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Abstract—Managing UCONABC policies in modern dis-
tributed computing systems is a challenge for traditional ap-
proaches. The provisioning model has trouble to keep track and
to synchronize large numbers of distributed policies, outsourcing
model may suffer from network overhead and single point of
failure. This paper describes an approach to manage distributed
UCONABC policies, derived from the combination of authoriza-
tion assertions and policy templates. It combines the benefits of
provisioning and outsourcing, eliminating their respective draw-
backs. Prototyping details and performance evaluation are shown,
messages are 42.7% smaller than provisioning and response times
are faster than outsourcing.

I. INTRODUCTION

Cloud computing [1] provides a dynamic environment, in
which client organizations can implement their own computing
services using infrastructure provisioned on demand. This
reconfigurable infrastructure allows the services to be scaled
up or down as needed. Cloud providers are accessible from
any computer connected to the Internet and can be used with-
out requiring the installation and configuration of specialized
hardware or software on the client side. These environments
can also support many users on the same infrastructure (i.e.,
Multitenancy), improving resource utilization.

The abstraction level of these environments are commonly
used to categorize them as being Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) or Software as a Service
(SaaS) [2]. IaaS clouds provide virtual hardware infrastructure
controlled by the users. The PaaS hides the virtual infrastruc-
ture and provides intermediary services (e.g. security and user
management) supporting the development and deployment of
services. SaaS provides complete applications to the end user,
who can only modify some application aspects. Each model
is conceptually independent, although, one may use a given
model (e.g. IaaS) to build another model (e.g. PaaS or SaaS).

Cloud computing access controls show different degrees of
granularity. IaaS environments, like Amazon EC2 [3], usually
enforce access controls on whole virtual machines (VM), while
PaaS providers, like Heroku [4], often enforce the controls on
a lightweight process container. SaaS solutions, on the other
hand, focus on individual application users.
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Takabi [5] argued that cloud computing must use fine-
grained access control policies, which require mechanisms
able to capture the cloud dynamics, through the use of
contextual information, attributes and credentials. The usage
control model (UCONABC) [6] meets the aforementioned
requirements, as it can reflect changes on attributes of users,
objects and the environment, by continuously reevaluating the
policies and applying the usage decisions during runtime.

Previous research on the application of UCONABC in
cloud computing [7], [8], [9] were centralized approaches,
prone to communication overhead, single point of failure in
the reference monitor and low scalability. Tuple spaces was
investigated to solve these shortcomings [7], though its use
of non-standard complex mechanisms [10], [11] hinders its
applicability. Decentralized approaches based on the provision-
ing model, on the other hand, have difficulties to synchronize
a large number of policies in distributed systems like cloud
computing.

It is possible to protect any kind of abstract object (e.g.
files, VMs) using UCONABC . The definition of what an object
is can impact its access control granularity. VMs (IaaS) can
only support coarse grained controls and is hard to reconfigure
without restarts. Process containers (PaaS), on the contrary,
allow for a fine-grained control, configuration parameters can
be updated without restarts, and the computing overhead is low.
SaaS could potentially offer an even higher degree of control,
however, the control mechanisms would not be generic enough
to be used on other services.

This work describes the management of usage control poli-
cies with an architecture based on provisioning of authorization
assertions, policy templates previously configured in a runtime
environment and process containers. Individual policies are de-
rived on the local access control mechanisms, by combining in-
formation taken from the provisioned authorization assertions
and the local policy templates. The proposal eliminates the
need for synchronizing local policies with a centralized policy
management system, enables the enforcement of individually
customized policies on a lightweight container, and allows a
higher frequency (almost continuous) policy reevaluation when
compared to outsourcing approaches.

The paper is organized as follows: Section II presents
the preliminary concepts; Section III discusses the proposal
in details; Implementation and evaluation of a prototype, as
well as its tests are described in Section IV; Related work



are presented in Section V; Section VI shows our concluding
remarks.

II. PRELIMINARIES

This section presents a brief introduction to key concepts
for understanding this paper. In particular, it addresses the
concepts of policy architectures and the UCONABC .

A. Policy Architectures

Access control policies have been commonly managed
following on of two approaches:

• Provisioning: requires the setup of policies at the
place where the controls are enforced. The policy is
stored in a local repository and then, on each access
request, the resource guardian invokes a local policy
decision point (PDP). The PDP is a reference monitor
which produces policy evaluation decisions (i.e. per-
mit or deny) to be enforced by the guardian [12]. Its
main advantage is its robustness, as it has no external
dependencies. On the other hand, it is harder to keep
policies synchronized on a distributed system.

