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Towards an Energy-Efficient Anomaly-Based 
Intrusion Detection Engine for Embedded Systems 
Eduardo Viegas, Altair Santin, André França, Ricardo Jasinski, Volnei Pedroni, and Luiz Oliveira 

Abstract— Nowadays, a significant part of all network accesses comes from embedded and battery-powered devices, which 
must be energy efficient. This paper demonstrates that a hardware (HW) implementation of network security algorithms can 
significantly reduce their energy consumption compared to an equivalent software (SW) version. The paper has four main 
contributions: (i) a new feature extraction algorithm, with low processing demands and suitable for hardware implementation; (ii) 
a feature selection method with two objectives - accuracy and energy consumption; (iii) detailed energy measurements of the 
feature extraction engine and three machine learning (ML) classifiers implemented in SW and HW - Decision Tree (DT), Naive-
Bayes (NB), and k-Nearest Neighbors (kNN); and (iv) a detailed analysis of the tradeoffs in implementing the feature extractor 
and ML classifiers in SW and HW. The new feature extractor demands significantly less computational power, memory, and 
energy. Its SW implementation consumes only 22% of the energy used by a commercial product and its HW implementation 
only 12%. The dual-objective feature selection enabled an energy saving of up to 93%. Comparing the most energy-efficient 
SW implementation (new extractor and DT classifier) with an equivalent HW implementation, the HW version consumes only 
5.7% of the energy used by the SW version. 

Index Terms—B.9.1 Low-power design; B.9.2 Energy-aware systems; I.2.6.g Machine learning; I.5.2.a Classifier design and 
evaluation; I.5.2.b Feature evaluation and selection; B.5.2.b Hardware description languages; C.2.0.f Network-level security and 
protection; D.4.6 Security and Privacy Protection 
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1 INTRODUCTION

ccording to yearly internet threat reports [1], there 
were 6,549 new vulnerabilities identified in 2014. The 

yearly average since 2006 is over 4,600, or 12 new vulnera-
bilities per day [2]. An embedded system connected to the 
Internet is potentially exposed to a large number of vulner-
abilities that can be exploited by an attacker. 

An intrusion detection engine can be used to protect an 
embedded system from attacks over a network. An anom-
aly detection engine (ADE) is an effective solution when 
the number of vulnerabilities is large and increasing. An 
ADE is composed of two main parts: algorithms imple-
menting well-known inference techniques (e.g., machine 
learning) and a model (an attack profile). 

There are two important phases in the development and 
use of an ADE: model building and classification. The 
model-building phase is usually performed offline, based 
on a set of known inputs and outputs. This task is compu-
tationally intensive, and it is usually performed purely in 
software. In the classification phase, network traffic is ana-
lyzed, and a set of features is extracted from the exchanged 
packets. These features are used by a classifier and an 
anomaly model to predict whether the analyzed traffic is 
normal or an attack. This phase is traditionally performed 

in software; however, different studies [3][4] indicate that 
a hardware implementation can reach better throughput 
and lower energy consumption.  

For the purposes of this work, a software (SW) imple-
mentation is a solution that runs on general purpose hard-
ware (a commodity computing platform), and a hardware 
(HW) implementation is a circuit designed for a dedicated 
purpose. An embedded system [5] is a dedicated computer 
system, running application-specific SW and implemented 
in HW using microcontrollers, Systems-on-a-Chip (SoCs), 
or Field-Programmable Gate Arrays (FPGAs). 

A hardware implementation of an algorithm can be cus-
tom-tailored to a specific problem, yielding a solution that 
is more optimized if compared to a SW implementation. 
The circuit can be described using a hardware description 
language (HDL) such as VHDL (Very High Speed Inte-
grated Circuits Hardware Description Language). Tradi-
tionally, hardware-based intrusion detection uses signa-
ture-based algorithms, which perform bit-pattern match-
ing in the network traffic. This approach usually provides 
good accuracy and performance [6][7][8]; however, it may 
not detect attacks in more complex scenarios [9][10][11], 
demanding the use of anomaly-based techniques [12]. 

In the literature, most works that discuss anomaly de-
tection using hardware circuits do not take into account the 
resulting accuracy [13][14][15]. Usually, the developers 
create a direct implementation of the algorithm using an 
FPGA [13][16][17], making changes to account for the re-
strictions of a hardware implementation, but without con-
sidering the impact in the system accuracy [18]. In this na-
ïve conversion from SW to HW, it is not possible to identify 
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implementation errors that may appear due to modifica-
tions in the classifier, and it is not possible to guarantee 
that the detection engine in the FPGA is functionally equiv-
alent to and has the same detection accuracy as the soft-
ware version. Moreover, the update of the detection engine 
or model requires reprogramming the entire FPGA chip. 

 In battery-powered systems, energy efficiency is an-
other important requirement, in addition to detection ac-
curacy. Feature extraction is an important part of an anom-
aly-based detection engine, performing a constant network 
data stream (packets) analysis and consuming a significant 
amount of energy; therefore, in both SW and HW imple-
mentations, this module must be highly energy efficient.  

This paper presents a new set of techniques to improve 
the energy efficiency in anomaly-based packet classifica-
tion, using machine learning algorithms. We focus on the 
practical details of feature selection and extraction, and in 
the implementation of classifiers in SW and HW for em-
bedded systems. We compare the energy efficiency of sev-
eral SW implementations with their HW counterparts.  

The paper is organized as follows. Section 2 provides 
background in intrusion detection and machine-learning 
classifiers. Sections 3 and 4 present the development of 
classifiers and feature extraction engines in SW. Section 5 
describes the hardware implementation of the extractors 
and classifiers. Section 6 compares the experimental results 
in SW and HW. Section 7 summarizes the related works. 
Finally, Section 8 presents conclusions and future work. 

2 BACKGROUND 
2.1 Anomaly-Based Intrusion Detection 
The goal of an Intrusion Detection System (IDS) is to iden-
tify security violations in a computing system. A Network-
Based Intrusion Detection System (NIDS) monitors the 
traffic by analyzing packets, hosts, and service flows in 
search of attacks [19].  

Denial-of-Service (DoS) is a current and dangerous at-
tack [1] in which attackers try to render a host or its ser-
vices unavailable to the legitimate users. This is normally 
done by sending an amount of requests that a host cannot 
handle properly, or by sending a malformed request that 
causes a system or a service to terminate abnormally [20]. 

In order to detect DoS attacks, a NIDS can use a signa-
ture-based engine. This approach usually produces low 
false-alarm rates; however, it is unable to detect many at-
tack variants. Moreover, as the number of attacks in-
creases, the number of signatures also increases, making 
the usage of the whole set of signatures impractical for 

online detection [21]. 
Anomaly-based detection consists in creating a behav-

ior model that is used to detect deviations from normal be-
havior. An anomaly-based classifier assigns a class (e.g., 
normal or attack) to each event (e.g., packet or flow). This 
approach can often detect attack variations, but it tends to 
produce higher false-alarm rates than the signature-based 
approach [22]. 

Machine learning (ML) is often employed to implement 
anomaly-based intrusion detection (Fig. 1). The network 
traffic is collected from the Network Interface Card (NIC) 
or from a pcap (packet capture) file containing previously 
captured network traffic. The packets are then filtered and 
sent to a feature extraction engine, which computes flow-
based and header-based attributes. These attributes are as-
sembled into a feature vector, which provides the input 
data for the training or classification phases of a classifier.  

