
IEEE TRANSACTIONS ON COMPUTER 1

Towards an Energy-Efficient Anomaly-Based
Intrusion Detection Engine for Embedded Systems
Eduardo Viegas, Altair Santin, André França, Ricardo Jasinski, Volnei Pedroni, and Luiz Oliveira

Abstract— Nowadays, a significant part of all network accesses comes from embedded and battery-powered devices, which
must be energy efficient. This paper demonstrates that a hardware (HW) implementation of network security algorithms can
significantly reduce their energy consumption compared to an equivalent software (SW) version. The paper has four main
contributions: (i) a new feature extraction algorithm, with low processing demands and suitable for hardware implementation; (ii)
a feature selection method with two objectives - accuracy and energy consumption; (iii) detailed energy measurements of the
feature extraction engine and three machine learning (ML) classifiers implemented in SW and HW - Decision Tree (DT), Naive-
Bayes (NB), and k-Nearest Neighbors (kNN); and (iv) a detailed analysis of the tradeoffs in implementing the feature extractor
and ML classifiers in SW and HW. The new feature extractor demands significantly less computational power, memory, and
energy. Its SW implementation consumes only 22% of the energy used by a commercial product and its HW implementation
only 12%. The dual-objective feature selection enabled an energy saving of up to 93%. Comparing the most energy-efficient
SW implementation (new extractor and DT classifier) with an equivalent HW implementation, the HW version consumes only
5.7% of the energy used by the SW version.

Index Terms—B.9.1 Low-power design; B.9.2 Energy-aware systems; I.2.6.g Machine learning; I.5.2.a Classifier design and
evaluation; I.5.2.b Feature evaluation and selection; B.5.2.b Hardware description languages; C.2.0.f Network-level security and
protection; D.4.6 Security and Privacy Protection

——————————  ——————————

1 INTRODUCTION

ccording to yearly internet threat reports [1], there
were 6,549 new vulnerabilities identified in 2014. The

yearly average since 2006 is over 4,600, or 12 new vulnera-
bilities per day [2]. An embedded system connected to the
Internet is potentially exposed to a large number of vulner-
abilities that can be exploited by an attacker.

An intrusion detection engine can be used to protect an
embedded system from attacks over a network. An anom-
aly detection engine (ADE) is an effective solution when
the number of vulnerabilities is large and increasing. An
ADE is composed of two main parts: algorithms imple-
menting well-known inference techniques (e.g., machine
learning) and a model (an attack profile).

There are two important phases in the development and
use of an ADE: model building and classification. The
model-building phase is usually performed offline, based
on a set of known inputs and outputs. This task is compu-
tationally intensive, and it is usually performed purely in
software. In the classification phase, network traffic is ana-
lyzed, and a set of features is extracted from the exchanged
packets. These features are used by a classifier and an
anomaly model to predict whether the analyzed traffic is
normal or an attack. This phase is traditionally performed

in software; however, different studies [3][4] indicate that
a hardware implementation can reach better throughput
and lower energy consumption.

For the purposes of this work, a software (SW) imple-
mentation is a solution that runs on general purpose hard-
ware (a commodity computing platform), and a hardware
(HW) implementation is a circuit designed for a dedicated
purpose. An embedded system [5] is a dedicated computer
system, running application-specific SW and implemented
in HW using microcontrollers, Systems-on-a-Chip (SoCs),
or Field-Programmable Gate Arrays (FPGAs).

A hardware implementation of an algorithm can be cus-
tom-tailored to a specific problem, yielding a solution that
is more optimized if compared to a SW implementation.
The circuit can be described using a hardware description
language (HDL) such as VHDL (Very High Speed Inte-
grated Circuits Hardware Description Language). Tradi-
tionally, hardware-based intrusion detection uses signa-
ture-based algorithms, which perform bit-pattern match-
ing in the network traffic. This approach usually provides
good accuracy and performance [6][7][8]; however, it may
not detect attacks in more complex scenarios [9][10][11],
demanding the use of anomaly-based techniques [12].

In the literature, most works that discuss anomaly de-
tection using hardware circuits do not take into account the
resulting accuracy [13][14][15]. Usually, the developers
create a direct implementation of the algorithm using an
FPGA [13][16][17], making changes to account for the re-
strictions of a hardware implementation, but without con-
sidering the impact in the system accuracy [18]. In this na-
ïve conversion from SW to HW, it is not possible to identify

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
 E.V. is with the Pontifical Catholic University of Parana, Curitiba, 80215-

901, Brazil. E-mail: eduardo.viegas@ppgia.pucpr.br.
 A.S. is with the Pontifical Catholic University of Parana, Curitiba, 80215-

901, Brazil. E-mail: santin@ppgia.pucpr.br.
 A.F. is with the Federal Technological University of Parana, Curitiba,

80230-901, Brazil. E-mail: andref@alunos.utfpr.edu.br.
 R.J. is with the Federal Technological University of Parana, Curitiba,

80230-901, Brazil. E-mail: rjasinski@ieee.org
 V.P. is with the Federal Technological University of Parana, Curitiba,

80230-901, Brazil. E-mail: pedroni@utfpr.edu.br.
 L.O. is with the Federal University of Parana, Curitiba, 80060-000, Brazil.

E-mail: lesoliveira@inf.ufpr.br.

A

2 IEEE TRANSACTIONS ON COMPUTER

implementation errors that may appear due to modifica-
tions in the classifier, and it is not possible to guarantee
that the detection engine in the FPGA is functionally equiv-
alent to and has the same detection accuracy as the soft-
ware version. Moreover, the update of the detection engine
or model requires reprogramming the entire FPGA chip.

 In battery-powered systems, energy efficiency is an-
other important requirement, in addition to detection ac-
curacy. Feature extraction is an important part of an anom-
aly-based detection engine, performing a constant network
data stream (packets) analysis and consuming a significant
amount of energy; therefore, in both SW and HW imple-
mentations, this module must be highly energy efficient.

This paper presents a new set of techniques to improve
the energy efficiency in anomaly-based packet classifica-
tion, using machine learning algorithms. We focus on the
practical details of feature selection and extraction, and in
the implementation of classifiers in SW and HW for em-
bedded systems. We compare the energy efficiency of sev-
eral SW implementations with their HW counterparts.

The paper is organized as follows. Section 2 provides
background in intrusion detection and machine-learning
classifiers. Sections 3 and 4 present the development of
classifiers and feature extraction engines in SW. Section 5
describes the hardware implementation of the extractors
and classifiers. Section 6 compares the experimental results
in SW and HW. Section 7 summarizes the related works.
Finally, Section 8 presents conclusions and future work.

2 BACKGROUND
2.1 Anomaly-Based Intrusion Detection
The goal of an Intrusion Detection System (IDS) is to iden-
tify security violations in a computing system. A Network-
Based Intrusion Detection System (NIDS) monitors the
traffic by analyzing packets, hosts, and service flows in
search of attacks [19].

Denial-of-Service (DoS) is a current and dangerous at-
tack [1] in which attackers try to render a host or its ser-
vices unavailable to the legitimate users. This is normally
done by sending an amount of requests that a host cannot
handle properly, or by sending a malformed request that
causes a system or a service to terminate abnormally [20].

In order to detect DoS attacks, a NIDS can use a signa-
ture-based engine. This approach usually produces low
false-alarm rates; however, it is unable to detect many at-
tack variants. Moreover, as the number of attacks in-
creases, the number of signatures also increases, making
the usage of the whole set of signatures impractical for

online detection [21].
Anomaly-based detection consists in creating a behav-

ior model that is used to detect deviations from normal be-
havior. An anomaly-based classifier assigns a class (e.g.,
normal or attack) to each event (e.g., packet or flow). This
approach can often detect attack variations, but it tends to
produce higher false-alarm rates than the signature-based
approach [22].

Machine learning (ML) is often employed to implement
anomaly-based intrusion detection (Fig. 1). The network
traffic is collected from the Network Interface Card (NIC)
or from a pcap (packet capture) file containing previously
captured network traffic. The packets are then filtered and
sent to a feature extraction engine, which computes flow-
based and header-based attributes. These attributes are as-
sembled into a feature vector, which provides the input
data for the training or classification phases of a classifier.

To perform a classification, the ML algorithms use a be-
havioral model that can predict certain classes of network
traffic (e.g., normal or attack). Creating a model requires a
set of feature vectors (a dataset) whose classes are known
for each vector. The ML algorithm learns the behavior
model, which is then tested with a set of samples that were
not used in the model creation. The process is repeated un-
til the desired accuracy is achieved or cannot be further im-
proved. If the nature of the network traffic changes, it may
be necessary to regenerate the model – for instance, when
a different kind of attack arises and cannot be detected.

2.2 Feature Sets for Network Intrusion Detection
A NIDS uses only the information available in network
packets to distinguish attacks from legitimate (normal) re-
quests. The feature set used in this paper was based on pre-
vious works existing in the literature [23][24][25]. In total,
50 features were extracted from each network packet. Ta-
ble 1 show the way in which the features are organized: (i)
header-based (features extracted directly from each packet
header); (ii) host-based (extracted from the general commu-
nication history or data flow between two hosts); and (iii)
service-based (extracted from the communication history
between two hosts, and specific to a single service).

