges in developing cloud-computing scalability. The 
approaches [8, 9, 10] tray to reduce the negative impacts of 
allocation or relocation (copy of a VM in a new 
environment). However, they did not avoid the resource 
allocation if not need.  

Eun-kyu et al. [11] offer a strategy to estimate the 
resource usage trough an algorithm to control workflows 
using the cloud elasticity. The algorithm determines the 
execution capacity of a workflow with a minimal resource 
and maximal capacity utilization to minimize costs of 
resource allocations and to meet deadlines. Bodik et al. [4] 
estimate the resource usage by a model and techniques of 
analysis based on Statistical Learning Machine (SLM). They 
aimed to solve problems of unrealistic performance models 
obtained by linear models and queueing theory. The 
proposals [4, 11] try to model or estimate resource demand, 
but they aim at performance instead of optimizing the 
resource allocation. 

Liang et al. [13] report that most websites that become 
popular without expecting such popularity suffer from flash 
crowds. They use metrics to monitor the external usage of 
resources from such websites to thereby predict web traffic 
surges. Bodik et al. [12] use the changes in the network data 
volumes and objects individual popularities to predict surges. 
Both approaches [12, 13] characterize spike and flash crowds 
creating models and simulations for web services, but they 
consider and deal with only web traffic. 

In summary, the literature efforts are made to decrease 
the impact of spikes and flash crowds in the system 
performance, also seeking to estimate the resource usage or 
trying to manage its impact. However, only web traffic is 
considered to deal with spike and flash crowd surges. None 
of the presented proposals analyze different features of 
processing and memory usage in an attempt to differentiate, 
in runtime, the processing surges (spikes and flash crowd). 

IV. PROPOSAL  

We propose a strategy to deal with processing surges in 
cloud computing and the use of an SVM classifier to identify 
spike and flash crowd surges. The dynamic resource 
allocation of our proposal follows the strategy of allocating 
new resources on local VMs, classifying a processing surge, 
and evaluating whether is necessary to migrate the VMs to a 
remote domain/infrastructure for attending the demand. 
Figure 2 depicts our proposal scheme.  

Our allocation strategy is based on the fact of a small 
time is spent to instantiate a VM into the same physical 
machine (host), given a shared storage (resources for user 
data or system storage). 

The process to identify a surge starts with collecting a 
features set, which is evaluated by a machine learning 
technique to classify the surge as a spike or flash crowd. If 
the surge is a spike, nothing is done because probably the 
surge already is over, and additional resources are no longer 
required. If the surge is a flash crowd, the VM is migrated to 



 

 

another machine, which has resources to serve a more 
intense and lasting workload. This strategy was adopted due 
to the cost to migrate a VM to a remote host (via network), 
which may be within a private or public cloud (e.g. Amazon 
and Azure). 

 
Figure 2.  Overview of the proposal allocation scheme. 

One of the main difficulties for differentiating processing 
surges is to characterize them as spike or flash crowd since 
both consume the entire CPU resources. Although their surge 
lengths are different, it is hard to find, at runtime, the 
threshold feature values that are able to distinguish a spike 
from a flash crowd. Section A presents a set of features used 
to analyze and to define a threshold. We collected features 
from a Brazilian data center that offers infrastructure as a 
service in cloud computing for customers around South 
America. The collected data represents average values 
observed in a single VM of the cloud environment, using the 
VMware hypervisor. 

A. Feature Selection 

We selected features from a workload produced in a 
controlled environment and using actual processing 
demands. We obtained the measured values considering the 
tested environment in various situations. 

Initially, we considered thirty-eight features, but, after 
several manual analyzes, we removed some features because 
they remained constant along the time, hindering the 
classification. Table I shows the remaining twenty-three 
features and a brief description of each one. 

TABLE I.  MEMORY AND CPU FEATURES MANUALLY SELECTED. 