To perform a classification, the ML algorithms use a be-
havioral model that can predict certain classes of network 
traffic (e.g., normal or attack). Creating a model requires a 
set of feature vectors (a dataset) whose classes are known 
for each vector. The ML algorithm learns the behavior 
model, which is then tested with a set of samples that were 
not used in the model creation. The process is repeated un-
til the desired accuracy is achieved or cannot be further im-
proved. If the nature of the network traffic changes, it may 
be necessary to regenerate the model – for instance, when 
a different kind of attack arises and cannot be detected. 

2.2 Feature Sets for Network Intrusion Detection 
A NIDS uses only the information available in network 
packets to distinguish attacks from legitimate (normal) re-
quests. The feature set used in this paper was based on pre-
vious works existing in the literature [23][24][25]. In total, 
50 features were extracted from each network packet. Ta-
ble 1 show the way in which the features are organized: (i) 
header-based (features extracted directly from each packet 
header); (ii) host-based (extracted from the general commu-
nication history or data flow between two hosts); and (iii) 
service-based (extracted from the communication history 
between two hosts, and specific to a single service). 

 
Fig. 1. Overview of a typical anomaly-based intrusion detection pro-

cess. 

TABLE 1 - CATEGORIES OF EXTRACTED FEATURES 
Feature category  Number of 

Features 

Example

Header‐based:  features  extracted 

directly from a single packet header. 

27  SYN  flag  from TCP proto‐

col header. 

Host‐based flow: features extracted 

from data exchanged between  two 

hosts, involving various packets. 

17  Number of bytes sent from 

a  client  to  a  server  in  the 

last 2 seconds. 

Service‐based  flow:  features  ex‐

tracted  from multi‐packet data  ex‐

changed between two services. 

6  Number of bytes sent from 

a client to a server service in 

the last 2 seconds. 
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2.3 Feature Extraction 
The feature extraction phase (Fig. 2) starts with the selec-
tion of the desired kind of traffic by filtering the network 
packets based on protocol fields or flags, patterns of bits, 
or packet content. This filtered packet set contains the data 
that will be processed or used directly to obtain the desired 
features (Table 1). The features are then parsed, scaled to a 
uniform range, and assembled into a feature vector. The 
feature extraction engine (Fig. 2) typically performs an im-
port part of this process.  

The analysis and extraction of host-based and service-
based flows can be obtained by a flow extraction engine or 
by a netflow-based [26][27] approach. 

2.4 Feature Selection 
The feature selection process identifies the most relevant 
features from a feature set (Fig. 2), aiming at improving the 
classifier accuracy and reducing the computational load 
during classification. Feature selection algorithms can be 
classified into two categories, based on whether the selec-
tion is performed independently from the learning algo-
rithm used to construct the classifier. If feature selection is 
independent from the learning algorithm, the technique is 
said to follow a filter approach. Otherwise, it follows a 
wrapper approach [28]. 

While the filter approach is generally computationally 
more efficient, its major drawback is that an optimal selec-
tion of features may require the inductive and representa-
tional biases of the ML algorithm used to build a classifier. 
On the other hand, the wrapper approach has the compu-
tational overhead of evaluating candidate feature subsets 
by executing the ML algorithm on the dataset, using each 
subset under consideration. 

Because a complete search over all possible subsets of a 
feature set (2ே, where N is the number of features) may not 
be computationally feasible, several authors have explored 
heuristics for feature subset selection. Genetic Algorithms 
(GA) are an interesting alternative because they do not as-
sume restrictive monotonicity and can use multiple-objec-
tive optimization (for example, classification accuracy and 
energy consumption).  

A general multi-objective optimization problem con-
sists of a number of objectives associated with inequality 

and equality constraints. Solutions to a multi-objective op-
timization problem can be expressed mathematically in 
terms of non-dominated points (a solution is dominant 
over another only if it has better performance in all crite-
ria). A solution is said to be Pareto-optimal if it cannot be 
dominated by any other solution available in the search 
space. 

Conflicting objectives are a common difficulty in multi-
objective optimization. In general, none of the feasible so-
lutions allows simultaneously optimal solutions for all ob-
jectives. Thus, mathematically, the most favorable Pareto-
optimum is the solution offering the least conflict between 
objectives. In order to find such solutions, classical meth-
ods scalarize the objective vector into a single objective.  

The simplest of all classical methods is the weighted 
sum, which aggregates the objectives into a single and pa-
rameterized objective through linear combination. How-
ever, setting up an appropriate weight vector also depends 
on the scaling of each objective function. Therefore, the so-
lution obtained through this strategy largely depends on 
the underlying weight vector. 

To overcome such difficulties, Pareto-based evolution-
ary optimization has become an alternative to classical 
techniques such as the weighted sum. Goldberg [29] first 
proposed this approach, which explicitly uses Pareto dom-
inance to determine the reproduction probability of each 
individual. In essence, it consists of assigning rank 1 to 
non-dominated individuals and removing them from con-
tention, then finding a new set of non-dominated individ-
uals, ranked 2, and so forth. 

A popular multi-objective genetic algorithm that has 
been successfully applied to multi-objective feature selec-
tion [30] is the non-dominated sorting genetic algorithm 
(NSGA-II) [31]. The idea behind NSGA-II is to use a rank-
ing selection method to emphasize good points and a niche 
method to maintain stable subpopulations of good points. 
It varies from simple genetic algorithms only in the way 
the selection operator works. 

3 DEVELOPMENT OF ENERGY-EFFICIENT 

CLASSIFIERS IN SOFTWARE 

This section outlines the development process of the clas-
sifiers used in our experiments, including the model train-
ing, software implementation, and experimental measure-
ment phases. For our experiments, we have built a dataset 
aimed at DoS attacks. 

 
3.1 Power Measurement in Software 
Despite the high demand for energy-efficient systems, 
there are very few tools available to measure and evaluate 
the power consumption of software applications. Moreo-
ver, the currently available solutions are unable to isolate 
the power consumption of an application running in a 
multitask environment [32][33][34][35]. To overcome these 
problems, we have developed a custom power measure-
ment platform composed of a hardware environment, a 
measurement application, and a kernel-level probe mod-
ule (KPM). The KPM detects when the monitored application 

 
Fig. 2. Overview of the feature extraction process. 
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is running and triggers a signal in the motherboard’s paral-
lel port; while this signal is asserted, the monitored appli-
cation is running. The measurement application periodi-
cally samples this signal and the voltage across a current 
sensor (Fig. 3), a shunt resistor in series with the board 
power supply. The current samples are integrated over the 
time the monitored application was actually executing in 
the microprocessor, providing the energy consumption of 
the application.  

Fig. 3 shows the general setup of the measurement plat-
form. The hardware environment is composed of a 
DN2800MT Atom motherboard with an Intel N2800 CPU, 
4 GB DDR3 RAM, and a 500 GB hard drive. A 270 mΩ re-
sistor is used as current sensor for the main power line. The 
system is powered by a 15 VDC power supply, and the cur-
rent consumption is sampled by a National Instruments 
USB-6008 data acquisition device (DAQ), with a 12-bit res-
olution, at 5,000 samples/s, in differential mode. 

The platform was used to measure the power consump-
tion of all SW algorithms described in this paper. The en-
ergy consumed per operation (entire extraction or classifi-
cation of one packet) was calculated with equation (1), 
where ௥ܲ௨௡௡௜௡௚	denotes the motherboard’s power consump-
tion while the algorithm is running, and ௜ܲௗ௟௘ denotes the 
motherboard baseline power consumption. We discount 
the baseline consumption because our goal is to isolate the 
consumption of the measured application in order to com-
pare it with its HW counterpart. 