• Outsourcing: is based on a client and server model.
An external service, a reference monitor, responds to
requests from the guardians requiring the evaluation of
access control policies, this happens on every access
attempt. The guardian waits for a policy evaluation
decision and enforces it [13]. Its advantage is the
simplicity of policy management and guardian imple-
mentation. The disadvantages are the communication
overhead and its fragility, as the reference monitor
may be a single point of failure. Moreover, by being
centralized it becomes harder to achieve the scalability
expected of cloud computing systems.

B. Usage Control Model

The usage control model, UCONABC [6], unifies prior
ideas on access controls under a formal (predicate-based)
cohesive model. It has two fundamental concepts:

• Continuity defines that policies are evaluated and
enforced throughout the usage of an object (i.e. the
resource being protected). The evaluation may occur
before the usage starts (pre), while it happens (ongo-
ing) and when it finishes (post);

• Mutability considers that certain attributes of the
subject or object may be changed as a side effect of
a subject’s usage. Thus, policy rules may defined how
some attributes get updated.

Usage controls are categorized as authorizations (the user
must have rights to perform an action), conditions (constraints
on environmental attributes, such as the time of day or ge-
ographic location), obligations (external actions that must be
performed by the user) and updates (modifications that should
be made to a user’s or object’s attributes).

III. MANAGING USAGE CONTROL

In this section we propose an infrastructure for usage con-
trol management in distributed systems, using policy templates
and authorization assertions to derive policies that are locally
evaluated. This approach eliminates the need of setting up poli-
cies, present in the provisioning model, and the communication
costs of the outsourcing model.

The components that comprise the infrastructure can be
categorized as being part of an administrative domain or of
a local domain. The administrative domain offers services
to manage the contents of authorization assertions and to
create the policy templates to be preset in the local domains.
The local domain contains the components for authorization
assertion validation, derivation of usage control policies, its
evaluation and decision enforcement.

User applications are executed in the local domain in
isolated environments, called containers, which allow for fine-
grained control and accounting, regardless of the number of
processes running within the containers. Each container is con-
trolled by a customized policy, derived from an authorization
assertion and a policy template preset on the local domain.

The infrastructure was designed to eliminate the need of
provisioning policies for each service, as well as the complex
mechanisms required to keep those policies synchronized with
a central repository. Local usage control mechanisms allow
for shorter response times when compared to outsourcing
approaches and reduces the likelihood of single point of failure,
due to local domains being independent of each other.

A. Administrative Domain

The administrative domain consists of four services (see
Fig. 1): Policy Administration Point (PAP), where policy tem-
plates are created; Attribute Manager (AM), used for managing
each user’s authorization attributes; Security Token Service
(STS), issues authorization assertions; Security Gateway (SG),
prevents assertions from being used more than once.

Policy templates are managed on the PAP and stored on
the policy template repository. A template contains a set of
authorization rules, and each rule contains some fields (identi-
fied by unique names, the field-id), to be filled with attributes
obtained from the authorization assertions. The template must
contain all the rules (e.g. quota for disk and CPU time) that an
administrator needs to enforce on a service container. Different
authorization assertions may activate different sets of rules,
therefore, each user can have a customized policy.

All local domains are preset with a copy of the template
repository, making them available as soon as the local domain
is operational. This local repository can be updated at any
time by a notification system (e.g. when a template changes
in the administrative domain, a reliable notification system
informs all the local domains affected, which then update their
repositories and derive again the involved policies).

The AM service consists of a repository of attributes used
for issuing authorization assertions. Each attribute contains
a field-id, which is matched with the field-ids on the policy
template. The repository controls the amount of resources that
can be issued for each user and the amounts already issued
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Fig. 1. Administrative domain components

(e.g. an user may have a disk quota of 100 GB, but 10 GB is
already used). When an assertion is issued, the corresponding
amount is accounted on the repository, thus an user cannot
exceed his/her total quota.

Attributes are used by the STS to issue authorization
assertions upon user requests. After user authentication, the
STS requests the AM to validate the attributes claimed by
a user. A valid request (i.e. authentic and not exceeding
the administrative domain quota amount) updates the AM
repository, reducing the available quota and allowing the STS
to issue an authorization assertion with the requested attributes.
This assertion is then signed by the STS, encrypted (only the
local domains may decrypt it) and then returned to the user.