Fig. 1. Overview of a typical anomaly-based intrusion detection pro-

cess.

TABLE 1 - CATEGORIES OF EXTRACTED FEATURES
Feature category Number of

Features

Example

Header‐based: features extracted

directly from a single packet header.

27 SYN flag from TCP proto‐

col header.

Host‐based flow: features extracted

from data exchanged between two

hosts, involving various packets.

17 Number of bytes sent from

a client to a server in the

last 2 seconds.

Service‐based flow: features ex‐

tracted from multi‐packet data ex‐

changed between two services.

6 Number of bytes sent from

a client to a server service in

the last 2 seconds.

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 3

2.3 Feature Extraction
The feature extraction phase (Fig. 2) starts with the selec-
tion of the desired kind of traffic by filtering the network
packets based on protocol fields or flags, patterns of bits,
or packet content. This filtered packet set contains the data
that will be processed or used directly to obtain the desired
features (Table 1). The features are then parsed, scaled to a
uniform range, and assembled into a feature vector. The
feature extraction engine (Fig. 2) typically performs an im-
port part of this process.

The analysis and extraction of host-based and service-
based flows can be obtained by a flow extraction engine or
by a netflow-based [26][27] approach.

2.4 Feature Selection
The feature selection process identifies the most relevant
features from a feature set (Fig. 2), aiming at improving the
classifier accuracy and reducing the computational load
during classification. Feature selection algorithms can be
classified into two categories, based on whether the selec-
tion is performed independently from the learning algo-
rithm used to construct the classifier. If feature selection is
independent from the learning algorithm, the technique is
said to follow a filter approach. Otherwise, it follows a
wrapper approach [28].

While the filter approach is generally computationally
more efficient, its major drawback is that an optimal selec-
tion of features may require the inductive and representa-
tional biases of the ML algorithm used to build a classifier.
On the other hand, the wrapper approach has the compu-
tational overhead of evaluating candidate feature subsets
by executing the ML algorithm on the dataset, using each
subset under consideration.

Because a complete search over all possible subsets of a
feature set (2ே, where N is the number of features) may not
be computationally feasible, several authors have explored
heuristics for feature subset selection. Genetic Algorithms
(GA) are an interesting alternative because they do not as-
sume restrictive monotonicity and can use multiple-objec-
tive optimization (for example, classification accuracy and
energy consumption).

A general multi-objective optimization problem con-
sists of a number of objectives associated with inequality

and equality constraints. Solutions to a multi-objective op-
timization problem can be expressed mathematically in
terms of non-dominated points (a solution is dominant
over another only if it has better performance in all crite-
ria). A solution is said to be Pareto-optimal if it cannot be
dominated by any other solution available in the search
space.

Conflicting objectives are a common difficulty in multi-
objective optimization. In general, none of the feasible so-
lutions allows simultaneously optimal solutions for all ob-
jectives. Thus, mathematically, the most favorable Pareto-
optimum is the solution offering the least conflict between
objectives. In order to find such solutions, classical meth-
ods scalarize the objective vector into a single objective.

The simplest of all classical methods is the weighted
sum, which aggregates the objectives into a single and pa-
rameterized objective through linear combination. How-
ever, setting up an appropriate weight vector also depends
on the scaling of each objective function. Therefore, the so-
lution obtained through this strategy largely depends on
the underlying weight vector.

To overcome such difficulties, Pareto-based evolution-
ary optimization has become an alternative to classical
techniques such as the weighted sum. Goldberg [29] first
proposed this approach, which explicitly uses Pareto dom-
inance to determine the reproduction probability of each
individual. In essence, it consists of assigning rank 1 to
non-dominated individuals and removing them from con-
tention, then finding a new set of non-dominated individ-
uals, ranked 2, and so forth.

A popular multi-objective genetic algorithm that has
been successfully applied to multi-objective feature selec-
tion [30] is the non-dominated sorting genetic algorithm
(NSGA-II) [31]. The idea behind NSGA-II is to use a rank-
ing selection method to emphasize good points and a niche
method to maintain stable subpopulations of good points.
It varies from simple genetic algorithms only in the way
the selection operator works.

3 DEVELOPMENT OF ENERGY-EFFICIENT

CLASSIFIERS IN SOFTWARE

This section outlines the development process of the clas-
sifiers used in our experiments, including the model train-
ing, software implementation, and experimental measure-
ment phases. For our experiments, we have built a dataset
aimed at DoS attacks.

3.1 Power Measurement in Software
Despite the high demand for energy-efficient systems,
there are very few tools available to measure and evaluate
the power consumption of software applications. Moreo-
ver, the currently available solutions are unable to isolate
the power consumption of an application running in a
multitask environment [32][33][34][35]. To overcome these
problems, we have developed a custom power measure-
ment platform composed of a hardware environment, a
measurement application, and a kernel-level probe mod-
ule (KPM). The KPM detects when the monitored application

Fig. 2. Overview of the feature extraction process.

4 IEEE TRANSACTIONS ON COMPUTER

is running and triggers a signal in the motherboard’s paral-
lel port; while this signal is asserted, the monitored appli-
cation is running. The measurement application periodi-
cally samples this signal and the voltage across a current
sensor (Fig. 3), a shunt resistor in series with the board
power supply. The current samples are integrated over the
time the monitored application was actually executing in
the microprocessor, providing the energy consumption of
the application.

Fig. 3 shows the general setup of the measurement plat-
form. The hardware environment is composed of a
DN2800MT Atom motherboard with an Intel N2800 CPU,
4 GB DDR3 RAM, and a 500 GB hard drive. A 270 mΩ re-
sistor is used as current sensor for the main power line. The
system is powered by a 15 VDC power supply, and the cur-
rent consumption is sampled by a National Instruments
USB-6008 data acquisition device (DAQ), with a 12-bit res-
olution, at 5,000 samples/s, in differential mode.

The platform was used to measure the power consump-
tion of all SW algorithms described in this paper. The en-
ergy consumed per operation (entire extraction or classifi-
cation of one packet) was calculated with equation (1),
where ௥ܲ௨௡௡௜௡௚	denotes the motherboard’s power consump-
tion while the algorithm is running, and ௜ܲௗ௟௘ denotes the
motherboard baseline power consumption. We discount
the baseline consumption because our goal is to isolate the
consumption of the measured application in order to com-
pare it with its HW counterpart.

	

ሻܬሺ	݊݋݅ݐܽݎ݁݌݋	ݎ݁݌	ݕ݃ݎ݁݊ܧ ൌ 	
൫௉ೝೠ೙೙೔೙೒ି௉೔೏೗೐൯∗௣௥௢௖௘௦௦௜௡௚	௧௜௠௘

௡௨௠௕௘௥	௢௙	௣௔௖௞௘௧௦
 (1)

The developed power measurement platform can be
used with virtually any operating system, and it is inde-
pendent of the hardware used in the motherboard.

3.2 Data Generation
Rather than using publicly available data, we have created
our own dataset in a controlled environment, in order to
prevent the problems exposed in [36] when traffic rec-
orded from a real environment is used. The proposed
method aims at ensuring the desired properties of a NIDS
dataset [58]. Among other characteristics, the dataset
should be publicly available and contain realistic network
traffic, it should be similar to production environments, its
packets should be well-formed and correctly labeled (pre-
vious class assignment), it should have normal and at-
tacker profile diversity, and the attacks should be correctly
implemented and easy to update and reproduce.

The deployed scenario uses a single host as a server
when generating the background traffic (normal traffic
samples). This server hosts a number of services and re-
sponds to all received requests. It generates real service re-
sponses using a honeypot tool (HoneyD [37]), resulting in
a database with real and valid traffic. HoneyD was config-
ured as a high interactivity honeypot, hosting five different
services (Table 2). To create client requests, we used 100
hosts running automated scripts. The interval between
successive requests from the same client varies randomly
between zero and four seconds, following a uniform distri-
bution. All the network traffic produced in this scenario
was captured and stored in a pcap file.

The attack traffic was created using well-known exploit
tools to guarantee a correct attack characterization. The
scenario simulates four different DoS attacks: synflood,
udpflood, icmpflood, and slowloris (an attack that opens
many connections to a webserver and keeps them open).
Each attack was originated from a different virtual ma-
chine, with varying packet send rates and attack durations.

The class label for each sample (normal or attack) was
automatically assigned, as we know the source IP address
of each machine generating normal traffic or attacks. This
eliminates the possibility of wrong labeling that could gen-
erate inaccurate models during the learning process. Every
feature that could identify a specific machine by means
other than its behavior (for instance, IP or MAC addresses)
was removed from the feature vector.

The scenario ran for 30 minutes. Legitimate clients
made requests during the entire time, ensuring the exist-
ence of background traffic for the entire period. The peri-
ods from zero to seven minutes and from twenty-three to
thirty minutes are attack-free, allowing us to analyze the
system behavior with normal packets only. During the pe-
riod between seven and twenty-three minutes, the attacks
are deployed. Table 3 shows the traffic distribution ob-
served during the database generation and the number of
different behaviors for each traffic type.