	

ሻܬሺ	݊݋݅ݐܽݎ݁݌݋	ݎ݁݌	ݕ݃ݎ݁݊ܧ ൌ 	
൫௉ೝೠ೙೙೔೙೒ି௉೔೏೗೐൯∗௣௥௢௖௘௦௦௜௡௚	௧௜௠௘

௡௨௠௕௘௥	௢௙	௣௔௖௞௘௧௦
   (1) 

The developed power measurement platform can be 
used with virtually any operating system, and it is inde-
pendent of the hardware used in the motherboard. 

3.2 Data Generation 
Rather than using publicly available data, we have created 
our own dataset in a controlled environment, in order to 
prevent the problems exposed in [36] when traffic rec-
orded from a real environment is used. The proposed 
method aims at ensuring the desired properties of a NIDS 
dataset [58]. Among other characteristics, the dataset 
should be publicly available and contain realistic network 
traffic, it should be similar to production environments, its 
packets should be well-formed and correctly labeled (pre-
vious class assignment), it should have normal and at-
tacker profile diversity, and the attacks should be correctly 
implemented and easy to update and reproduce. 

The deployed scenario uses a single host as a server 
when generating the background traffic (normal traffic 
samples). This server hosts a number of services and re-
sponds to all received requests. It generates real service re-
sponses using a honeypot tool (HoneyD [37]), resulting in 
a database with real and valid traffic. HoneyD was config-
ured as a high interactivity honeypot, hosting five different 
services (Table 2). To create client requests, we used 100 
hosts running automated scripts. The interval between 
successive requests from the same client varies randomly 
between zero and four seconds, following a uniform distri-
bution. All the network traffic produced in this scenario 
was captured and stored in a pcap file. 

The attack traffic was created using well-known exploit 
tools to guarantee a correct attack characterization. The 
scenario simulates four different DoS attacks: synflood, 
udpflood, icmpflood, and slowloris (an attack that opens 
many connections to a webserver and keeps them open). 
Each attack was originated from a different virtual ma-
chine, with varying packet send rates and attack durations. 

The class label for each sample (normal or attack) was 
automatically assigned, as we know the source IP address 
of each machine generating normal traffic or attacks. This 
eliminates the possibility of wrong labeling that could gen-
erate inaccurate models during the learning process. Every 
feature that could identify a specific machine by means 
other than its behavior (for instance, IP or MAC addresses) 
was removed from the feature vector. 

The scenario ran for 30 minutes. Legitimate clients 
made requests during the entire time, ensuring the exist-
ence of background traffic for the entire period. The peri-
ods from zero to seven minutes and from twenty-three to 
thirty minutes are attack-free, allowing us to analyze the 
system behavior with normal packets only. During the pe-
riod between seven and twenty-three minutes, the attacks 
are deployed. Table 3 shows the traffic distribution ob-
served during the database generation and the number of 
different behaviors for each traffic type. 

The vast majority of events (network packets) in the da-
tabase are normal (97.24 %). Because the two classes do not 
occur with the same frequency, we must use additional 
metrics (such as the false-positive and false-negative rates) 
when evaluating the classifiers performance. To reduce the 
complexity during the model-training phase and to allow 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Power measurement platform for software applications. 

TABLE 2 - SERVICES USED FOR NORMAL TRAFFIC SIMULATION
Service Description 
HTTP The 1,000 most visited worldwide websites were mirrored 

(www.alexa.com/topsites) and hosted in the honeypot. Each 
HTTP client requests a random website. 

SMTP A script for each SMTP client sends a mail with a 50-400 bytes 
subject and 100-4,000 random bytes in the body. 

SSH A script for each SSH client logs into the honeypot host and exe-
cutes a random command from a list from 100 possibilities. 

SNMP A script for each SNMP client walks at random through a prede-
fined MIB (Management Information Base) from a predefined list 
of possible MIBs. 

DNS A script is run for every name resolution, making same request to 
the honeypot service. 
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an equal representation from both classes on the datasets, 
we stratified our database (secplab.ppgia.pucpr.br/eeids). 
We used 25% of the attack events for model training, 25% 
for model validation (feature selection process evaluation), 
and 50% for model testing (final accuracy rate). To guaran-
tee that both classes have the same representation during 
the model training, we randomly choose the same number 
of normal and attack events from the database. The re-
maining normal events are used for model testing.  

3.3 Preprocessing 
After building the samples database, a preprocessing 
phase may be necessary for some classifier algorithms. In 
this work, we have evaluated the DT (Decision Tree), NB 
(Naive-Bayes), and kNN (k-Nearest Neighbors) classifiers. 
The DT classifier does not require any pre-processing. The 
NB classifier requires a discretization step. Every feature 
admitting a real number as value was discretized, allowing 
the classifier to compute the individual probability for each 

class (normal or attack). The kNN classifier requires a nor-
malization step; every feature was normalized to the range 
-1.0 to +1.0, to avoid disproportional influences of different 
features during the distance calculation. For every nominal 
(enumeration) feature, such as the TCP connection status, 
a corresponding numerical value was assigned. 

3.4 Feature Selection  
Different features require different amounts of processing 
to be computed, which implies different energy consump-
tion levels. We have measured the energy consumption of 
each individual feature and used these values in the fea-
ture selection process. A total of 100 measurements, with 1 
million packets each, were performed for each of the 50 
features. The energy consumption to extract each feature 
individually is the difference between the energy con-
sumed to extract all 50 features and the energy consumed 
to extract all but the feature of interest. The average energy 
consumption for each feature, using the hash-based extrac-
tor (section 4.2), is shown in Fig. 4. 

In the subsequent energy measurements for the extrac-
tor and classifiers, we have considered three feature selec-
tion scenarios: no feature selection, single-objective (accu-
racy only) selection, and dual-objective (accuracy and en-
ergy consumption) selection. In our dual-objective sce-
nario, the first objective is to minimize the error rate of the 
attack model, and the second objective is to minimize the 
energy consumption for feature extraction. Giving both ob-
jectives the same weight, the relative energy consumption 
is calculated by summing the energy consumption for each 
used feature, divided by the total energy consumption 
when using all features. The error rate is evaluated using 
the validation dataset (section 3.2) and defined as the mis-
classification rate of the obtained model. The relationship 
between the error rate and the estimated energy consump-
tion is shown in Fig. 5. Each point represents a population 
of the last generation for each classifier.  

The power measurements were performed using the 
platform described in section 3.1. The feature extraction 
module was modified to extract only a subset of features 
in each run. The GA (single-objective) and NSGA-II (dual-
objective) were used with 100 generations and 100 popula-
tions for each generation, a mutation probability of 3.3%, 

TABLE 3 - NUMBER OF CAPTURED PACKETS 
IN THE GENERATED SCENARIO 

Traffic  Generated 

Behaviors 

Number of 

Packets 

Packets 

Representativeness

(%) 

HTTP  65,786  20,238,802  73.61 

97.24 

SMTP  35,110  2,298,222  8.36 

SSH  2,579  1,048,482  3.81 

SNMP  10,111  3,017,731  10.97 

DNS  ‐  135,188  0.49 

SYNFLOOD Attack  8  471,288  1.71 

2.76 
UDPFLOOD Attack  6  121,645  0.44 

ICMPFLOOD Attack  6  130,698  0.47 

SLOWLORIS Attack  5  37,814  0.14 

TOTAL  113,611  27,499,870  100.00  

 

 
Fig. 4. Average energy consumption for the extraction of each fea-

ture. 