Collected Metric Name Description and Features Enumeration 

CpuSystemTotalLoad CPU System – Total Load (1) 

CpuSystemLoad CPU System – System Load (2) 

CpuSystemLoadAvg CPU System – Average Load (3) 

CpuSystemUserLoad CPU System – User Load (4) 

CpuSystemWaiting CPU System – Wait Load (5) 

CpuPagesIn CPU System – Pages Reads (6) 

Collected Metric Name Description and Features Enumeration 

CpuInterruptTotal CPU System – Total Interruptions (7) 

CpuContextSwitch CPU System – Switch of Context (8) 

CpuCore01TotalLoad CPU Core 01 – Total Load (9)  

CpuCore01SystemLoad CPU Core 01 – System Load (10) 

CpuCore01UserLoad CPU Core 01 – User Load (11) 

CpuCore02TotalLoad CPU Core 02 – Total Load (12) 

CpuCore2SystemLoad CPU Core 02 – System Load (13) 

CpuCore02UserLoad CPU Core 02 – User Load (14) 

MemPhyUsed Physical Memory Used (15) 

MemPhyApplication Physical Memory Used Application (16) 

MemPhyCached Physical Memory Used Cache (17) 

MemPhyBuff Physical Memory Used Buffer (18) 

MemSwapUsed Physical Memory Used Cache (19) 

DiskChangeTotalAcc Disk Access Total (20) 

DiskRateTotalAcc Disk Rate Total Access (21) 

DiskRateReadAcc Disk Rate Read Access (22) 

DiskRateWriteAcc Disk Rate Write Access (23) 

 
We used System Monitor or System Guard [14] to collect 

23 features of local VMs, storing them in text files. We 
collected the features records every one-second and for 
around 13.33 minutes – enough time to observe the 
occurrence of processing surges like spikes and flash crowds. 
We generated 800 records for each workload.  

Figure 3 depicts a log fragment generated by the System 
Monitor for the System CPU total load feature 
(CpuSystemTotalLoad, Table I). 

 
Mar  22  11:27:35 localhost cpu/system/TotalLoad: 100 
Mar  22  11:27:36 localhost cpu/system/TotalLoad: 32.5 
Mar  22  11:27:37 localhost cpu/system/TotalLoad: 21.0526 
Mar  22  11:27:38 localhost cpu/system/TotalLoad: 28.2051 
Mar  22  11:27:39 localhost cpu/system/TotalLoad: 23.0769 
Mar  22  11:27:40 localhost cpu/system/TotalLoad: 28.2051 

Mar  22  11:27:41 localhost cpu/system/TotalLoad: 22.5 

Figure 3.  Log fragment for the CpuSystemTotalLoad feature. 

B. Data Collection 

We obtained a normal workload by running LAMP 
(Linux, Apache, MySQL, and PHP) applications because 
they are considered typical in a local cloud VMs of a 
datacenter. Figure 4 presents the visualization of a typical 
workload obtained in this case.  

One can noticed that the average CPU load is around 
40% (ranging from 20% to 60%) and does not have a 



 

 

particular pattern because the user behavior for processing 
demand is out of our control. 

 
Figure 4.  Normal workload. 

We obtained a controlled workload by running a data 
encryption standard application with a 168 bits key 
encryption algorithm to consume memory and CPU. We 
used a shell script program to schedule the time intervals in 
which the application was executed. We developed 13 essays 
(Figure 5 to Figure 17).  

Initially, the interval between generated processing 
surges (CPU processing below 20%) was 26 seconds, and 
the processing surge (CPU processing above 80%) was 2 
seconds. In the next essays, we reduced the interval by 2 
seconds and increased the surge processing time by the same 
2 seconds.  

This procedure enabled us to create processing surges 
from two seconds to twenty-six seconds. We stored the 
processing results in files named as “Spike” or “Flash” 
followed by a sequential number. Figure 5 to Figure 17 show 
the CPU and memory usage that were obtained from the 
System Monitor, in those essays. 

In Figure 5, we start to control the CPU processing 
demand, assigning a workload with around 2 seconds of 
processing surge and around 26 seconds of the interval 
between generated processing surges.  

 
Figure 5.  Spike 01 workload. 

In Figure 6, the intervals were around 24 seconds 
and the processing surges were around 4 seconds. In other 
essays (Figure 7 to Figure 17), we continue to increase the 

processing surge length and to reduce the intervals in 2 
seconds. 

 
Figure 6.  Spike 02 workload. 

 
Figure 7.  Spike 03 workload. 

 
Figure 8.  Spike 04 workload. 

 
Figure 9.  Spike 05 workload. 