The vast majority of events (network packets) in the da-
tabase are normal (97.24 %). Because the two classes do not
occur with the same frequency, we must use additional
metrics (such as the false-positive and false-negative rates)
when evaluating the classifiers performance. To reduce the
complexity during the model-training phase and to allow

Fig. 3. Power measurement platform for software applications.

TABLE 2 - SERVICES USED FOR NORMAL TRAFFIC SIMULATION
Service Description
HTTP The 1,000 most visited worldwide websites were mirrored

(www.alexa.com/topsites) and hosted in the honeypot. Each
HTTP client requests a random website.

SMTP A script for each SMTP client sends a mail with a 50-400 bytes
subject and 100-4,000 random bytes in the body.

SSH A script for each SSH client logs into the honeypot host and exe-
cutes a random command from a list from 100 possibilities.

SNMP A script for each SNMP client walks at random through a prede-
fined MIB (Management Information Base) from a predefined list
of possible MIBs.

DNS A script is run for every name resolution, making same request to
the honeypot service.

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 5

an equal representation from both classes on the datasets,
we stratified our database (secplab.ppgia.pucpr.br/eeids).
We used 25% of the attack events for model training, 25%
for model validation (feature selection process evaluation),
and 50% for model testing (final accuracy rate). To guaran-
tee that both classes have the same representation during
the model training, we randomly choose the same number
of normal and attack events from the database. The re-
maining normal events are used for model testing.

3.3 Preprocessing
After building the samples database, a preprocessing
phase may be necessary for some classifier algorithms. In
this work, we have evaluated the DT (Decision Tree), NB
(Naive-Bayes), and kNN (k-Nearest Neighbors) classifiers.
The DT classifier does not require any pre-processing. The
NB classifier requires a discretization step. Every feature
admitting a real number as value was discretized, allowing
the classifier to compute the individual probability for each

class (normal or attack). The kNN classifier requires a nor-
malization step; every feature was normalized to the range
-1.0 to +1.0, to avoid disproportional influences of different
features during the distance calculation. For every nominal
(enumeration) feature, such as the TCP connection status,
a corresponding numerical value was assigned.

3.4 Feature Selection
Different features require different amounts of processing
to be computed, which implies different energy consump-
tion levels. We have measured the energy consumption of
each individual feature and used these values in the fea-
ture selection process. A total of 100 measurements, with 1
million packets each, were performed for each of the 50
features. The energy consumption to extract each feature
individually is the difference between the energy con-
sumed to extract all 50 features and the energy consumed
to extract all but the feature of interest. The average energy
consumption for each feature, using the hash-based extrac-
tor (section 4.2), is shown in Fig. 4.

In the subsequent energy measurements for the extrac-
tor and classifiers, we have considered three feature selec-
tion scenarios: no feature selection, single-objective (accu-
racy only) selection, and dual-objective (accuracy and en-
ergy consumption) selection. In our dual-objective sce-
nario, the first objective is to minimize the error rate of the
attack model, and the second objective is to minimize the
energy consumption for feature extraction. Giving both ob-
jectives the same weight, the relative energy consumption
is calculated by summing the energy consumption for each
used feature, divided by the total energy consumption
when using all features. The error rate is evaluated using
the validation dataset (section 3.2) and defined as the mis-
classification rate of the obtained model. The relationship
between the error rate and the estimated energy consump-
tion is shown in Fig. 5. Each point represents a population
of the last generation for each classifier.

The power measurements were performed using the
platform described in section 3.1. The feature extraction
module was modified to extract only a subset of features
in each run. The GA (single-objective) and NSGA-II (dual-
objective) were used with 100 generations and 100 popula-
tions for each generation, a mutation probability of 3.3%,

TABLE 3 - NUMBER OF CAPTURED PACKETS
IN THE GENERATED SCENARIO

Traffic Generated

Behaviors

Number of

Packets

Packets

Representativeness

(%)

HTTP 65,786 20,238,802 73.61

97.24

SMTP 35,110 2,298,222 8.36

SSH 2,579 1,048,482 3.81

SNMP 10,111 3,017,731 10.97

DNS ‐ 135,188 0.49

SYNFLOOD Attack 8 471,288 1.71

2.76
UDPFLOOD Attack 6 121,645 0.44

ICMPFLOOD Attack 6 130,698 0.47

SLOWLORIS Attack 5 37,814 0.14

TOTAL 113,611 27,499,870 100.00

Fig. 4. Average energy consumption for the extraction of each fea-

ture.

Fig. 5. Relationship between accuracy and energy consumption for

the three classifiers.

6 IEEE TRANSACTIONS ON COMPUTER

and a 60% crossover probability. The classifiers were de-
veloped using the Weka framework [38].

The results obtained for the DT, kNN, and NB classifiers
are discussed in Section 3.5. The accuracy value was ob-
tained using the test dataset, which contains only packets
that are not present in the training or validation datasets.

3.5 Energy Consumption
Following the feature selection stage, a model was gener-
ated for each combination of classifier (DT, NB, and kNN)
and feature selection method. The SW implementations of
the classifiers are direct translations of their algorithms
and were obtained by translating the output of the Weka
framework to the C++ language.

Table 4 compares the accuracy and energy consumption
of the three classifiers and three feature selection methods.
The results indicate that feature selection can provide a sig-
nificant reduction in energy consumption, while maintain-
ing approximately the same accuracy rate.

We can evaluate the energy savings achieved in the fea-
ture extraction stage by using the “no selection” method as
a baseline. The relative savings were 44.5% (single-objec-
tive) and 51.5% (dual-objective) for DT, 36.5% (single-ob-
jective) and 52.0% (dual-objective) for kNN, and 45.5%
(single-objective) and 51.5% (dual-objective) for NB. On
average, feature selection provided an energy saving of
42.2% (single-objective) and 51.7% (dual-objective), in the
extraction stage. Therefore, dual-objective feature selection
provided an average 9.5% of extra savings in feature ex-
traction, when compared to single-objective selection.

Similarly, we can evaluate the energy savings achieved
in the classification stage using the “no selection” method
as a baseline. The relative savings were 44.4% (single-ob-
jective) and 44.4% (dual-objective) for DT, 60.2% (single-
objective) and 80.7% (dual-objective) for kNN, and 85.8%
(single-objective) and 92.9% (dual-objective) for NB. On
average, feature selection provided an energy saving of
63.5% (single-objective) and 72.7% (dual-objective). There-
fore, dual-objective feature selection provided an average
9.2% of extra savings, when compared to single-objective
selection.

On average, the energy savings in the entire extraction
and classification process (total energy consumption) were
of 57.5% (single-objective) and 68.7% (dual-objective). In
summary, dual-objective feature selection provided an av-
erage energy savings of 9.3% while incurring an average
0.90% accuracy loss, when compared with single-objective
feature selection.

4 DEVELOPMENT OF FEATURE EXTRACTORS IN

SOFTWARE

As indicated in Table 4, a large part of the energy cost is
due to the feature extraction stage. However, we did not
find previous work in the literature measuring the energy
cost for extracting each feature individually. In our work,
we have paid special attention to reducing the energy con-
sumption of this module. In this section, we present two
approaches to the implementation of feature extraction en-
gines in software, which we named table-based and hash-

based. We then compare the two approaches with a third
alternative called netflow-based, a table-based implementa-
tion found in commercial networking equipment.

4.1 Table-Based Extraction Method
The computation of feature values requires storing infor-
mation about the data exchanged between hosts or about
the services (Table 1, section 2.3). The table-based imple-
mentation approach uses a table indexed by the IP ad-
dresses of the communicating hosts. This table, called the
host lookup table, indexes two other tables: the host flow
table and the service lookup table. The values of host-
based features can be accessed directly in the host flow ta-
ble. For service-based features, another lookup is needed
to reach the flow table containing the features values (Fig.
6). The service lookup table uses the client port number as
index.

The host and service flow tables store pieces of infor-
mation corresponding to packets read from the network;
this information must be consolidated to provide the fea-
ture values over a period of time (time window). There-
fore, for each table entry, it is necessary to keep the net-
work traffic corresponding to the chosen time window, as
well as its time of occurrence. During extraction, the fea-
ture values are computed by adding the contribution of
each packet within the time window; packets with a
timestamp older than the time window are discarded.

The overall operation can be described as follows: each
time a packet arrives at the feature extraction module the
host lookup table is accessed using the client IP address.
The next step is to calculate the updated feature values. De-
pending on the kind of feature being extracted, the algo-
rithm follows one of two possible paths.

TABLE 4 – COMPARISON OF ENERGY CONSUMPTION FOR
FEATURE EXTRACTION ENGINE AND ML CLASSIFIERS

Classifier (feature se‐

lection technique)

Energy Cons.

for Feature Ex‐

traction (μJ)

Energy Cons.

for Classifica‐

tion (μJ)

Total En‐

ergy Cons.

(μJ)

Accuracy

(%)

DT (no‐selection) 2.00 0.09 2.09 99.94

DT (single‐objective) 1.11 0.05 1.16 100.00

DT (dual‐objective) 0.97 0.05 1.02 99.14

kNN (no‐selection) 2.00 169.74 171.74 98.98

kNN (single‐objective) 1.27 67.57 68.83 99.80

kNN (dual‐objective) 0.96 32.79 33.75 98.53

NB (no‐selection) 2.00 2.53 4.53 99.02

NB (single‐objective) 1.09 0.36 1.45 99.98

NB (dual‐objective) 0.97 0.18 1.15 99.41

Fig. 6. Table-based feature extractor implementation.