Security gateways control the interaction of users with
the local domains, all application management requests must
be made through this service. It transparently selects local
domains to perform user requests, and prevents authorization
assertions from being used more than once. Therefore, a
security gateway needs to keep track of session state (e.g. in
which local domain each request is being processed and what
assertion is related to it) and to reliably share this information
with other security gateways – the synchronization mechanism
is considered a future work.

User application requests are forwarded directly to the
application, bypassing the security gateway. Therefore, if the
administrative domain becomes temporarily unavailable, the
current applications will still be usable (though the user will
not be able to change its parameters). A certain degree of fault
tolerance is desirable on the administrative domain, to avoid
delaying the creation and management of user applications,
however, it is not as critical as in the outsourcing model, which
may have a single point of failure.

B. Local Domain

A local domain is the runtime environment where services
(i.e. user applications) can be executed and usage controlled.
A service is executed in an isolated environment provided by
the operating system, a container. This allows the execution
of services from different users alongside each other. The
local mechanisms validate authorization assertions and com-
bine them with policy templates, generating the usage control

policies to be applied to service containers. The evaluation
and enforcement of these policies is made locally. For an
illustration of the local domain components see Fig. 2.

Users can perform two request types: application and
management. Application requests always target the service
being executed inside the container. Management requests, on
the other hand, are used to create, modify, delete or retrieve
information about a particular service (e.g. request to start
a web application). Local control mechanisms are focused
solely on the second type of request, application requests are
forwarded to the service itself.

When the user wants to perform a management request,
he/she must submit the request with an authorization assertion
to the SG (Security Gateway). The SG selects the appropriate
local domain and forwards the user request, assuring the
authorization assertion has not been already used elsewhere.

A Policy Enforcement Point (PEP) receives the request
from the SG and ensures that only authorized requests get
executed. The first step in the authorization process is to
invoke a local security token service (STS) to validate the
assertion (e.g. by verifying expiration dates, authenticity of
signatures, trust relations, data integrity). An invalid assertion
causes the user request to be rejected. After validation, the PEP
submits an authorization request to the context handler (CH)
along with contextual information (e.g. authorization assertion,
request parameters). The PEP then waits for a reply with an
authorization decision to be enforced.

The CH integrates the many components of the local
domain. After extracting the authorization assertion from the
PEP’s request, the CH invokes the local policy administration
point (LPAP). The LPAP derives usage control policies from
authorization assertions and policy templates stored in the
template repository. The discovery of which rules must be
created (e.g. pre-authorizations, ongoing conditions, etc.) is
made by matching attributes contained in the assertions with
the field-ids present on the policy template. Each rule with a
matching field-id is configured with the corresponding attribute
value. The resulting policy is stored in a policy repository
and a success message is returned to the CH, allowing the
authorization evaluation process to continue.

The next step for the CH is to contact the policy informa-
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tion point (PIP), which provides resource usage information
through a well known interface. Data is collected by other
components (e.g. accounting agents) and stored on the PIP’s
repository. These components use the operating system na-
tive APIs to discover the resource usage for each individual
container, as well as the current state of the system (e.g. load
average, number of running processes). UCONABC obligations
are treated as normal attributes stored on the PIP and must be
updated by an external agent, because obligations cannot be
controlled within the system.

The data retrieved from the PIP is combined with con-
textual information from the PEP’s request to create an policy
evaluation request, which is sent to the policy evaluator (PDP).
This component evaluates access control policies, matching the
data contained on the CH request with the applicable policy
rules. The policy applicable to the service container is retrieved
from the LPAP. Each policy is linked to a single authorization
assertion, therefore, the PDP can select the right policy on the
LPAP. The lack of an applicable policy causes the request to
be denied. A request is authorized only if, after matching all
attributes to the applicable policy rules, the rule combining
algorithm produces a permit value. The decision is sent back
to the CH, that forwards it to the PEP along with details of
how the decision must be enforced.

The aforementioned process is repeated for each man-
agement request. This process can be better understood with
Algorithm 1. The PDP retrieves the subject (S), object (O) and
context (C) linked to an assertion. The data is used to retrieve
the applicable set of policies from the LPAP address (A). A
request gets rejected if no policy is available (line 4-6). A deny
overrides algorithm is shown from lines 7 to 14: if any rule
produces a Deny decision, the request is immediately rejected,
otherwise the request is authorized.