 
Fig. 5. Relationship between accuracy and energy consumption for 

the three classifiers. 
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and a 60% crossover probability. The classifiers were de-
veloped using the Weka framework [38].  

The results obtained for the DT, kNN, and NB classifiers 
are discussed in Section 3.5. The accuracy value was ob-
tained using the test dataset, which contains only packets 
that are not present in the training or validation datasets. 

3.5 Energy Consumption 
Following the feature selection stage, a model was gener-
ated for each combination of classifier (DT, NB, and kNN) 
and feature selection method. The SW implementations of 
the classifiers are direct translations of their algorithms 
and were obtained by translating the output of the Weka 
framework to the C++ language.  

Table 4 compares the accuracy and energy consumption 
of the three classifiers and three feature selection methods. 
The results indicate that feature selection can provide a sig-
nificant reduction in energy consumption, while maintain-
ing approximately the same accuracy rate. 

We can evaluate the energy savings achieved in the fea-
ture extraction stage by using the “no selection” method as 
a baseline. The relative savings were 44.5% (single-objec-
tive) and 51.5% (dual-objective) for DT, 36.5% (single-ob-
jective) and 52.0% (dual-objective) for kNN, and 45.5% 
(single-objective) and 51.5% (dual-objective) for NB. On 
average, feature selection provided an energy saving of 
42.2% (single-objective) and 51.7% (dual-objective), in the 
extraction stage. Therefore, dual-objective feature selection 
provided an average 9.5% of extra savings in feature ex-
traction, when compared to single-objective selection.  

Similarly, we can evaluate the energy savings achieved 
in the classification stage using the “no selection” method 
as a baseline. The relative savings were 44.4% (single-ob-
jective) and 44.4% (dual-objective) for DT, 60.2% (single-
objective) and 80.7% (dual-objective) for kNN, and 85.8% 
(single-objective) and 92.9% (dual-objective) for NB. On 
average, feature selection provided an energy saving of 
63.5% (single-objective) and 72.7% (dual-objective). There-
fore, dual-objective feature selection provided an average 
9.2% of extra savings, when compared to single-objective 
selection. 

On average, the energy savings in the entire extraction 
and classification process (total energy consumption) were 
of 57.5% (single-objective) and 68.7% (dual-objective). In 
summary, dual-objective feature selection provided an av-
erage energy savings of 9.3% while incurring an average 
0.90% accuracy loss, when compared with single-objective 
feature selection. 

4 DEVELOPMENT OF FEATURE EXTRACTORS IN 

SOFTWARE 

As indicated in Table 4, a large part of the energy cost is 
due to the feature extraction stage. However, we did not 
find previous work in the literature measuring the energy 
cost for extracting each feature individually. In our work, 
we have paid special attention to reducing the energy con-
sumption of this module. In this section, we present two 
approaches to the implementation of feature extraction en-
gines in software, which we named table-based and hash-

based. We then compare the two approaches with a third 
alternative called netflow-based, a table-based implementa-
tion found in commercial networking equipment.  

4.1 Table-Based Extraction Method  
The computation of feature values requires storing infor-
mation about the data exchanged between hosts or about 
the services (Table 1, section 2.3). The table-based imple-
mentation approach uses a table indexed by the IP ad-
dresses of the communicating hosts. This table, called the 
host lookup table, indexes two other tables: the host flow 
table and the service lookup table. The values of host-
based features can be accessed directly in the host flow ta-
ble. For service-based features, another lookup is needed 
to reach the flow table containing the features values (Fig. 
6). The service lookup table uses the client port number as 
index.  

The host and service flow tables store pieces of infor-
mation corresponding to packets read from the network; 
this information must be consolidated to provide the fea-
ture values over a period of time (time window). There-
fore, for each table entry, it is necessary to keep the net-
work traffic corresponding to the chosen time window, as 
well as its time of occurrence. During extraction, the fea-
ture values are computed by adding the contribution of 
each packet within the time window; packets with a 
timestamp older than the time window are discarded. 

The overall operation can be described as follows: each 
time a packet arrives at the feature extraction module the 
host lookup table is accessed using the client IP address. 
The next step is to calculate the updated feature values. De-
pending on the kind of feature being extracted, the algo-
rithm follows one of two possible paths.  

TABLE 4 – COMPARISON OF ENERGY CONSUMPTION FOR 
FEATURE EXTRACTION ENGINE AND ML CLASSIFIERS 

Classifier  (feature  se‐

lection technique) 

Energy Cons. 

for Feature Ex‐

traction (μJ) 

Energy Cons. 

for Classifica‐

tion  (μJ) 

Total En‐

ergy Cons. 

(μJ)

Accuracy

(%) 

DT (no‐selection)  2.00  0.09  2.09  99.94 

DT (single‐objective)  1.11  0.05  1.16  100.00 

DT (dual‐objective)  0.97  0.05  1.02  99.14 

kNN (no‐selection)  2.00  169.74  171.74  98.98 

kNN (single‐objective) 1.27  67.57  68.83  99.80 

kNN (dual‐objective)  0.96  32.79  33.75  98.53 

NB (no‐selection)  2.00  2.53  4.53  99.02 

NB (single‐objective)  1.09  0.36  1.45  99.98 

NB (dual‐objective)  0.97  0.18  1.15  99.41 

 
Fig. 6. Table-based feature extractor implementation. 
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For host-based features, only the host flow table is ac-
cessed. This table contains the previous traffic exchanged 
with a single host. The entire table is scanned, and the data 
contributing to the current feature is consolidated into the 
new feature value. Only packets within the configured 
time window are used, and older traffic is discarded.  

For service-based features, the service lookup table is 
accessed using the client port number as index. This table 
contains the traffic exchanged with a single host and be-
longing to a single service. The entire table is scanned and 
the values consolidated. Packets outside the current win-
dow are also discarded.  

In the table-based extractor, there are at most 2ଷଶ entries 
in the host lookup table (corresponding to all possible nu-
meric values of IPv4 addresses) and 2ଵ଺entries in the ser-
vice lookup table (corresponding to all possible numeric 
port values). Each entry in the service lookup table con-
tains pointers to tables with the packet data used to calcu-
late the consolidated service-based features. All tables and 
entries are allocated dynamically. We use a two-second 
time window to calculate the feature values, an interval 
commonly used in the literature [23][24][25].  

The most demanding task in table-based extraction is to 
update the feature values by summing the contribution of 
each packet when a new packet is received. For each fea-
ture, the corresponding flow table (host or service) must be 
scanned, and all previous packets within the current time 
window must be read to calculate the updated feature 
value. To implement the time window, each packet is 
tagged with a timestamp indicating the moment it was re-
ceived. This provides a very fine-grained control, but it in-
curs a high computational cost. The window is effectively 
a sliding time window, because only the past two seconds 
are taken into account when calculating a consolidated 
value.  