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 7

For host-based features, only the host flow table is ac-
cessed. This table contains the previous traffic exchanged
with a single host. The entire table is scanned, and the data
contributing to the current feature is consolidated into the
new feature value. Only packets within the configured
time window are used, and older traffic is discarded.

For service-based features, the service lookup table is
accessed using the client port number as index. This table
contains the traffic exchanged with a single host and be-
longing to a single service. The entire table is scanned and
the values consolidated. Packets outside the current win-
dow are also discarded.

In the table-based extractor, there are at most 2ଷଶ entries
in the host lookup table (corresponding to all possible nu-
meric values of IPv4 addresses) and 2ଵ଺entries in the ser-
vice lookup table (corresponding to all possible numeric
port values). Each entry in the service lookup table con-
tains pointers to tables with the packet data used to calcu-
late the consolidated service-based features. All tables and
entries are allocated dynamically. We use a two-second
time window to calculate the feature values, an interval
commonly used in the literature [23][24][25].

The most demanding task in table-based extraction is to
update the feature values by summing the contribution of
each packet when a new packet is received. For each fea-
ture, the corresponding flow table (host or service) must be
scanned, and all previous packets within the current time
window must be read to calculate the updated feature
value. To implement the time window, each packet is
tagged with a timestamp indicating the moment it was re-
ceived. This provides a very fine-grained control, but it in-
curs a high computational cost. The window is effectively
a sliding time window, because only the past two seconds
are taken into account when calculating a consolidated
value.

One approach to reduce the computational demand is
to reduce the window size. This results in lower processing
and memory costs; however, it may negatively affect the
classifier accuracy. To evaluate this tradeoff, we have
measured the impact of the time window reduction in clas-
sifier accuracy. We used the method introduced in section
3.1 and the classifiers with no feature selection (the worst
case for accuracy rate – see Table 4, section 3.5). We used
four different time ranges for the sliding time window,
from 0.5 to 2 seconds (Table 5). The largest accuracy reduc-
tions were observed for a 0.5 seconds time window: 0.05%
for DT, 0.59% for kNN (5NN), and 0.43% for NB. On the
other hand, the reduction from 2 to 0.5 seconds provided
an average energy savings of 39.3%. This indicates that a
sliding time windows of 0.5 seconds may be useful, for in-
stance, when the embedded system reaches a critical bat-
tery level.

Some important issues regarding the implementation of
a table-based extractor or a netflow-based extractor (a
standard data collection method available in many net-
working products) are discussed next

An important shortcoming of the table-based approach
is the need for storing the received packets. Despite any
possible reduction with the shortening of the time win-

dow, if the throughput is high, the required memory in-
creases, as well as the processing demands. As will be dis-
cussed in section 4.3 (Table 6), there is a high computa-
tional cost to maintain and update this information in the
table-based approach. The table-based extractor is also dif-
ficult to implement in hardware, because it requires dy-
namic memory management and the iterative scanning
and checking of previous network packets. More details
about the table-based extractor in hardware are provided
in section 5.1.

A netflow-based implementation also has a series of
drawbacks. A netflow-enabled device simply keeps a cache of
IP flows that have traversed that device. The first implica-
tion is that a second program, a netflow collector, must ana-
lyze the reported flows and extract the NIDS features. This
program operates similarly to tcptrace (www.tcptrace.org).
Second, there is some delay between the moments when
the packets are captured and the netflow collector receives
the flow information. Normally, the flow is reported when
one of three conditions occur: (i) the flow is inactive for a
certain period (CISCO devices usually adopt a 15-second
idle timeout [39]), (ii) the flow has been active for a long
time, or (iii) a TCP flag indicates the flow has ended. Ad-
ditionally, each reported flow must be consolidated in a
netflow collector, and further processing is required for
each feature being extracted. This makes netflow-based
feature extraction a costly task.

4.2 Hash-Based Extraction Method
One of the problems with the table-based approach is the
need for keeping the previous history of flow information
within the chosen time window, as explained in section 4.1.
To solve this problem, we propose a new approach based
on time slots. This approach has two main advantages: (i)

Fig. 7. Comparison of the table-based (sliding time window) and
hash-based (time slots) approaches.

TABLE 5 - CLASSIFIER ACCURACY FOR DIFFERENT SIZES OF
THE SLIDING TIME WINDOW.

 Sliding Time

Window size

(sec.)

Energy Con‐

sumption per

packet (μJ)

Processing

Time per

packet (μs)

Classifier Accuracy (%)

 DT 5NN NB

 0.5 366.31 344.50 99.86 97.30 98.19

 1.0 456.11 412.74 99.90 97.75 98.32

 1.5 538.74 478.86 99.90 97.80 98.42

 2.0 603.78 525.15 99.91 97.89 98.62

8 IEEE TRANSACTIONS ON COMPUTER

it makes it easier to remove the influence of older packets
from the feature calculation, and (ii) allows a simple resiz-
ing of the time window, which can be reduced from 2.0 to
0.5 sec., for instance, when the device battery level is low.

Our implementation uses five time slots, numbered
from 0 to 4. At any given moment, four of the slots are used
to compose the feature value; the remaining slot (the “dirty
slot”) is not considered in the calculation and is scheduled
for reset (Fig. 7). Each slot accumulates flow information
corresponding to a time window of 0.5 sec.; the slot that is
currently accumulating flow information (the active slot) is
shown with a darker shade in Fig. 7. To compute a consol-
idated feature value, one must add up the values of the ac-
tive slot and the three most recently updated slots.

Every 0.5 seconds, the next slot (in decreasing numeri-
cal order) becomes active. When the active slot number
reaches zero, it starts again from four, in a circular count-
down fashion. The same happens with the number of the
dirty slot; every 0.5 seconds, a periodic maintenance task
resets all the dirty slots in memory.

In the table-based approach, the time considered in the
feature calculation corresponds exactly to the past two sec-
onds. In contrast, in the time slots approach, the feature
may correspond to an interval between the last 1.5 and 2.0
seconds. As shown in Table 5, this variation does not incur
a significant accuracy loss. A diagram comparing the cal-
culation of a feature value in the table-based and hash-
based approaches is shown in Fig. 7.

In the time-slot-based approach described above, a hash
function provides the address for the time slots corre-
sponding to a feature (Fig. 8). Contrary to the table-based

approach, the hash-based approach does not require a se-
ries of indirections and lookup operations.

Our approach uses two indexing schemes to obtain an
address for the time slots. For host-based features, a key is
created from a unique feature identifier (feature ID) and
the client IP address. For service-based features, the key is
composed of the client IP address, feature ID, and client
port address (Fig. 8). In both cases, the key goes through
the same hash function. Each memory position contains
the five slots corresponding to the flow information for a
single feature. Each slot is 2 bytes wide, yielding 10 bytes
per flow. The output of the hash function is 16 bits long;
therefore, our current implementation is able to handle 2ଵ଺
flows with 10 bytes each, requiring in total 5 Mbits. This
memory size is within the limits of the embedded system
used in our experiments, which has a total of 6.6 Mbits.

Our implementation uses the well-known FNV
(Fowler–Noll–Vo) hash function – www.isthe.com/
chongo/tech/comp/fnv). This function allows a variable
number of output bits, making it possible to adapt to dif-
ferent table sizes and gracefully degrading the hash prop-
erties in a controlled way. Our flow table is stored in a con-
tiguous memory region (flat memory model) with a fixed
size. This has two implications. First, because the address
is provided by the hash function, there may be unused
memory locations. Second, it is possible that different keys
have the same hash value (causing hash collisions), and
two different features may be allocated to the same
memory address. The impact of hash collisions in the clas-
sifier accuracy is evaluated in section 4.3.

4.3 Impact of Hash Collisions
The occurrence of hash collisions (Fig. 9, left y-axis) and the
total memory size (right y-axis) depend on the number of
entries available in the table (x-axis): the bigger the number
of possible entries, the lower the number of collisions, and
the higher the memory requirements. The graphs shown in
Fig. 9 and Fig. 10 were obtained with the dataset intro-
duced in section 3.2, composed of over 27 million packets.

For 2ଵ଺ (or 64k) memory entries, we obtained a collision
rate of 2.48%, using 5 Mbits of memory. For 2ଶସ memory
entries, the collision rate drops to 0.04%, but the required
memory is 640 Mbits. To evaluate this tradeoff, Fig. 10
shows the effect of collisions on classification accuracy. For
these measurements, a version of each classifier with no
feature selection was used. For a memory size of 2ଵ଺ en-

Fig. 8. Overview of the hash-based feature extractor.

Fig. 9. Correlation between hash collisions occurrence and the num-
ber of index entries.

Fig. 10. Relationship between classifier accuracy, hash collisions,
and number of index entries.

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 9

tries, the results show a slight decrease in classifier accu-
racy: 0.21% for DT, 0.66% for kNN, and 0.69% for NB. This
indicates that the 2ଵ଺ memory entries used in our imple-
mentation are enough to provide a good accuracy, even in
the presence of hash collisions.