 

 

 
Figure 10.  Spike 06 workload. 

 
Figure 11.  Spike 07 workload. 

Figure 12 shows the last workload considered by a 
datacenter administration expert as a spike (Spike 08 
workload). The intervals length has around 12 seconds, and 
the processing surge has around 16 seconds. 

 
Figure 12.  Spike 08 workload. 

Figure 13 shows the first workload considered by 
datacenter expert as flash crowd. The surges considered as 
flash crowd start with around 10 seconds of intervals length 
and around 18 seconds of processing surges.  

Figure 17 shows the last workload for flash crowd with 
around 2 seconds of intervals length and around 26 seconds 
of processing surges. 

 
Figure 13.  Flash 09 workload. 

 
Figure 14.  Flash 10 workload. 

 
Figure 15.  Flash 11 workload. 

 
Figure 16.  Flash 12 workload. 



 

 

 
Figure 17.  Flash 13 workload. 

The information about the processing surge, given by a 
datacenter administration expert – to classify the surge as a 
spike or flash crowd, was used to label the feature vectors 
used in the SVM training phase.  

The next section presents the process to get the surge 
model for the SVM classifier. 

C. Applying Machine Learning 

We developed a script to preprocess the System Monitor 
log file, to eliminate irrelevant information and to generate 
the feature vectors. Figure 18 shows an example of three 
lines (from 0 to 2) of a System Monitor log file.  

Each line has the assigned numbers for each feature, 
from 1 to 23 (according to Table I), followed by a colon (':') 
and a feature value. For example, the highlighted ‘7: 
1134.22’ means that the feature ‘CPU System - Total 
Interruptions (7)’ has the value 1134.22. Figure 18 shows 
other examples regarding other features and processing 
values. 

 
0 1: 18.1818 2: 10 3: 1.27 4: 25.9259 5: 0 6: 0 7: 2050.62 8: 2747.1 
9: 0 10: 0 11: 0 12: 81.8182 13: 0 14: 30.7692 15: 2.03603e+06 16: 
1.00913e+06 17: 873676 18: 152080 19: 0 20: 0 21: 0 22: 0 23: 0 

1 1: 71.0526 2: 19.5122 3: 1.58 4: 76.9231 5: 0 6: 0 7: 1134.22 8: 
38481.1 9: 100 10: 0 11: 66.6667 12: 0 13: 0 14: 92.3077 15: 
1.07724e+06 16: 1.2555e+06 17: 445008 18: 84136 19: 0 20: 0 21: 
0 22: 0 23: 0 

2 1: 100 2: 25 3: 2.19 4: 76.25 5: 0 6: 0 7: 830.044 8: 19300.6 9: 
100 10: 17.3913 11: 77.7778 12: 100 13: 0 14: 0 15: 2.55831e+06 
16: 1.99384e+06 17: 476340 18: 88248 19: 0 20: 0 21: 0 22: 0 23: 
0 

Figure 18.  File fragment with feature vectors. 

After we had generated the feature vectors and their 
labeling (composing the dataset), we applied the SVM 
method to create a classifier.  

The hypothesis was that the labeling made by an expert 
was correct. Moreover, the threshold of both surges (spike 
and flash) was successfully identified if the training and test 
set had obtained a success rate close to 100% for several 
surge combinations (spike and flash).  

Otherwise, the labeling should be made again, meaning 
that the labeling once defined as spike could be a flash crowd 

or vice-versa, or even, that both surges could have been 
misunderstood with a normal demand. Therefore, the 
difficulty was to choose the surge workload combinations to 
test and to confirm the hypothesis, considering that it would 
be hard to test all the combinations of thirteen processing 
demands among themselves. 

We used the k-fold cross-validation method to evaluate 
the generalization ability of the surge model to classify an 
independent dataset. The k-fold method divides the training 
dataset into k subsets. We assumed k=3, since we have three 
classes to train: normal, spike and flash crowd. Then, the 
training uses three vector subsets.  

Figure 19 depicts the applied cross-validation scheme, 
using 3-fold. The cross-validation process consists of 
repeating the tests three times. We used the average result to 
estimate the parameters and to calculate the model accuracy 
(success rate). 

 

 
Figure 19.  Applied cross-validation scheme. 