The PDP’s decision may contain a revaluation trigger (RT)
and any attribute updates required. The CH invokes the PIP to
update any attribute, effectively supporting attribute mutability
for UCONABC . Failure to update the attributes causes the user
request to be rejected. The decision is converted to the format
used on the PEP and sent to it, after updating the attributes.

The PEP configures the RT in a component with the same
name. The RT functions act as a timer to alert the PEP to
repeat the authorization process periodically. The trigger is

created with request data provided by the PEP. This data serves
as contextual information to reevaluate the suitable policy.
Therefore, the RT component implements the continuity of
control, defined by UCONABC , as a configurable periodic
reevaluation.

The PEP forwards authorized requests to a local Container
Manager to setup the container and start up the user service
(i.e., it manages the container life cycle). The service access
details (e.g. IP address) are returned to the user after container
creation. The Container Manager uses the operating system
native mechanisms to configure the container limits in accor-
dance with the values on the authorization assertion.

C. Templates and Policy Derivation

A template is a set of all the rules that can be used to
control the behavior of a user service. For the sake of simplicity
a version of a rule for controlling CPU time is shown on Fig. 3.
Each rule is identified by a RuleID: when a rule identifier is
present in the authorization assertion, the rule must be activated
for this user. A rule may contain a variable number of field-ids
(e.g. TotalCpuTime) that must be replaced by values with the
corresponding field-id. Thus, the TotalCpuTime attribute must
be present on the authorization assertion, otherwise no policy
will be derived and the request will be refused. Accounting
data can also be referred on the policy template through the

Algorithm 1 Policy Evaluation
1: S ← subject(assertion), O ← object(assertion)
2: C ← context(request), A← address(LPAP )
3: PolicySet← retrieve_policy(S,O,A)
4: if PolicySet = ∅ then
5: return Deny
6: end if
7: for Policy in PolicySet do
8: for Rule in Policy do
9: if evaluate(Rule, S,O,C) = Deny then

10: return Deny
11: end if
12: end for
13: end for
14: return Permit



use of variable names (e.g., usedCpu is the amount of CPU
time already used).

The applicable rules are configured with the attributes from
the authorization assertion and, after a successful derivation,
the resulting policy is stored on the LPAP. This policy may
contain rules to control the full life-cycle of the service con-
tainer (i.e. pre and ongoing controls). Changes to the template
forces the derivation of the affected policies – the obsolete
policy is deleted and the new policy takes place. Policies
may be grouped in Policy Sets, each policy representing a
well defined stage of the usage session (e.g. pre-authorization,
ongoing-conditions).

IV. PROTOTYPE

The local domain components were prototyped and eval-
uated, demonstrating that the local mechanisms are able to
support controls from UCONABC . Furthermore, a performance
analysis identified the container’s accounting overhead and
the PDP message size overhead when compared to a pure
provisioning approach.

A. Implementation

To implement the prototype we used some open source
libraries and the Java programming language. The application
containers were provided by FreeBSD jails [14] mechanism, it
features an API to monitor resource utilization and to manage
the jails operation. The container manager uses these APIs
to create the container where the user service is executed.
Jails offer an execution environment that resembles a dedicated
operating system. However, different applications are unable to
observe or affect the environment outside of their own jails.

The authorization assertions employed the SAML speci-
fication [15], more precisely the AttributeStatement message
type, and were created and handled by the OpenSAML [16]
library. Usage control policies were created following the
XACML [17] standard format and were evaluated through
the WSO2 Balana [18] library. The templates were written as
XACML rules with embedded variable names. A search and
replace procedure was executed to fill the template with the
corresponding attribute values, deriving the policies.