One approach to reduce the computational demand is 
to reduce the window size. This results in lower processing 
and memory costs; however, it may negatively affect the 
classifier accuracy. To evaluate this tradeoff, we have 
measured the impact of the time window reduction in clas-
sifier accuracy. We used the method introduced in section 
3.1 and the classifiers with no feature selection (the worst 
case for accuracy rate – see Table 4, section 3.5). We used 
four different time ranges for the sliding time window, 
from 0.5 to 2 seconds (Table 5). The largest accuracy reduc-
tions were observed for a 0.5 seconds time window: 0.05% 
for DT, 0.59% for kNN (5NN), and 0.43% for NB. On the 
other hand, the reduction from 2 to 0.5 seconds provided 
an average energy savings of 39.3%. This indicates that a 
sliding time windows of 0.5 seconds may be useful, for in-
stance, when the embedded system reaches a critical bat-
tery level.  

Some important issues regarding the implementation of 
a table-based extractor or a netflow-based extractor (a 
standard data collection method available in many net-
working products) are discussed next  

An important shortcoming of the table-based approach 
is the need for storing the received packets. Despite any 
possible reduction with the shortening of the time win-

dow, if the throughput is high, the required memory in-
creases, as well as the processing demands. As will be dis-
cussed in section 4.3 (Table 6), there is a high computa-
tional cost to maintain and update this information in the 
table-based approach. The table-based extractor is also dif-
ficult to implement in hardware, because it requires dy-
namic memory management and the iterative scanning 
and checking of previous network packets. More details 
about the table-based extractor in hardware are provided 
in section 5.1. 

A netflow-based implementation also has a series of 
drawbacks. A netflow-enabled device simply keeps a cache of 
IP flows that have traversed that device. The first implica-
tion is that a second program, a netflow collector, must ana-
lyze the reported flows and extract the NIDS features. This 
program operates similarly to tcptrace (www.tcptrace.org). 
Second, there is some delay between the moments when 
the packets are captured and the netflow collector receives 
the flow information. Normally, the flow is reported when 
one of three conditions occur: (i) the flow is inactive for a 
certain period (CISCO devices usually adopt a 15-second 
idle timeout [39]), (ii) the flow has been active for a long 
time, or (iii) a TCP flag indicates the flow has ended. Ad-
ditionally, each reported flow must be consolidated in a 
netflow collector, and further processing is required for 
each feature being extracted. This makes netflow-based 
feature extraction a costly task.  

4.2 Hash-Based Extraction Method 
One of the problems with the table-based approach is the 
need for keeping the previous history of flow information 
within the chosen time window, as explained in section 4.1. 
To solve this problem, we propose a new approach based 
on time slots. This approach has two main advantages: (i) 

Fig. 7. Comparison of the table-based (sliding time window) and 
hash-based (time slots) approaches. 

TABLE 5 - CLASSIFIER ACCURACY FOR DIFFERENT SIZES OF 
THE SLIDING TIME WINDOW. 

  Sliding Time 

Window size

(sec.) 

Energy Con‐

sumption per 

packet (μJ) 

Processing 

Time per 

packet (μs) 

Classifier Accuracy (%) 

  DT  5NN  NB 

  0.5  366.31  344.50  99.86  97.30  98.19 

  1.0  456.11  412.74  99.90  97.75  98.32 

  1.5  538.74  478.86  99.90  97.80  98.42 

  2.0  603.78  525.15  99.91  97.89  98.62 
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it makes it easier to remove the influence of older packets 
from the feature calculation, and (ii) allows a simple resiz-
ing of the time window, which can be reduced from 2.0 to 
0.5 sec., for instance, when the device battery level is low. 

Our implementation uses five time slots, numbered 
from 0 to 4. At any given moment, four of the slots are used 
to compose the feature value; the remaining slot (the “dirty 
slot”) is not considered in the calculation and is scheduled 
for reset (Fig. 7). Each slot accumulates flow information 
corresponding to a time window of 0.5 sec.; the slot that is 
currently accumulating flow information (the active slot) is 
shown with a darker shade in Fig. 7. To compute a consol-
idated feature value, one must add up the values of the ac-
tive slot and the three most recently updated slots. 

Every 0.5 seconds, the next slot (in decreasing numeri-
cal order) becomes active. When the active slot number 
reaches zero, it starts again from four, in a circular count-
down fashion. The same happens with the number of the 
dirty slot; every 0.5 seconds, a periodic maintenance task 
resets all the dirty slots in memory.  

In the table-based approach, the time considered in the 
feature calculation corresponds exactly to the past two sec-
onds. In contrast, in the time slots approach, the feature 
may correspond to an interval between the last 1.5 and 2.0 
seconds. As shown in Table 5, this variation does not incur 
a significant accuracy loss. A diagram comparing the cal-
culation of a feature value in the table-based and hash-
based approaches is shown in Fig. 7. 

In the time-slot-based approach described above, a hash 
function provides the address for the time slots corre-
sponding to a feature (Fig. 8). Contrary to the table-based 

approach, the hash-based approach does not require a se-
ries of indirections and lookup operations. 

Our approach uses two indexing schemes to obtain an 
address for the time slots. For host-based features, a key is 
created from a unique feature identifier (feature ID) and 
the client IP address. For service-based features, the key is 
composed of the client IP address, feature ID, and client 
port address (Fig. 8). In both cases, the key goes through 
the same hash function. Each memory position contains 
the five slots corresponding to the flow information for a 
single feature. Each slot is 2 bytes wide, yielding 10 bytes 
per flow. The output of the hash function is 16 bits long; 
therefore, our current implementation is able to handle 2ଵ଺ 
flows with 10 bytes each, requiring in total 5 Mbits. This 
memory size is within the limits of the embedded system 
used in our experiments, which has a total of 6.6 Mbits. 

Our implementation uses the well-known FNV 
(Fowler–Noll–Vo) hash function – www.isthe.com/ 
chongo/tech/comp/fnv). This function allows a variable 
number of output bits, making it possible to adapt to dif-
ferent table sizes and gracefully degrading the hash prop-
erties in a controlled way. Our flow table is stored in a con-
tiguous memory region (flat memory model) with a fixed 
size. This has two implications. First, because the address 
is provided by the hash function, there may be unused 
memory locations. Second, it is possible that different keys 
have the same hash value (causing hash collisions), and 
two different features may be allocated to the same 
memory address. The impact of hash collisions in the clas-
sifier accuracy is evaluated in section 4.3. 

4.3 Impact of Hash Collisions 
The occurrence of hash collisions (Fig. 9, left y-axis) and the 
total memory size (right y-axis) depend on the number of 
entries available in the table (x-axis): the bigger the number 
of possible entries, the lower the number of collisions, and 
the higher the memory requirements. The graphs shown in 
Fig. 9 and Fig. 10 were obtained with the dataset intro-
duced in section 3.2, composed of over 27 million packets.  

For 2ଵ଺ (or 64k) memory entries, we obtained a collision 
rate of 2.48%, using 5 Mbits of memory. For 2ଶସ memory 
entries, the collision rate drops to 0.04%, but the required 
memory is 640 Mbits. To evaluate this tradeoff, Fig. 10 
shows the effect of collisions on classification accuracy. For 
these measurements, a version of each classifier with no 
feature selection was used. For a memory size of 2ଵ଺ en-

 
Fig. 8. Overview of the hash-based feature extractor. 

Fig. 9. Correlation between hash collisions occurrence and the num-
ber of index entries. 

Fig. 10. Relationship between classifier accuracy, hash collisions, 
and number of index entries. 



E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 9 

 

tries, the results show a slight decrease in classifier accu-
racy: 0.21% for DT, 0.66% for kNN, and 0.69% for NB. This 
indicates that the 2ଵ଺ memory entries used in our imple-
mentation are enough to provide a good accuracy, even in 
the presence of hash collisions. 