All datasets were split in a proportion of 50% for the 
model training and 50% for the model testing, i.e., we used 
400 records in the training phase and other 400 records in the 
testing phase.  

Table II shows a set of tests that involves a combination 
of surge processing demands and the results obtained during 
the training and testing phases.  

Initially, we considered the first six tests, from Test01 to 
Test06, and we concluded that spike and flash crowd were 
detectable and distinguishable, once the success rates were 
greater than 99%. 

We used Test07 to Test12 to investigate the border 
between the spike and flash surges. Only Test12 presented 
the accuracy rate lower than 99%. Then, we executed Test13 
and Test14, and Test14 got an error.  

The Spike09 workload, that contained a previously 
labeled spike processing demand in Test13, was relabeled as 
Flash09 because its surge of processing demand was 
characterized as a flash crowd instead of a spike. 

From Test01 to Test06 the processing demand was 
incrementally reduced. Test01 presented a surge 
characterized by extreme surges of processing demands, 
combining Spike01 with Flash13. After that, in each test a 



 

 

lower surge of processing demands were considered, toward 
the border between spike and flash crowd surges. 

TABLE II.  TRAINING AND TESTING RESULTS FOR THE DATASET 

DEMANDS COMBINATION. 

Test 
name 

Demand 
Cross-validation 

rate: training 
(%) 

Accuracy 
rate: test 

(%) 

Test01 Normal, Spike01, Flash13 100.00 100.00 

Test02 Normal, Spike02, Flash12 99.92 99.92 

Test03 Normal, Spike03, Flash11 99.34 99.83 

Test04 Normal, Spike04, Flash10 99.92 100.00 

Test05 Normal, Spike05, Flash09 100.00 100.00 

Test06 Normal, Spike06, Spike08 100.00 99.33 

Test07 Normal, Spike06, Spike07 100.00 100.00 

Test08 Normal, Spike07, Spike08 100.00 100.00 

Test09 Normal, Spike07, Flash09 100.00 100.00 

Test10 Normal, Spike08, Flash09 100.00 100.00 

Test11 Normal, Spike08, Flash10 100.00 99.92 

Test12 Normal, Spike09, Flash10 100.00 88.67 

Test13 Normal, Flash09, Flash11 100.00 99.92 

Test14 Normal, Spike09, Flash12 99.75 91.83 

 
The goal is to prove that the labeling made by the experts 

are confirmed when the model was obtained in training 
phase, and the success rate of the test vectors was kept high, 
i.e., greater than 99%. 

The results in Table II show that, in all tests, the demands 
identified by the experts as spike, stored in files from 
Spike01 to Spike08, are confirmed as spikes, due to the 
success rates obtained.  

Observe that the experts classified these vectors as 
spikes, and the training model and the tests confirmed the 
features vectors labeling. The model was generated from the 
examples extracted from respective collection files for the 
spike workload. We obtained the previously commented 
confirmation with the classifier tests and success rates 
greater than 99%. 

In the subsequent workload after Spike08, there is a 
“gray region” mainly identified in the Flash09 workload. 
Based on the learning model provided by the classifier, the 
processing demand tends to indicate that a spike surge may 
be present in the workload that was predefined as a flash 
crowd by experts. This situation will be better discussed in 
Section D. 

The proposal hypothesis would fail if the surge 
classification did not occur with high accuracy, so a spike 
would not be easily distinguishable from a flash crowd as the 
literature suggests [12, 13].  

In other words, labeling would be incorrect, or the 
features vectors would not represent features for 
characterizing spike and flash crowd surges. This issue will 
be further explored in Section E. 

D. Analyzing the Datasets Vectors 

Based on the results reported in Section C, we mixed all 
feature vectors (files) and created a single dataset with 1/3 of 
the records from each workloads (normal, spike, and flash 
crowd).  

We executed the training with 50% of the new dataset, 
running the k-fold cross-validation with k=3, and the others 
50% of the new dataset we reserved for the model testing. 
Table III shows the obtained results for the cross-validation 
and accuracy rates, considering the new dataset, i.e., all 
processing demand surges together. 

TABLE III.  RESULTS CONSIDERING ALL PROCESSING SURGES 

TOGETHER. 