4.4 Comparison of Extraction Approaches
Using the power measurement platform described in sec-
tion 3.1, we measured the average energy consumption
and processing time required to extract one packet, using
the three extractors (Table 6). For the netflow-based imple-
mentation, the fprobe [40] library was used, exporting
“ready” flows every 5 seconds, with an inactive lifetime of
1 minute and an active lifetime of 5 minutes. Only the pro-
cessing time used for flow extraction (flow caches) was
considered in Table 6; for an intrusion detection applica-
tion, it would be necessary to assemble each flow into a
feature vector, as observed in section 4.1.

The results show that the hash-based extractor is 189
times faster and consumes only 0.33% of the energy used
by the table-based implementation. Moreover, it is 8.7
times faster and consumes only 22% of the energy used by
the netflow-based implementation. The hash-based extrac-
tor was implemented with 2ଵ଺ table entries, as described in
section 4.2. These results indicate that the hash-based ap-
proach is a promising candidate for implementation in em-
bedded systems.

5 DEVELOPMENT OF EXTRACTORS AND

CLASSIFIERS IN HARDWARE

5.1 Table-Based Extractor Issues
The direct implementation of the feature extraction algo-
rithm described in Section 4.1 would impose a series of
challenges in hardware. One of the main limitations is the
amount of memory required to keep the previous history
of flow information. This amount is proportional to the
number of known hosts and flows; in general, each feature
requires at least one 32-bit accumulator. Another implica-
tion is that the feature computation must consider only the
data exchanged within the sliding time window; therefore,
a maintenance task would be necessary to remove packets
outside the current window.

In a software implementation, memory is allocated
from an application-wide memory pool that is accessed

uniformly. In contrast, a typical HW implementation uses
a number of localized storage elements and on-chip
memory structures. This helps eliminate bottlenecks in
memory accesses, but it requires that the number of stor-
age elements be fixed at compile time, when the circuit is
synthesized. This restriction makes the table-based feature
extractor ill-suited for a hardware implementation. For
these reasons, in our work, only the hash-based extractor
was implemented in HW.

5.2 Hash-Based Extractor Implementation
Fig. 11 shows the block diagram of the hash-based feature
extractor implemented in HW, which uses the same algo-
rithm as its SW counterpart and presents exactly the same
extraction behavior and accuracy hit rate.

The hash function is implemented as combinational
logic. Its inputs are the remote IP address, remote port
number (for service-based features), and the feature ID.
The output is a 16-bit value, which will be used as a row
address in the flow table.

The feature flow table is a dual-port RAM with 2ଵ଺
memory locations (rows) and 5 slots per row. Each slot is
16 bits wide, thus the total memory capacity is 2ଵ଺×5×16,
or 5,242,880 bits (5 Mbits).

For each incoming packet, the corresponding row is
found and read from the flow table. Then the active slot is
updated, according to the update logic for the current fea-
ture. For example, the number of received packets is up-
dated by incrementing it by one. The number of bytes re-
ceived is incremented by the packet’s payload size, and so
on.

After the updated slot value is calculated, it is replaced
in the row read from the table. Only the active slot is
changed when a feature is updated; the other four slots
keep their previous values. This updated row is one of the
two main outputs of the update_row block; the other is the
actual feature value, used to compose the extracted feature
vector that will be the output of the extractor module when
the extraction is completed. The extracted feature value is
calculated by adding up the value of the four slots cur-
rently in use (i.e., excluding the dirty slot).

Once a row has been updated, it is written back to the
flow table, and the extraction of a new feature begins. The
process repeats until all features have been extracted.

Besides the feature extraction proper, the extractor
module includes a timer that manages periodic events.
Every 0.5 seconds, the dirty slot column (i.e., all dirty slots
in the flow table) must be reset. During this process, the
extractor ready output is driven low, and one slot is reset
every two clock cycles. In total, a column reset takes
2ଵ଺×2÷(50·10଺) seconds, or 2.62 ms. During this time, any
incoming packet are placed in a buffer for later processing.

The VHDL code of the HW extractor is configurable in
terms of which attributes to extract. Therefore, it can be

Fig. 11. Block diagram of the hash-based feature extractor in HW.

TABLE 6 - ENERGY CONSUMPTION AND PROCESSING TIME FOR
EACH EXTRACTOR.

Measurement item Table-based Netflow-based
(flows cache)

Hash-based

Energy Consumption (uJ/packet) 603.78 9.05 2.00
Processing Time (us/packet) 525.15 24.19 2.78

10 IEEE TRANSACTIONS ON COMPUTER

custom-tailored for each classifier to provide only the re-
quired attributes, preventing unnecessary computations.

Table 7 presents the resources used by the seven extrac-
tors implemented in HW, synthesized for an Altera Cy-
clone IV GX FPGA. The implementations are named with
a prefix (DT, NB, kNN, or ANY) denoting the classifier
used with the extractor. The extractor labeled ANY (no se-
lection) can be used by any of the three classifiers, because
it extracts all 50 features. The DT (dual objective) extractor
uses the least resources: 1,439 LCs and 5,242,880 memory
bits. The extractor for all features, ANY (no selection), uses
the most resources: 2,785 LCs and 5,242,880 memory bits.
All extractors use the same number of memory bits.

5.3 Classifiers Implementation in Hardware
Each classifier requires a specific version of the feature ex-
tractor, configured to extract only the necessary features.
For example, the DT (single objective) extractor (Table 7)
extracts the features used by DT (single objective) classi-
fier, and so on. All classifiers were implemented in HW for
the three feature selection approaches: no selection, single
objective, and dual objective.

The DT classifiers are direct translations of their SW
counterparts [41]. Comparators check the feature ranges,
and the outputs are combined in a sum-of-products; if the
sum is a logic one, the packet is classified as an attack [42].

The NB classifier performs two table lookups per attrib-
ute: one to get the probability that the attribute denotes an
attack, and another for the probability that it is a normal
packet. The classifier serializes the table lookups and cal-
culates the probability of one attribute at a time. When all
probability values have been multiplied, a comparator de-
cides whether the input packet is normal or an attack,
based on the higher probability value [42].

The kNN classifier keeps 1,000 training samples in a
ROM. The circuit calculates the five closest distance values
(i.e., k = 5) and the corresponding class labels. After all dis-
tances have been calculated, the label with the most occur-
rences is selected as the output [42].

Table 8 presents the HW resources used by the three
classifiers. The dual-objective DT is the most compact of all
classifiers, requiring only 52 logic cells (LCs). The no-selec-
tion kNN classifier uses the most resources: 11,327 LCs,
986,112 memory bits (used to store the kNN training exam-
ples), and fourteen 9-bit multipliers. All the classifiers in
HW exhibit exactly the same classification behavior and
have the same accuracy as their SW counterparts (Table 4).

6 EXPERIMENTAL RESULTS
Because the HW and SW implementations of the extractors

and classifiers are functionally equivalent (both implemen-
tations always produce the same output for the same input
values), it is possible to compare their processing time and
energy consumption. The measurements for the SW imple-
mentations were performed as described in section 3.1. The
measurements related to the HW implementations are de-
scribed in the following topic.

6.1 Power and Throughput Measurements in
Hardware
To evaluate the energy consumption and throughput of
the HW implementations, we developed a measurement
setup based on an FPGA development board (a Cyclone IV
GX FPGA Development Kit). To measure the FPGA power
consumption, we used Altera’s Power Monitor tool, which
measures the FPGA consumption using onboard ADCs
and sends the results continuously to a PC via JTAG.

ሻܬሺ	݊݋݅ݐܽݎ݁݌݋	ݎ݁݌	ݕ݃ݎ݁݊ܧ ൌ 	 ൫ ௥ܲ௨௡௡௜௡௚ െ ௜ܲௗ௟௘൯ ∗ (2) ݁݉݅ݐ	݃݊݅ݏݏ݁ܿ݋ݎ݌

ሻݏ/ݏݐ݁݇ܿܽ݌ሺ	ݐݑ݌݄݃ݑ݋ݎ݄ܶ ൌ
௡௨௠௕௘௥	௢௙	௣௔௖௞௘௧௦

௣௥௢௖௘௦௦௜௡௚	௧௜௠௘
 (3)

To calculate the energy consumed per operation, we
used (2), where ௥ܲ௨௡௡௜௡௚ denotes the FPGA power consump-
tion while the circuit is operating, and ௜ܲௗ௟௘ denotes the
FPGA baseline power. To calculate the throughput, we
used (3), which is also valid for SW implementations. The
processing time is calculated from the clock frequency (50
MHz for all circuits) and the number of clock cycles re-
quired to complete an extraction or classification.

6.2 Comparison of the Implemented Feature
Extractors
One way to compare different feature extractors (in SW or
HW) is to evaluate their throughput running at maximum
speed and to count the number of packets processed per
second. This can be accomplished by keeping a number of
sample packet headers in memory, and providing the ex-
tractor with a new input as soon as it is ready to process
the next packet.