1 <Rule RuleId="CPURule" Effect="Permit">
2   <Target><Any/></Target>
3   <Condition>
4     <Apply FunctionId="integer-less-than-or-equal">
5       <Apply FunctionId="integer-one-and-only">
6         <AttributeDesignator Category="access-subject"
7         AttributeId="usedCpu" DataType="integer"/>
8       </Apply>
9       <Apply FunctionId="integer-one-and-only">
10        <AttributeValue DataType="integer">
11          ${TotalCpuTime}
12        </AttributeValue>
13      </Apply>
14    </Apply>
15  </Condition>
16 </Rule>

Fig. 3. Sample Rule

A REST Web service executing on the local domain
receives requests containing SAML assertions and the desired
action to be performed (e.g. make a new service instance). The
local STS authenticates and validates the SAML assertion and
a context handler is invoked to process the request. Embedded
modules derive the XACML policy and save it on a private
directory, gather the local information (i.e. on the PIP) and
evaluate the policy. A background thread is configured with
a parameter from the authorization decision to periodically
request the reevaluation of a policy. Session data and policies
are kept in a local directory readable only by the context
handler. After successful evaluation, the request is executed
by the container manager (it creates a container, configures
its limits and IP address, starts the desired service and returns
the access details). The resulting information is returned to the
user.

B. Evaluation

One test measured the cost of retrieving accounting at-
tributes from 400 containers (jails) mimicking a production
environment. Each jail was executing services like e-mail,
SSH and cron, while the attributes were being retrieved, thus
causing a heavy load on the host system. Figure 4-A shows
that sequential reading is the best method, with 0.13 ms on
average for each jail, while 16 parallel requests spent 1.61
ms on average. The worst case remained stable at 7.81 ms,
up to 4 threads, going up to 18.06 ms with 16 threads. Due
to this small overhead, process containers are better suited to
implement UCONABC controls to processes not requiring the
isolation of full virtual machines.

The second test (Fig. 4-B) compares the proposed approach
to traditional provisioning approaches. Provisioning is signifi-
cantly more expensive when dealing with the same number of
rules. The hybrid model used messages ranging from 4754 to
18524 bytes; in the provisioning model messages are ranging
from 11314 to 42594 bytes. The scenario involved the use of
policies from 6 to 96 rules. The messages for the hybrid model
were 42.7% smaller on average.

V. RELATED WORK

In our previous work [7] we designed an architecture
for resilient usage control for cloud computing based on the
outsourcing model. Tuple spaces were employed to handle the
high demand created by the remote PEPs. The architecture
handles the discrepancies in the use of resources, in between
policy evaluations, by using a share of the resource as a
threshold. This proposal employs a hybrid-provisioning model
with authorization credentials and policy templates, with local
evaluation and enforcement of the dynamically derived poli-
cies. By using local mechanisms, we can offer now a much
tighter control, avoiding the need for such resilience.

Lazouski and co-authors [8] applied usage control to a
IaaS cloud system and created XACML language extensions in
order to express attribute updates and reevaluation constraints.
Their architecture is based on the outsourcing model and peri-
odically reevaluates policies affected by attribute changes. The
authors also consider the possibility of an event-based reevalu-
ation. The possible overload of policy evaluation mechanisms
is not addressed. This proposal does not employ extensions to
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the XACML specification; it offers individually configurable
reevaluation periods for policies, and uses mechanisms for
fine-grained control (i.e. application containers, not full virtual
machines).

An access control architecture based on the UCONABC

model was proposed by Danwei and his colleagues [9]. Their
main contribution is the inclusion of a negotiation module
coupled with the authorization architecture. The user has the
possibility of choosing another access option through negoti-
ation, in certain situations, instead of being promptly rejected
when an authorization credential is insufficient. Our proposal
does not need such fall-back functionality because policies
are derived dynamically, thus it is not possible to encounter
a mismatch between user attributes and the enforced policy.

VI. CONCLUSION

This paper presented and evaluated an architecture for
the distributed management of usage control in distributed
systems (e.g. cloud computing). Our contribution is the use
of policy templates and authorization assertions to derive
access control policies. Templates are previously stored in
the local domains, where policy evaluation and enforcement
are performed. The authorization assertions avoid the need of
sending whole policies through the network for each user, thus
reducing message sizes and keeping the flexibility for defining
individual policies.

Policy synchronization is done by sending new assertions
with different attribute values – when the local domain detects
the change, the affected local policies are derived again and
reevaluated.

Tests showed the suitability of containers to implement
lightweight UCONABC controls, and that the proposal signifi-
cantly reduces message size (42.7% when compared to provi-
sioning). The proposal shows the benefits of the provisioning
without the complexity of synchronizing policies.

As future works, we plan to develop a decentralized archi-
tecture for sharing attributes between local domains, aiming to
enable the dynamic setup of authorization attributes.
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