Test 
no. 

Demands 
Cross-Validation 
rate: training (%) 

Accuracy rate: 
test (%) 

Test00
Normal, Spike01-

spike08, Flash09-Flash13
98.82 

98.41 
(5511/5600) 

 
The goal of this evaluation was to ensure that all 

collected feature vectors correctly represent spike, flash 
crowd, and normal processing demands. All previously 
reported tests had considered these processing demands and 
they were separately recorded in the Spike01 to Flash13 
files. Then, if the result of this evaluation does not generate a 
high success rate, many noises could be collected.  

A noise would be wrong labeled records, which did not 
represent the processing demand in a discriminant way. The 
test results showed the dataset validity to represent the 
problem under study. They present a low noise rate (2.18%) 
in the total of collected and labeled vectors for all processing 
workloads (1 normal, 8 spikes, and 5 flash crowds). 

E. Feature Selection Filter 

We executed feature selection to reduce the noise (the 
classification imprecision) and to improve the classifier 
performance. We used the 23 features presented in Section A 
to apply the feature selection filter provided by Weka tool 
(www.cs.waikato.ac.nz/ml/weka/).  

The Weka filter uses data characteristics to evaluate and 
select the features. Appling the Weka filter allows us to 
reduce from 23 to 15 the number of features. Table IV shows 
the discriminant features obtained after using the Weka filter. 

We repeated all tests from Table II using the 15 selected 
features. The results (Table V) show a little improvement 
from Test01 to Test11 since the success rate were already 
excellent. However, in this case, the tests were made again to 
ensure that the 15 features did not negatively affect the 
previous results (considering the 23 features, Table I). 

 



 

 

TABLE IV.  SELECTED FEATURES OBTAINED BY WEKA FILTER. 

Collected Metric Name Description 

CpuSystemTotalLoad CPU System – Total Load (1) 

CpuSystemLoad CPU System – System Load (2) 

CpuSystemLoadAvg CPU System – Average Load (3) 

CpuSystemUserLoad CPU System – User Load (4) 

CpuSystemWaiting CPU System – Wait Load (5) 

CpuCore01TotalLoad CPU Core 01 – Total Load (9) 

CpuCore01SystemLoad CPU Core 01 – System Load (10) 

CpuCore01UserLoad CPU Core 01 – User Load (11) 

CpuCore02TotalLoad CPU Core 02 – Total Load (12) 

CpuCore2SystemLoad CPU Core 02 – System Load (13) 

CpuCore02UserLoad CPU Core 02 – User Load (14) 

MemPhyUsed Physical Memory Used (15) 

MemPhyApplication Physical Memory Used Application (16) 

MemPhyCached Physical Memory Used Cache (17) 

MemPhyBuff Physical Memory Used Buffer (18) 

 
The main goal was to precisely study the behavior of 

Flash09 workload since the imprecision resulting from the 
classification in Test12 and Test14 from Table II. Once, the 
imprecise classification caused doubts about the border 
between spike and flash crowd surges, defined by an expert.  

The selection of features was used to reduce the doubt 
related to the noise resulting from features that could be 
hindering the classification since they were not discriminant 
enough. 

As we did not identify a problem related to the features, 
since the classification results were improved, we re-
executed Test12 and Test14. Then, we considered the 
examples labeled as flash crowd by the experts, and that 
were relabeled as spike. The goal was to evaluate whether 
the results were improved, in order to verify a mistaken 
feature vector labeling hypothesis. 

The results remained approximately the same, which 
enabled us to conclude that the problem was not with 
irrelevant features, neither about wrong labeling. Therefore, 
the hypothesis failure reported in Section C was not 
confirmed.  

Thus, we concluded that the Flash09 workload actually 
represents a border between spike and flash crowd, due to 
the insignificant changes in the results of the success rate 
(Table II and Table V). 

Test15 represents the same test Test00 from Table III, 
but considering the 15 selected features. In Test16, we took 
out the vectors of the Flash09 workload from the dataset of 
training and test, and we observed an increased classification 
with success rate, what clearly shows that the records of 
Flash09 workload mix spike and flash crowd vectors. Then, 

it has been proven that Flash09 workload contains vectors 
that identify the border between both processing demands. 
Therefore, the hypothesis of this study has been confirmed: 
spike and flash crowd are detectable and distinguishable. 