4.4 Comparison of Extraction Approaches 
Using the power measurement platform described in sec-
tion 3.1, we measured the average energy consumption 
and processing time required to extract one packet, using 
the three extractors (Table 6). For the netflow-based imple-
mentation, the fprobe [40] library was used, exporting 
“ready” flows every 5 seconds, with an inactive lifetime of 
1 minute and an active lifetime of 5 minutes. Only the pro-
cessing time used for flow extraction (flow caches) was 
considered in Table 6; for an intrusion detection applica-
tion, it would be necessary to assemble each flow into a 
feature vector, as observed in section 4.1. 

The results show that the hash-based extractor is 189 
times faster and consumes only 0.33% of the energy used 
by the table-based implementation. Moreover, it is 8.7 
times faster and consumes only 22% of the energy used by 
the netflow-based implementation. The hash-based extrac-
tor was implemented with 2ଵ଺ table entries, as described in 
section 4.2. These results indicate that the hash-based ap-
proach is a promising candidate for implementation in em-
bedded systems. 

5 DEVELOPMENT OF EXTRACTORS AND 

CLASSIFIERS IN HARDWARE 

5.1 Table-Based Extractor Issues 
The direct implementation of the feature extraction algo-
rithm described in Section 4.1 would impose a series of 
challenges in hardware. One of the main limitations is the 
amount of memory required to keep the previous history 
of flow information. This amount is proportional to the 
number of known hosts and flows; in general, each feature 
requires at least one 32-bit accumulator. Another implica-
tion is that the feature computation must consider only the 
data exchanged within the sliding time window; therefore, 
a maintenance task would be necessary to remove packets 
outside the current window.  

In a software implementation, memory is allocated 
from an application-wide memory pool that is accessed 

uniformly. In contrast, a typical HW implementation uses 
a number of localized storage elements and on-chip 
memory structures. This helps eliminate bottlenecks in 
memory accesses, but it requires that the number of stor-
age elements be fixed at compile time, when the circuit is 
synthesized. This restriction makes the table-based feature 
extractor ill-suited for a hardware implementation. For 
these reasons, in our work, only the hash-based extractor 
was implemented in HW. 

5.2 Hash-Based Extractor Implementation 
Fig. 11 shows the block diagram of the hash-based feature 
extractor implemented in HW, which uses the same algo-
rithm as its SW counterpart and presents exactly the same 
extraction behavior and accuracy hit rate.  

The hash function is implemented as combinational 
logic. Its inputs are the remote IP address, remote port 
number (for service-based features), and the feature ID. 
The output is a 16-bit value, which will be used as a row 
address in the flow table.  

The feature flow table is a dual-port RAM with 2ଵ଺ 
memory locations (rows) and 5 slots per row. Each slot is 
16 bits wide, thus the total memory capacity is 2ଵ଺×5×16, 
or 5,242,880 bits (5 Mbits). 

For each incoming packet, the corresponding row is 
found and read from the flow table. Then the active slot is 
updated, according to the update logic for the current fea-
ture. For example, the number of received packets is up-
dated by incrementing it by one. The number of bytes re-
ceived is incremented by the packet’s payload size, and so 
on. 

After the updated slot value is calculated, it is replaced 
in the row read from the table. Only the active slot is 
changed when a feature is updated; the other four slots 
keep their previous values. This updated row is one of the 
two main outputs of the update_row block; the other is the 
actual feature value, used to compose the extracted feature 
vector that will be the output of the extractor module when 
the extraction is completed. The extracted feature value is 
calculated by adding up the value of the four slots cur-
rently in use (i.e., excluding the dirty slot). 

Once a row has been updated, it is written back to the 
flow table, and the extraction of a new feature begins. The 
process repeats until all features have been extracted. 

Besides the feature extraction proper, the extractor 
module includes a timer that manages periodic events. 
Every 0.5 seconds, the dirty slot column (i.e., all dirty slots 
in the flow table) must be reset. During this process, the 
extractor ready output is driven low, and one slot is reset 
every two clock cycles. In total, a column reset takes 
2ଵ଺×2÷(50·10଺) seconds, or 2.62 ms. During this time, any 
incoming packet are placed in a buffer for later processing. 

The VHDL code of the HW extractor is configurable in 
terms of which attributes to extract. Therefore, it can be 

Fig. 11. Block diagram of the hash-based feature extractor in HW. 

TABLE 6 - ENERGY CONSUMPTION AND PROCESSING TIME FOR 
EACH EXTRACTOR. 

Measurement item Table-based  Netflow-based 
(flows cache)

Hash-based

Energy Consumption (uJ/packet) 603.78 9.05 2.00 
Processing Time (us/packet) 525.15 24.19 2.78 
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custom-tailored for each classifier to provide only the re-
quired attributes, preventing unnecessary computations. 

Table 7 presents the resources used by the seven extrac-
tors implemented in HW, synthesized for an Altera Cy-
clone IV GX  FPGA. The implementations are named with 
a prefix (DT, NB, kNN, or ANY) denoting the classifier 
used with the extractor. The extractor labeled ANY (no se-
lection) can be used by any of the three classifiers, because 
it extracts all 50 features. The DT (dual objective) extractor 
uses the least resources: 1,439 LCs and 5,242,880 memory 
bits. The extractor for all features, ANY (no selection), uses 
the most resources: 2,785 LCs and 5,242,880 memory bits. 
All extractors use the same number of memory bits. 

5.3 Classifiers Implementation in Hardware 
Each classifier requires a specific version of the feature ex-
tractor, configured to extract only the necessary features. 
For example, the DT (single objective) extractor (Table 7) 
extracts the features used by DT (single objective) classi-
fier, and so on. All classifiers were implemented in HW for 
the three feature selection approaches: no selection, single 
objective, and dual objective. 

The DT classifiers are direct translations of their SW 
counterparts [41]. Comparators check the feature ranges, 
and the outputs are combined in a sum-of-products; if the 
sum is a logic one, the packet is classified as an attack [42]. 

The NB classifier performs two table lookups per attrib-
ute: one to get the probability that the attribute denotes an 
attack, and another for the probability that it is a normal 
packet. The classifier serializes the table lookups and cal-
culates the probability of one attribute at a time. When all 
probability values have been multiplied, a comparator de-
cides whether the input packet is normal or an attack, 
based on the higher probability value [42]. 

The kNN classifier keeps 1,000 training samples in a 
ROM. The circuit calculates the five closest distance values 
(i.e., k = 5) and the corresponding class labels. After all dis-
tances have been calculated, the label with the most occur-
rences is selected as the output [42]. 

Table 8 presents the HW resources used by the three 
classifiers. The dual-objective DT is the most compact of all 
classifiers, requiring only 52 logic cells (LCs). The no-selec-
tion kNN classifier uses the most resources: 11,327 LCs, 
986,112 memory bits (used to store the kNN training exam-
ples), and fourteen 9-bit multipliers. All the classifiers in 
HW exhibit exactly the same classification behavior and 
have the same accuracy as their SW counterparts (Table 4). 

6 EXPERIMENTAL RESULTS 
Because the HW and SW implementations of the extractors 

and classifiers are functionally equivalent (both implemen-
tations always produce the same output for the same input 
values), it is possible to compare their processing time and 
energy consumption. The measurements for the SW imple-
mentations were performed as described in section 3.1. The 
measurements related to the HW implementations are de-
scribed in the following topic. 