TABLE 9 - THROUGHPUT OF THE EXTRACTORS.
Extractor SW throughput

(packet/s)

HW throughput

(packets/s)
HW/SW ratio

ANY (no selection) 359,531 534,815 1.49

DT (single objective) 913,399 2,925,756 3.20

DT (dual objective) 1,222,514 9,947,571 8.14

NB (single objective) 936,833 2,925,756 3.12

NB (dual objective) 1,265,741 9,947,571 7.86

kNN (single objective) 706,181 1,344,266 1.90

kNN (dual objective) 1,218,642 9,947,571 8.16

TABLE 8 – AREA OF THE IMPLEMENTED HW CLASSIFIERS.
Classifier Logic Cells

(LCs)

Memory

Bits

9‐bit Multi‐

pliers

DT (no selection) 106 0 0

DT (single objective) 81 0 0

DT (dual objective) 52 0 0

NB (no selection) 2,471 18,688 14

NB (single objective) 1,327 4,480 14

NB (dual objective) 1,132 0 14

kNN (no selection) 11,327 986,112 14

kNN (single objective) 6,103 279,552 14

kNN (dual objective) 3,891 44,032 14

TABLE 7 – AREA OF THE IMPLEMENTED HW EXTRACTORS.
Extractor for Attributes Logic Cells (LCs) Memory Bits

ANY (no selection) 50 2,785 5,242,880

DT (single objective) 6 2,085 5,242,880

DT (dual objective) 2 1,439 5,242,880

NB (single objective) 9 2,253 5,242,880

NB (dual objective) 2 1,723 5,242,880

kNN (single objective) 14 2,377 5,242,880

kNN (dual objective) 2 1,723 5,242,880

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 11

Table 9 shows the throughput achieved by the HW and
SW implementations of the hash-based extractors, using
the minimum feature set required by each classifier. Even
though the SW and HW implementations operate at
widely different frequencies (1.86 GHz vs. 50 MHz), all
HW versions are faster than their SW counterparts by fac-
tors that vary from 1.49 to 8.16. The main reason for such
difference is that the HW implementations were designed
for a specific task, and they have less overhead than a gen-
eral-purpose processing platform. For example, a HW im-
plementation may perform relatively complex operations,
such as normalizing or updating a feature value, in a single
clock cycle; in SW, however, this operation must be broken
down into a series of low-level instructions in the Atom
CPU.

To compare the energy consumption in HW and SW, we
measured the energy required by each implementation to
perform the same basic operation. In the case of feature ex-
traction, we measured the average energy consumed to ex-
tract the features from a network packet. Table 10 presents
the energy spent by each extractor; all HW extractors use
less energy than their SW counterparts. The HW extractor
created for use with the dual-objective DT classifier is the
most energy-efficient of all implemented extractors, re-
quiring 57.9 nJ to extract one packet – only 6% of the energy
consumed by the corresponding SW version. Fig. 12 shows
another view of the energy consumed (in nJ) by each ex-
tractor. The grey bars are HW implementations; the black
bars denote SW implementations.

6.3 Comparison of the Implemented Classifiers
We have measured the throughput of all implemented
classifiers, in both SW and HW. Because of the differences
in classifier algorithms and HW implementations, the clas-
sification throughput varies greatly – from around 900

packets/s to 79 million packets/s. Table 11 presents the
throughput of the implemented classifiers. Unlike the ex-
tractors, not all classifiers are faster in HW: for DT (no se-
lection), DT (single objective), and DT (dual objective), the
HW version is faster, whereas for all others the SW version
is faster. The main reason is that the other classifiers are
sequential and iterative circuits, operating in a lower clock
frequency (50 MHz) than the corresponding SW versions
(1.86 GHz).

We have also measured the energy consumption of each
classifier in SW and HW. All HW classifiers consume less
energy to classify a packet, compared to their SW counter-
parts. Table 12 presents the energy consumed by each clas-
sifier, for a single classification operation. The DT algo-
rithm with dual-objective feature selection in HW is the
most energy-efficient of all, requiring 15 pJ to classify one
packet – only 0.03% of the corresponding SW version. The
kNN classifier in HW also requires less energy than its SW
counterpart, unlike the result found in our previous work
for probing attacks [42]. The main reason is that now we
assume that the HW classifiers operate with the maximum
throughput from Table 11; this is a reasonable assumption,
because if the classifiers were run with a lower throughput,
we could lower the clock frequency as well, and the energy
consumption of the classifiers would also decrease,
roughly proportionally to the operating frequency [41].

Fig. 13 shows another view of the energy consumed (in
pJ) by each classifier, for one classification operation. The
grey bars are HW implementations; the black bars are SW
implementations. The difference between the best HW and
the best SW implementations–DT HW (dual objective) and
DT SW (dual objective)–is greater than three orders of
magnitude.

Considering the entire packet processing (extraction
plus classification), the best case in SW – DT SW (dual ob-
jective) – spends 1,012.85 nJ, whereas the best case in HW –

TABLE 10 - ENERGY CONSUMPTION OF THE EXTRACTORS.

Extractor
Energy per extrac‐

tion in SW (nJ)

Energy per extrac‐

tion in HW (nJ)
HW/SW (%)

ANY (no selection) 1,999.47 1,078.25 53.9

DT (single objective) 1,110.81 230.48 20.7

DT (dual objective) 965.00 57.90 6.0

NB (single objective) 1,094.96 242.56 22.2

NB (dual objective) 969.17 80.56 8.3

kNN (single objective) 1,267.43 476.10 37.6

kNN (dual objective) 962.70 80.59 8.4

TABLE 11 – THROUGHPUT OF THE IMPLEMENTED CLASSIFIERS.
Classifier SW throughput

(packet/s)

 HW throughput

(packets/s)

HW/SW ratio

DT (no selection) 7,687,074 79,170,295 10.30

DT (single objective) 42,854,618 72,632,190 1.69

DT (dual objective) 62,517,739 63,653,723 1.02

NB (no selection) 213,860 213,675 1.00

NB (single objective) 1,761,352 1,190,476 0.68

NB (dual objective) 4,485,460 4,166,666 0.93

kNN (no selection) 3,041 904 0.30

kNN (single objective) 8,318 2,621 0.32

kNN (dual objective) 17,088 7,131 0.42

Fig. 12. Energy consumed by the extractors to process one
packet, in SW and HW.

TABLE 12 - ENERGY CONSUMPTION OF THE CLASSIFIERS.

Classifier
Energy per classifi‐

cation in SW (nJ)

Energy per classifi‐

cation in HW (nJ)

HW/SW

(%)

DT (no selection) 94.31 0.047 0.05

DT (single objective) 49.32 0.031 0.06

DT (dual objective) 47.85 0.015 0.03

NB (no selection) 2,526.37 100.78 4.0

NB (single objective) 358.90 16.78 4.7

NB (dual objective) 180.30 7.40 4.1

kNN (no selection) 169,743.52 152,094.95 89.6

kNN (single objective) 67,566.69 30,709.27 45.5

kNN (dual objective) 32,787.18 6,440.44 19.6

12 IEEE TRANSACTIONS ON COMPUTER

DT HW (dual objective) – spends 57.92 nJ. The energy sav-
ings in this case were of 94%.

7 RELATED WORK
Research on power-efficient network intrusion detection is
still in its beginnings, and publications on the subject are
still rare. Here we describe the main works available in the
literature so far.

In commercial products, features for NIDS are usually
extracted using netflow-based solutions. Fprobe [40] is a
libpcap-based tool and NProbe [43] a netflow port for em-
bedded systems. It is implemented as a linked list; when a
collision happens, another entry is stored in the list. An in-
dependent thread checks every flow for inactivity, with a
frequency of approximately 1 to 5 minutes for Fprobe and
1 minute for Nprobe.

A netflow-based feature extractor implemented using
specialized hardware is used in the Cisco Catalyst 6500 Se-
ries Switch [44]. IP addresses, port numbers, and the pro-
tocol type are used as an index into a first lookup table,
which provides an address into a second flow data table.

Tran et al [57] developed a block-based neural NIDS in
SW and HW using a Cyclone III FPGA. The authors used
the DARPA dataset, converting it to the netflow format to
obtain a classifier able to analyze packets directly from
Cisco routers. The HW implementation was 1,300 times as
fast as its SW counterpart, but it was unclear whether the
two versions were functionally equivalent. Moreover, the
used version of the DARPA dataset was outdated. There
are several documented attempts to use netflow to extract
intrusion related features [45][46][47].

Das et al. [48] developed an FPGA architecture com-
posed of a feature extraction module, that uses a hash table
to keep the attributes, and a detection module, using the
Principal Component Analysis technique to detect port
scan (probing) and syn flood (DoS) attacks. The through-
puts achieved for feature extraction and detection were 21
and 23 Gbps, respectively, using a Xilinx Virtex-II
XC2V1000. However, it is not clear whether the modifica-
tions for implementing the algorithms in HW produced
different results from a SW implementation. In addition,
the authors used the outdated KDD’99 dataset to validate the
the proposal.