TABLE V.  TRAINING AND TESTING RESULTS FROM DEMANDS 

COMBINATION AND REDUCED FEATURES 

Test no. Demands 
Cross-Validation 

rate:  training (%) 
Accuracy rate: 

test (%) 

Test01 Normal, Spike01, Flash13 100.00 100.00 

Test02 Normal, Spike02, Flash12 100.00 100.00 

Test03 Normal, Spike03, Flash11 99.91 99.91 

Test04 Normal, Spike04, Flash10 100.00 100.00 

Test05 Normal, Spike05, Flash09 100.00 100.00 

Test06 Normal, Spike06, Spike08 100.00 100.00 

Test07 Normal, Spike06, Spike07 100.00 100.00 

Test08 Normal, Spike07, Spike08 100.00 100.00 

Test09 Normal, Spike07, Flash09 100.00 100.00 

Test10 Normal, Spike08, Flash09 99.83 99.83 

Test11 Normal, Spike08, Flash10 100.00 100.00 

Test12 
Normal, Spike09 (label 

changed), Flash10 92.5 91.41 

Test13 Normal, Flash09, Flash11 100.00 97.83 

Test14 
Normal, Spike09 (changed 

label), Flash12 91.66 92.66 

Test15 
Normal, Spike01-Spike08, 
Flash09, Flash10-Flash13 98.53 98.58 

Test16 
Normal, Spike01-Spike08, 

Flash10-Flash13 99.34 99.34 

 
The best results for the classification accuracy were 

obtained after the features selection – that eliminated eight 
features considered in the evaluation made through manual 
features selection, which improved the results obtained 
previously.  

An important result from this tests phase was the 
confirmation that the features selection and the processing 
demands labeling were precise. 

After the development of this work, it was concluded that 
only fifteen features, which refer to the CPU usage and 
memory, are necessary to differentiate spike (from Spike01 
to Spike08 workloads) from flash crowd (from Flash10 to 
Flash13 workloads).  

The processing demand collected in Flash09 is not 
conclusive and, therefore, should not be considered in the 
characterization of any processing surge. Thus, we consider 
the values of the Flash09 workload as the border between 
both kinds of processing surges. 

In summary, if a surge is a spike, a local VM is 
instantiated. If the surge is a flash crowd, the VM can be 
migrated to another host, maybe in a public cloud 
infrastructure. This strategy minimizes the costs for the cloud 



 

 

provider without impairing the application performance 
since the workload of VM provisioning that is unnecessary 
will be minimized or eliminated. 

V. CONCLUSION 

This paper presented an approach to deal with processing 
surges in cloud computing. We used machine learning to 
detect and classify spike and flash crowd surges in 
processing demands, an issue the literature has not 
addressed.  

Data center experts have pre-characterized spikes and 
flash crowd surges, and we tuned such characterization 
through a surge model obtained by applying an SVM 
algorithm. The model enabled us to find a border to 
distinguish processing surges. 

We applied Weka feature selection filter to reduce and 
improve the classifier performance and the classification 
rate. The filter eliminated eight features that were taken into 
account in the manual selection, improving the previous 
results significantly. 

We concluded that only fifteen features, which refer to 
CPU and memory usage, are required to differentiate spike 
from flash crowd surges. The tests phase enabled us to 
confirm that the features and the labeling of demands were 
precise, exempting the Flash09 workload, which is not 
conclusive. Thus, a mixed vector of spike and flash crowd in 
a particular demand enabled us to define the values of those 
features as the border between both demands of processing 
surges. 

We also introduced a strategy to improve cloud 
computing elasticity performance, minimizing the costs for 
the cloud provider without impairing the application.  

The strategy is to allocate additional resource locally and 
after remotely, depending on the detected processing surge. 
If a surge is a spike, it is processed in a local datacenter VM. 
If the surge is a flash crowd, the VM can be migrated to 
another host (maybe in a public cloud infrastructure). 
Therefore, the VM migration for an unnecessary processing 
surge (spike) will be minimized or eliminated. 

In future studies, we are looking towards to confirm that 
the use of this approach in load balancing can reduce the 
overhead in other service providers. 
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