6.1 Power and Throughput Measurements in 
Hardware 
To evaluate the energy consumption and throughput of 
the HW implementations, we developed a measurement 
setup based on an FPGA development board (a Cyclone IV 
GX FPGA Development Kit). To measure the FPGA power 
consumption, we used Altera’s Power Monitor tool, which 
measures the FPGA consumption using onboard ADCs 
and sends the results continuously to a PC via JTAG.  

ሻܬሺ	݊݋݅ݐܽݎ݁݌݋	ݎ݁݌	ݕ݃ݎ݁݊ܧ ൌ 	 ൫ ௥ܲ௨௡௡௜௡௚ െ ௜ܲௗ௟௘൯ ∗  (2) ݁݉݅ݐ	݃݊݅ݏݏ݁ܿ݋ݎ݌

ሻݏ/ݏݐ݁݇ܿܽ݌ሺ	ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ
௡௨௠௕௘௥	௢௙	௣௔௖௞௘௧௦

௣௥௢௖௘௦௦௜௡௚	௧௜௠௘
 (3) 

To calculate the energy consumed per operation, we 
used (2), where ௥ܲ௨௡௡௜௡௚ denotes the FPGA power consump-
tion while the circuit is operating, and ௜ܲௗ௟௘ denotes the 
FPGA baseline power. To calculate the throughput, we 
used (3), which is also valid for SW implementations. The 
processing time is calculated from the clock frequency (50 
MHz for all circuits) and the number of clock cycles re-
quired to complete an extraction or classification. 

6.2 Comparison of the Implemented Feature 
Extractors 
One way to compare different feature extractors (in SW or 
HW) is to evaluate their throughput running at maximum 
speed and to count the number of packets processed per 
second. This can be accomplished by keeping a number of 
sample packet headers in memory, and providing the ex-
tractor with a new input as soon as it is ready to process 
the next packet.  

TABLE 9 - THROUGHPUT OF THE EXTRACTORS. 
Extractor  SW throughput 

(packet/s) 

HW throughput 

(packets/s) 
HW/SW ratio

ANY (no selection)  359,531  534,815  1.49 

DT (single objective)  913,399  2,925,756  3.20 

DT (dual objective)  1,222,514  9,947,571  8.14 

NB (single objective)  936,833  2,925,756  3.12 

NB (dual objective)  1,265,741  9,947,571  7.86 

kNN (single objective)  706,181  1,344,266  1.90 

kNN (dual objective)  1,218,642  9,947,571  8.16 

 

TABLE 8 – AREA OF THE IMPLEMENTED HW CLASSIFIERS.
Classifier Logic Cells 

(LCs) 

Memory 

Bits 

9‐bit Multi‐

pliers 

DT (no selection)  106  0  0 

DT (single objective)  81  0  0 

DT (dual objective)  52  0  0 

NB (no selection)  2,471  18,688  14 

NB (single objective)  1,327  4,480  14 

NB (dual objective)  1,132  0  14 

kNN (no selection)  11,327  986,112  14 

kNN (single objective)  6,103  279,552  14 

kNN (dual objective)  3,891  44,032  14 

 

TABLE 7 – AREA OF THE IMPLEMENTED HW EXTRACTORS.
Extractor for  Attributes  Logic Cells (LCs)  Memory Bits

ANY (no selection)  50  2,785  5,242,880 

DT (single objective)  6  2,085  5,242,880 

DT (dual objective)  2  1,439  5,242,880 

NB (single objective)  9  2,253  5,242,880 

NB (dual objective)  2  1,723  5,242,880 

kNN (single objective)  14  2,377  5,242,880 

kNN (dual objective)  2  1,723  5,242,880 
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Table 9 shows the throughput achieved by the HW and 
SW implementations of the hash-based extractors, using 
the minimum feature set required by each classifier. Even 
though the SW and HW implementations operate at 
widely different frequencies (1.86 GHz vs. 50 MHz), all 
HW versions are faster than their SW counterparts by fac-
tors that vary from 1.49 to 8.16. The main reason for such 
difference is that the HW implementations were designed 
for a specific task, and they have less overhead than a gen-
eral-purpose processing platform. For example, a HW im-
plementation may perform relatively complex operations, 
such as normalizing or updating a feature value, in a single 
clock cycle; in SW, however, this operation must be broken 
down into a series of low-level instructions in the Atom 
CPU. 

To compare the energy consumption in HW and SW, we 
measured the energy required by each implementation to 
perform the same basic operation. In the case of feature ex-
traction, we measured the average energy consumed to ex-
tract the features from a network packet. Table 10 presents 
the energy spent by each extractor; all HW extractors use 
less energy than their SW counterparts. The HW extractor 
created for use with the dual-objective DT classifier is the 
most energy-efficient of all implemented extractors, re-
quiring 57.9 nJ to extract one packet – only 6% of the energy 
consumed by the corresponding SW version. Fig. 12 shows 
another view of the energy consumed (in nJ) by each ex-
tractor. The grey bars are HW implementations; the black 
bars denote SW implementations. 

6.3 Comparison of the Implemented Classifiers 
We have measured the throughput of all implemented 
classifiers, in both SW and HW. Because of the differences 
in classifier algorithms and HW implementations, the clas-
sification throughput varies greatly – from around 900 

packets/s to 79 million packets/s. Table 11 presents the 
throughput of the implemented classifiers. Unlike the ex-
tractors, not all classifiers are faster in HW: for DT (no se-
lection), DT (single objective), and DT (dual objective), the 
HW version is faster, whereas for all others the SW version 
is faster. The main reason is that the other classifiers are 
sequential and iterative circuits, operating in a lower clock 
frequency (50 MHz) than the corresponding SW versions 
(1.86 GHz). 

We have also measured the energy consumption of each 
classifier in SW and HW. All HW classifiers consume less 
energy to classify a packet, compared to their SW counter-
parts. Table 12 presents the energy consumed by each clas-
sifier, for a single classification operation. The DT algo-
rithm with dual-objective feature selection in HW is the 
most energy-efficient of all, requiring 15 pJ to classify one 
packet – only 0.03% of the corresponding SW version. The 
kNN classifier in HW also requires less energy than its SW 
counterpart, unlike the result found in our previous work 
for probing attacks [42]. The main reason is that now we 
assume that the HW classifiers operate with the maximum 
throughput from Table 11; this is a reasonable assumption, 
because if the classifiers were run with a lower throughput, 
we could lower the clock frequency as well, and the energy 
consumption of the classifiers would also decrease, 
roughly proportionally to the operating frequency [41]. 

Fig. 13 shows another view of the energy consumed (in 
pJ) by each classifier, for one classification operation. The 
grey bars are HW implementations; the black bars are SW 
implementations. The difference between the best HW and 
the best SW implementations–DT HW (dual objective) and 
DT SW (dual objective)–is greater than three orders of 
magnitude. 

Considering the entire packet processing (extraction 
plus classification), the best case in SW – DT SW (dual ob-
jective) – spends 1,012.85 nJ, whereas the best case in HW –

TABLE 10 - ENERGY CONSUMPTION OF THE EXTRACTORS.