In the work of Gómez et al. [49] about feature selection,
the authors compare a single aggregate objective, using
weights for each objective, against multi-objective feature
selection. A signature-based IDS was used for the tests,
aiming at minimizing the number of features and showing
that it can reduce the false-positive and false-negative rates
when classifying the DARPA 1998 [50] dataset. It is worth
noting that the authors used an outdated DARPA dataset,
which is not recommended for use with signature-based
IDS due to several limitations [50][51].

Hoque et al. [52] use NSGA-II as a filter-based feature
selection method. The tests showed that as the number of
used features increases, the execution time also increases
for the kNN and DT classifiers. Feature selection improved
the classifier accuracy; however, the authors did not con-
sider the impact that a large number of training instances
used in the kNN classifier would have in energy consump-
tion.

Regarding the use of ML classifiers for anomaly-based
detection in hardware, Vijayasarathy et al. [53] developed
a DoS detection system with an NB classifier in a Virtex 4
FPGA. The authors used the outdated KDD’99 and real-
world traffic captured from the “Society for Electronic
Transactions and Security” website for training, which
does not allow reproducibility. The classifier was first
modeled in SW and then implemented in HW, but the au-
thors did not take any measures to ensure that the two ver-
sions were functionally equivalent.

In our previous work, we have evaluated DT, NB, and
kNN classifiers to detect probing attacks in software and
hardware [42]. To allow a direct comparison of the energy
efficiency of the two approaches, we ensure that the HW
and SW versions of each algorithm have exactly the same
classification behavior. The results showed that the most
energy-efficient classifier (without considering the feature
extraction) is the DT, in both SW and HW. The hardware
version of this classifier consumed only 0.05% of the en-
ergy used in SW version.

There are very few works comparing software and
hardware implementations of intrusion detection engines,
with an emphasis on energy consumption. Moreover, most
HW-based works use Snort rules [54][55][56] rather than
anomaly-based detection. We have found no previous
work in the literature addressing all aspects of the SW and
HW implementation of energy-efficient anomaly detection
systems.

8 CONCLUSION
Intrusion detection is usually implemented in SW, making
accurate power measurements difficult because they re-
quire specialized techniques as described in section 3.1.
Moreover, when comparing SW and HW implementa-
tions, it is indispensable to prove that they are functionally
equivalent, so that the throughput and power consump-
tion of the two alternatives can be compared directly. In
this paper, we have proposed and evaluated three new ap-
proaches to improve the energy efficiency of network se-
curity algorithms and applications: a new feature extrac-
tion algorithm suitable for HW implementation, a feature

Fig. 13. Energy consumed by the classifiers to process one
packet, in SW and HW.

E. VIEGAS ET AL.: TOWARDS AN ENERGY-EFFICIENT ANOMALY-BASED INTRUSION DETECTION ENGINE FOR EMBEDDED SYSTEMS 13

selection method based on two simultaneous objectives
(accuracy and energy consumption), and the implementa-
tion of the feature extractor engine and ML classifiers in
HW. We have presented detailed energy consumption
measurements for all algorithms, in both SW and HW. The
new feature extractor consumes only 22% of the energy
used by a commercial tool, when implemented in SW, and
12% when implemented in HW.

The dual-objective feature selection method enabled en-
ergy savings of up to 92.9% (in the best case, for the NB
classifier) in comparison with a classifier without feature
selection. Dual-objective feature selection provided an av-
erage 9.3% energy savings, while incurring an average
0.90% accuracy loss, when compared with single-objective
feature selection. Overall, comparing the most energy-effi-
cient software implementation (using the proposed feature
extraction engine and the Decision Tree classifier) with an
equivalent hardware implementation, the hardware ver-
sion consumed only 5.7% of the energy used by the soft-
ware version.

ACKNOWLEDGMENT

The authors would like to thank to Paulo Cemin for devel-
oping the power measurement platform used in the exper-
iments, and Intel Labs Univ. Research Office and the Bra-
zilian National Council for Scientific and Technological
Development, grant 440850/2013-4, for the financial sup-
port.

REFERENCES
[1] Symantec Lab. ISTR20: Internet Security Threat Report, [online] available:

www4.symantec.com/mktginfo/whitepaper/ISTR/21347932_ GA‐ internet‐

security‐threat‐report‐volume‐20‐2015‐social_v2.pdf. Accessed Oct./2015.

[2] Kaspersky Lab. ZAO. Kaspersky Security Bulletin 2014: Overall statistics for

2014. [online] available: securelist.com/analysis/kaspersky‐securitybulle‐

tin/68010/kaspersky‐security‐bulletin‐2014‐overall‐statistics‐for‐2014/.Ac‐

cessed Oct./2015.

[3] Yusuf, S.; Luk, W.; Sloman, M.; Dulay, N.; Lupu, E.C.; Brown, G., ̋ Reconfigu‐

rable Architecture for Network Flow Analysis,̋ IEEE Transactions on Very

Large Scale Integration Systems, vol.16, no.1, pp.57‐65, Jan. 2008.

[4] Lambruschini, P.; Raggio, M.; Bajpai, R.; Sharma, A., ̋ Efficient implementation

of packet pre‐filtering for scalable analysis of IP traffic on high‐speed lines,̋

SoftCOM, pp. 1‐5, 2012.

[5] Embedded Intel solutions, “Intel’s Hybrid CPU‐FPGA,” www.embeddedin‐

tel.com/commentary.php?arti cle=2143. Acessed: Oct./2015.

[6] N. B. Guinde and S. G. Ziavras, “Efficient hardware support for pattern match‐

ing in network intrusion detection,” Computers & Security, vol. 29, no. 7, pp.

756‐769, 2010.

[7] S. Kim and J.‐Y. Lee, “A system architecture for high‐speed deep packet in‐

spection in signature‐based network intrusion prevention,” Journal of Sys‐

tems Architecture, vol. 53, no. 5–6, pp. 310‐320, 2007.

[8] J. Harwayne‐Gidansky, D. Stefan and I. Dalal, “FPGA‐based SoC for real‐time

network intrusion detection using counting bloom filters,” Proc. IEEE South‐

eastcon, pp.452‐458, 2009.

[9] K. Hwang, M. Cai, Y. Chen and M. Qin, “Hybrid Intrusion Detection with

Weighted Signature Generation over Anomalous Internet Episodes,” IEEE

TDSC, vol. 4, no.1, pp.41‐55, Jan.‐Mar. 2007.

[10] L. Khan, M. Awad and B. Thuraisingham, “A new intrusion detection system

using support vector machines and hierarchical clustering,” The VLDB Jour‐

nal, vol. 16, no. 4, pp. 507‐521, 2007.

[11] D. S. Kim, H.‐N. Nguyen and J. S. Park, “Genetic algorithm to improve SVM

based network intrusion detection system,” Proc. of IEEE AINA, pp. 155‐158,

2005.

[12] C.‐F. Tsai, Y.‐F. Hsu, C.‐Y. Lin, and W.‐Y. Lin, “Intrusion detection by machine

learning: A review,” Expert Systems with Applications, vol. 36, no. 10, pp.

11994‐12000, 2009.

[13] Trabelsi, Z.; Mahdy, R., ̋ An Anomaly Intrusion Detection System Employing

Associative String Processor,̋ proc. of ICN, pp.220‐225, 2010.

[14] Quang Anh Tran; Jiang, F.; Quang Minh Ha, ʺEvolving Block‐Based Neural

Network and Field Programmable Gate Arrays for Host‐Based Intrusion De‐

tection System,̋ Proc. of KSE, pp. 86‐92. 2012.

[15] Taner Tuncer and Yetkin Tatar, “FPGA based programmable embedded in‐

trusion detection system,” Proc. of International conference on Security of in‐

formation and networks. ACM, pp. 245‐248. 2010.

[16] Papadonikolakis, M.; Bouganis, C., ʺA novel FPGA‐based SVM classifier,̋

proc. of FPT, pp.283‐286, 2010.

[17] Das, A.; Misra, S.; Joshi, S.; Zambreno, J.; Memik, G.; Choudhary, A., ̋ An Effi‐

cient FPGA Implementation of Principle Component Analysis based Net‐

work Intrusion Detection System,̋ in DATE, pp.1160‐1165, 2008.

[18] M. Papadonikolakis and C.‐S. Bouganis, “Novel Cascade FPGA Accelerator

for Support Vector Machines Classification,” IEEE Trans. Neural Networks

and Learning Systems, vol. 23, no. 7, pp. 1040‐1052, Jul. 2012.

[19] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion de‐

tection systems: Taxonomy, solutions and open issues,” Inf. Sci. (Ny)., vol. 239,

pp. 201–225, Aug. 2013.

[20] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung,

D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. a. Ziss‐

man, “Evaluating intrusion detection systems: the 1998 DARPA off‐line intru‐

sion detection evaluation,” Proc. DARPA Inf. Surviv. Conf. Expo. DISCEX’00,

vol. 2, 2000.

[21] P. Kabiri and A. a. Ghorbani, “Research on intrusion detection and response:

A survey,” Int. J. Netw. Secur., vol. 1, no. 2, pp. 84–102, 2005.

[22] R. Sommer and V. Paxson, “Outside the Closed World: On Using Machine

Learning for Network Intrusion Detection,” IEEE Symp. Secur. Priv., pp. 305–

316, 2010.