Extractor 
Energy per extrac‐

tion in SW (nJ) 

Energy per extrac‐

tion in HW (nJ) 
HW/SW (%)

ANY (no selection)  1,999.47  1,078.25  53.9 

DT (single objective)  1,110.81  230.48  20.7 

DT (dual objective)  965.00  57.90  6.0 

NB (single objective)  1,094.96  242.56  22.2 

NB (dual objective)  969.17  80.56  8.3 

kNN (single objective)  1,267.43  476.10  37.6 

kNN (dual objective)  962.70  80.59  8.4 

 

TABLE 11 – THROUGHPUT OF THE IMPLEMENTED CLASSIFIERS.
Classifier SW throughput 

(packet/s) 

 HW throughput 

(packets/s)  

HW/SW ratio

DT (no selection)  7,687,074  79,170,295  10.30 

DT (single objective)  42,854,618  72,632,190  1.69 

DT (dual objective)  62,517,739  63,653,723  1.02 

NB (no selection)  213,860  213,675  1.00 

NB (single objective)  1,761,352  1,190,476  0.68 

NB (dual objective)  4,485,460  4,166,666  0.93 

kNN (no selection)  3,041  904  0.30 

kNN (single objective) 8,318  2,621  0.32 

kNN (dual objective)  17,088  7,131  0.42 

 

Fig. 12. Energy consumed by the extractors to process one 
packet, in SW and HW. 

TABLE 12 - ENERGY CONSUMPTION OF THE CLASSIFIERS. 

Classifier 
Energy per classifi‐

cation in SW (nJ) 

Energy per classifi‐

cation in HW (nJ)

HW/SW 

(%) 

DT (no selection)  94.31  0.047  0.05 

DT (single objective)  49.32  0.031  0.06 

DT (dual objective)  47.85  0.015  0.03 

NB (no selection)  2,526.37  100.78  4.0 

NB (single objective)  358.90  16.78  4.7 

NB (dual objective)  180.30  7.40  4.1 

kNN (no selection)  169,743.52  152,094.95  89.6 

kNN (single objective)  67,566.69  30,709.27  45.5 

kNN (dual objective)  32,787.18  6,440.44  19.6 
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DT HW (dual objective) – spends 57.92 nJ. The energy sav-
ings in this case were of 94%. 

7 RELATED WORK 
Research on power-efficient network intrusion detection is 
still in its beginnings, and publications on the subject are 
still rare. Here we describe the main works available in the 
literature so far. 

In commercial products, features for NIDS are usually 
extracted using netflow-based solutions. Fprobe [40] is a 
libpcap-based tool and NProbe [43] a netflow port for em-
bedded systems. It is implemented as a linked list; when a 
collision happens, another entry is stored in the list. An in-
dependent thread checks every flow for inactivity, with a 
frequency of approximately 1 to 5 minutes for Fprobe and 
1 minute for Nprobe.  

A netflow-based feature extractor implemented using 
specialized hardware is used in the Cisco Catalyst 6500 Se-
ries Switch [44]. IP addresses, port numbers, and the pro-
tocol type are used as an index into a first lookup table, 
which provides an address into a second flow data table. 

Tran et al [57] developed a block-based neural NIDS in 
SW and HW using a Cyclone III FPGA. The authors used 
the DARPA dataset, converting it to the netflow format to 
obtain a classifier able to analyze packets directly from 
Cisco routers. The HW implementation was 1,300 times as 
fast as its SW counterpart, but it was unclear whether the 
two versions were functionally equivalent. Moreover, the 
used version of the DARPA dataset was outdated. There 
are several documented attempts to use netflow to extract 
intrusion related features [45][46][47]. 

Das et al. [48] developed an FPGA architecture com-
posed of a feature extraction module, that uses a hash table 
to keep the attributes, and a detection module, using the 
Principal Component Analysis technique to detect port 
scan (probing) and syn flood (DoS) attacks. The through-
puts achieved for feature extraction and detection were 21 
and 23 Gbps, respectively, using a Xilinx Virtex-II 
XC2V1000. However, it is not clear whether the modifica-
tions for implementing the algorithms in HW produced 
different results from a SW implementation. In addition, 
the authors used the outdated KDD’99 dataset to validate the 
the proposal. 

In the work of Gómez et al. [49] about feature selection, 
the authors compare a single aggregate objective, using 
weights for each objective, against multi-objective feature 
selection. A signature-based IDS was used for the tests, 
aiming at minimizing the number of features and showing 
that it can reduce the false-positive and false-negative rates 
when classifying the DARPA 1998 [50] dataset. It is worth 
noting that the authors used an outdated DARPA dataset, 
which is not recommended for use with signature-based 
IDS due to several limitations [50][51]. 

Hoque et al. [52] use NSGA-II as a filter-based feature 
selection method. The tests showed that as the number of 
used features increases, the execution time also increases 
for the kNN and DT classifiers. Feature selection improved 
the classifier accuracy; however, the authors did not con-
sider the impact that a large number of training instances 
used in the kNN classifier would have in energy consump-
tion.  

Regarding the use of ML classifiers for anomaly-based 
detection in hardware, Vijayasarathy et al. [53] developed 
a DoS detection system with an NB classifier in a Virtex 4 
FPGA. The authors used the outdated KDD’99 and real-
world traffic captured from the “Society for Electronic 
Transactions and Security” website for training, which 
does not allow reproducibility. The classifier was first 
modeled in SW and then implemented in HW, but the au-
thors did not take any measures to ensure that the two ver-
sions were functionally equivalent. 

In our previous work, we have evaluated DT, NB, and 
kNN classifiers to detect probing attacks in software and 
hardware [42]. To allow a direct comparison of the energy 
efficiency of the two approaches, we ensure that the HW 
and SW versions of each algorithm have exactly the same 
classification behavior. The results showed that the most 
energy-efficient classifier (without considering the feature 
extraction) is the DT, in both SW and HW. The hardware 
version of this classifier consumed only 0.05% of the en-
ergy used in SW version. 

There are very few works comparing software and 
hardware implementations of intrusion detection engines, 
with an emphasis on energy consumption. Moreover, most 
HW-based works use Snort rules [54][55][56] rather than 
anomaly-based detection. We have found no previous 
work in the literature addressing all aspects of the SW and 
HW implementation of energy-efficient anomaly detection 
systems. 

8 CONCLUSION 
Intrusion detection is usually implemented in SW, making 
accurate power measurements difficult because they re-
quire specialized techniques as described in section 3.1. 
Moreover, when comparing SW and HW implementa-
tions, it is indispensable to prove that they are functionally 
equivalent, so that the throughput and power consump-
tion of the two alternatives can be compared directly. In 
this paper, we have proposed and evaluated three new ap-
proaches to improve the energy efficiency of network se-
curity algorithms and applications: a new feature extrac-
tion algorithm suitable for HW implementation, a feature 

Fig. 13. Energy consumed by the classifiers to process one 
packet, in SW and HW. 
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selection method based on two simultaneous objectives 
(accuracy and energy consumption), and the implementa-
tion of the feature extractor engine and ML classifiers in 
HW. We have presented detailed energy consumption 
measurements for all algorithms, in both SW and HW. The 
new feature extractor consumes only 22% of the energy 
used by a commercial tool, when implemented in SW, and 
12% when implemented in HW.  

The dual-objective feature selection method enabled en-
ergy savings of up to 92.9% (in the best case, for the NB 
classifier) in comparison with a classifier without feature 
selection. Dual-objective feature selection provided an av-
erage 9.3% energy savings, while incurring an average 
0.90% accuracy loss, when compared with single-objective 
feature selection. Overall, comparing the most energy-effi-
cient software implementation (using the proposed feature 
extraction engine and the Decision Tree classifier) with an 
equivalent hardware implementation, the hardware ver-
sion consumed only 5.7% of the energy used by the soft-
ware version.  
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