[23] C. Komviriyavut, T.; Sangkatsanee, P.; Wattanapongsakorn, N.;

Charnsripinyo, “Network intrusion detection and classification with Decision

Tree and rule based approaches,” 9th Int. Symp. Commun. Inf. Technol. pp.

1046–1050, 2009.

[24] P. Gogoi, M. H. Bhuyan, D. K. Bhattacharyya, J. K. Kalita, “Packet and Flow

Based Network Intrusion Dataset”, Contemporary Computing, p. 322‐334,

2012.

[25] J. J. Davis and A. J. Clark, “Data preprocessing for anomaly based network in‐

trusion detection: A review,” Comput. Secur., vol. 30, no. 6–7, pp. 353–375,

2011.

[26] IETF. www.ietf.org/rfc/rfc3954.txt, Accessed Oct./2015.

[27] CISCO. www.cisco.com/c/en/us/products/collateral/ios‐nx‐os‐software/ios‐

netflow/prod_white_paper0900aecd80406232.pdf. Accessed oct./2015.

[28] G. John, R. Kohavi and K. Pfleger, “Irrelevant features and the subset selection

problems,” Proc. Int. Conf. Machine Learning, pp. 121–129. 1994.

[29] D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn‐

ing, Reading, MA, Addison‐Wesley, 1989.

[30] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “A Methodology for

Feature Selection Using Multiobjective Genetic Algorithms for Handwritten

Digit String Recognition,” Int. J. Pattern Recognit. Artif. Intell., vol. 17, no. 06,

pp. 903–929, 2003.

[31] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec‐

tive genetic algorithm: NSGA‐II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp.

182–197, 2002.

[32] D. Bedard, M. Y. Lim, R. Fowler and A. Porterfield, “PowerMon: Fine‐grained

and integrated power monitoring for commodity computer systems,̋ IEEE

SoutheastCon, pp. 479‐484, 2010.

[33] J. H. Laros, P. Pokorny and D. DeBonis, “PowerInsight ‐ A commodity power

measurement capability,” IEEE Int’l Green Computing Conf., pp. 1‐6, 2013.

14 IEEE TRANSACTIONS ON COMPUTER

[34] V. M. Weaver, M. Johnson, K. Kasichayanula and J. Ralph,, “Measuring En‐

ergy and Power with PAPI,” IEEE Int’l Conf. on Parallel Processing Work‐

shops, pp. 262‐268, 2012.

[35] J. Yan, C. K. Lonappan, A. Vajid, D. Singh and W. J. Kaiser, “Accurate and

Low‐Overhead Process‐level Energy Estimation for Modern Hard Disk

Drives,” Proc. IEEE Int’l Conf. on Green Computing and Communications,

pp. 171‐178, 2013.

[36] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, ̋ An Overview of Is‐

sues in Testing Intrusion Detection Systems An Overview of Issues in Testing

Intrusion Detection ,̋ http://csrc.nist.gov/publications/nistir/nistir‐7007.pdf,

2003. Accessed Oct./2015.

[37] “Honeyd.” www.honeyd.org/. Accessed Oct./2015.

[38] “Weka.” www.cs.waikato.ac.nz/ml/weka/. Accessed Oct./2015.

[39] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better Netflow,”

ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, p. 245, 2004.

[40] “Fprobe.” sourceforge.net/projects/fprobe/. Accessed Oct./2015.

[41] A. L. França, R. Jasinski, V. A. Pedroni, and A. O. Santin, “Moving Network

Protection from Software to Hardware: An Energy Efficiency Analysis,” Proc.

IEEE ISVLSI, pp. 456‐461, 2014.

[42] A. L. França, R. P. Jasinski, P. R. Cemin, V.A. Pedroni and A. O. Santin, “The

Energy Cost of Network Security: a Hardware vs. Software Comparison,” in

Proc. IEEE ISCAS, 2015, pp 81‐84.

[43] “NProbe.” www.ntop.org/products/nprobe/. Accessed Oct./2015.

[44] CISCO. www.cisco.com/c/en/us/products/collateral/switches/catalyst‐6500‐

series‐switches/white_paper_c11‐652021.pdf.Accessed Oct./2015.

[45] Z. Jadidi, V. Muthukkumarasamy, E. Sithirasenan, and M. Sheikhan, “Flow‐

based anomaly detection using neural network optimized with GSA algo‐

rithm,” Proc. Int. Conf. Distrib. Comput. Syst., pp. 76–81, 2013.

[46] T. Peng and W. Zuo, “Data Mining for Network Intrusion Detection System

in Real Time,” Ijcsns, vol. 6, no. 2, pp. 173–177, 2006.

[47] M. Y. Su, G. J. Yu, and C. Y. Lin, “A real‐time network intrusion detection sys‐

tem for large‐scale attacks based on an incremental mining approach,” Com‐

put. Secur., vol. 28, no. 5, pp. 301–309, 2009.

[48] Das, A.; Nguyen, D.; Zambreno, J.; Memik, G.; Choudhary, A., ʺAn FPGA‐

Based Network Intrusion Detection Architecture,̋ IEEE Trans. on Information

Forensics and Security, vol.3, no.1, pp.118‐132, 2008.

[49] J. Gómez, C. Gil, R. Baños, a. L. Márquez, F. G. Montoya, and M. G. Montoya,

“A Pareto‐based multi‐objective evolutionary algorithm for automatic rule

generation in network intrusion detection systems,” Soft Comput., pp. 255–

263, 2012.

[50] J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and

1999 DARPA intrusion detection system evaluations as performed by Lincoln

Laboratory,” ACM Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–294, 2000.

[51] M. V Mahoney and P. K. Chan, “An Analysis of the 1999 DARPA/Lincoln

Laboratory Evaluation Data for Network Anomaly Detection,” Int. Symp. Re‐

cent Adv. Intrusion Detect. vol. 2820, pp. 220–237, 2003.

[52] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, “MIFS‐ND: A mutual infor‐

mation‐based feature selection method,” Expert Syst. Appl., vol. 41, no. 14, pp.

6371–6385, 2014.

[53] R. Vijayasarathy, S. Raghavan, and B. Ravindran, “A System Approach to

Network Modeling for DDoS Detection using a Naive Bayesian Classifier,”

IEEE COMSNETS, pp. 1‐10, 2011.

[54] H. Song and J. W. Lockwood, “Efficient Packet Classification for Network In‐

trusion Detection Using FPGA,” proc. of FPGA, pp. 238‐245, 2005.

[55] T. Katashita, Y. Yamaguchi, A. Maeda, and K. Toda, “FPGA‐Based Intrusion

Detection System for 10 Gigabit Ethernet,” IEICE Trans. Information and Sys‐

tems, vol. E90‐D, no. 12, pp. 1923‐1931, 2007.

[56] S. Pontarelli, G. Bianchi, and S. Teofili, “Traffic‐Aware Design of a High‐Speed

FPGA Network Intrusion Detection System,” IEEE Trans. Computers, vol. 62,

no. 11, pp. 2322‐2334, 2013.

[57] Q. A. Tran, F. Jiang, and J. Hu, “A Real‐time Netflow‐based Intrusion

Detection System with Improved BBNN and High‐Frequency Field

Programmable Gate Arrays,” IEEE Int’l Conf. Trust, Security and Pri‐

vacy in Computing and Communications, pp. 201‐208, 2012.

[58] A. Shiravi, H. Shiravi, M. Tavallaee, and A. a. Ghorbani, “Toward devel‐

oping a systematic approach to generate benchmark datasets for intru‐

sion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, 2012.

Eduardo Viegas received the BS degree
in computer science from PUCPR in
2013 and is currently working toward
the MS degree at PUCPR. His research
interests include machine learning and
security.

 Altair Olivo Santin received the BS
degree in Computer Engineering from
the PUCPR in 1992, the MSc degree
from UTFPR in 1996, and the PhD
degree from UFSC in 2004. He is a full
professor of Computer Engineering at
PUCPR. He is a member of the IEEE,
ACM, and the Brazilian Computer So‐
ciety.

 André L. França received the BS de‐
gree in Electrical Engineering from
Federal University of Parana (UFPR) in
2013 and the MSc degree in Electrical
and Computer Engineering from Fed‐
eral Technological University of Pa‐
rana (UTFPR) in 2015.

Ricardo P. Jasinski was born in Curitiba,
Brazil, in 1977. He received his B.S., M.S.,
and Ph.D. degrees in electrical engineer‐
ing from the Federal Technological Uni‐
versity of Parana in 2000, 2004, and 2014.

Volnei A. Pedroni received his BSc in
Electrical Engineering from UFRGS, in
1975, and his MSc and PhD from Caltech,
in 1990 and 1995, respectively. He has
been since with the Electronics Engineer‐
ing Dept. of Federal Technological Uni‐
versity of Paraná State (UTFPR), in Brazil.

Luiz S. Oliveira received his B.S. degree
in Computer Science from UP, the M.Sc.
from UTFPR, and Ph.D. degree in Com‐
puter Science from École de Technologie
Supérieure, Université du Quebec in
1995, 1998 and 2003, respectively. From
2004 to 2009 he was professor of PUCPR.
In 2009, he joined the UFPR, where he is
professor of the Department of Informat‐
ics.

