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Abstract—Despite existing many anomaly-based intrusion 
detection studies in the literature, they are not frequently adopted 
by the industry in production environments (products). Such a 
usage gap occurs mainly due to the difficulty to maintain the 
detection rate in acceptable level, given the occurrence of false 
alarms. In general, the literature does not consider the adversarial 
settings, when an opponent attempt to evade the detection system, 
thus possibly rendering the system unreliable over time. In this 
paper, we propose and evaluate a new approach to reliably 
perform real time stream learning for anomaly-based intrusion 
detection. We employ a class-specific stream outlier detector to 
automatically update the intrusion detection engine over the time, 
and a rejection mechanism, which makes it possible to obtain 
indications that an evasion attempt might being happening. 
Furthermore, the proposal is resilient to causative attacks, 
providing a secure intrusion detection mechanism even when the 
attacker can inject misclassified instances in the training dataset. 
The evaluation tests show that the proposed approach is resilient 
to exploratory attacks, allowing the system administrator to know 
when an evasion attempt might be occurring.  

Keywords—Adversarial Settings, Outlier Detection, Stream 
Learning, Intrusion Detection. 

I.  INTRODUCTION  

 A common approach used for the detection of attacks in the 
network is through an Intrusion Detection System (IDS). The 
IDS allows the detection of attacks, malicious or inadequate 
usage of a computational system or a network of computers [1]. 
In general, the detection of intrusion attempts in most IDSs is 
performed through the usage of machine learning techniques [2]. 
In such approach, the system is trained with a set of known 
profiles/behaviors. Afterwards, during its deployment in 
production, any event, e.g. a network packet, which significantly 
deviates from the previously known profiles is classified as an 
intrusion attempt [3]. In this way, the anomaly-based intrusion 
detection can detect new attacks. 
 However, despite the promising results reported in the 
literature, the anomaly-based intrusion detection approach is 
rarely considered in production (real-world) environments [4]. 
Thereby, the signature-based still is the most used approach [5], 
in which the classification is performed by pattern matching a 
set of well-known attacks. This discrepancy between the 
literature and real-life occurs mainly because the high number of 
false alarms [4] and the need to update the intrusion detection 
algorithm over time [6] due to the changes in the environment 
behavior, such as the occurrence of new network traffic and new 
attacks [5].  

 In light of this, over the last years, a great amount of research 
effort has been performed on stream learning techniques [7]. 
Such a technique is often employed in scenarios in which the set 
of target concepts (classes) changes over time [7]. For instance, 
in the network-based intrusion detection context, the legitimate 
client (normal) behavior changes over time with the usage of 
new services, whilst the attacker behavior (intrusion) also 
changes gradually due to the generation of new attacks [4]. 
Therefore, in an evolving context the detection mechanism 
update is often performed based on time intervals (sliding 
window) [8]. Thereby, due to the characteristics of the data, 
recent events are given a greater importance during the detection 
stage, whilst older events are often discarded [8]. 
 Because of its capacity to deal with evolving data, several 
works have argued that the stream-based learning techniques 
enables the usage of anomaly-based intrusion detection 
approaches in production environments [2]. However, in the 
literature, there is a lack of proper evaluation of such systems, 
especially in the intrusion detection field [4]. In general, the 
works in literature does not consider the adversarial settings, 
where an attacker will attempt to evade the intrusion detection 
mechanism, either by perverting the intrusion detection 
mechanism properties or by injecting attacks during the training 
stage [9]. 
 In this paper, we present an approach to reliably deal with 
evolving data streams to perform anomaly-based intrusion 
detection. The proposal relies in a class-specific stream outlier 
detector to automatically and reliably update the intrusion 
detection engine over time. The proposal considers the 
adversarial settings by rejecting potentially evasion attempts or 
non-reliable decisions. 

II. BACKGROUND 

 In this work, two approaches are considered for anomaly-
based intrusion detection: traditional machine learning and 
stream learning.  

A. Traditional Machine Learning (TML) 

 The traditional machine learning refers to the pattern 
recognition algorithms [10], in which its process commonly 
relies in an immutable database. In this case, the intruder and 
normal user behavior are obtained and stored in a dataset. The 
dataset, usually referred as training dataset, is used during the 
classifier (pattern recognition algorithm) training stage. During 
this process, a false-positive (FP) and false-negative (FN) rate 
are estimated, through another dataset commonly referred to as 



testing dataset. The FP rate refers to the rate in which normal 
events are wrongly classified as an intrusion attempt, whilst the 
FN rate refers to the rate that intrusion events are wrongly 
classified as normal activity. In the traditional machine learning 
process, when the attacker behavior changes, the pattern 
recognition algorithm must be retrained. However, the training 
process is often a costly task, as the environment must be 
monitored, the new behaviors must be identified, often 
manually, the classifier must be retrained and the FP and FN 
rates must be estimated. Moreover, identifying the environment 
behavior change is a challenging task, given the identification is 
often based in the increase of the FP and FN rates, which is also 
identified manually through experts’ assistance [4].   
 The easiness to update becomes relevant in the anomaly-
based intrusion detection field. New attacks are discovered in a 
daily-basis, along with new services and their contents. Thus, 
regardless of the used intrusion detection mechanism, the system 
must be continually updated [4]. 

B. Traditional Stream Learning (TSL) 

 Traditional Stream Learning techniques aim at automatically 
dealing with the environment changes over time [7]. In such a 
case, the stream learning algorithm is executed in a repeated 
cycle, in which the algorithm is updated according to the 
incoming events from the network data stream [8]. Thereby, 
such process, occurs per memory and processing bounds. In this 
case the memory bounds are defined according with the number 
of events considered during the classification process. For this 
purpose, most strategies rely in a sliding window approach, in 
which a window (pre-defined range) of recent events is 
maintained, and the older events are discarded according to a set 
of rules [8]. 
 Due to its adaptive nature, a data stream classification 
algorithm must present the following properties [8]: (i) process 
and inspect one example at a time, at most; (ii) use a limited 
amount of memory; (iii) classify in a restricted amount of time 
and (iv) predict new events at any time. 

C. Adversarial Settings 

 Over the last years, the traditional machine learning and 
stream learning techniques have been successfully applied to 
several fields [4], such as image recognition, product 
recommendation systems, natural language translation [11] 
amongst others. However, in the intrusion detection field, there 
still a lack of applicability in production usage [4].  

 An emerging field of research, known as adversarial 
machine learning [9] considers the use of machine learning in 
the settings of an adversary – called adversarial settings. In such 
cases, the adversary (attacker) will attempt to evade the intrusion 
detection mechanism using sophisticated types of attacks, called 
causative and exploratory [9]. The causative attacks refer to 
attacks that occurs during the training process [9], e.g. the 
attacker inject misclassified intrusions into the training dataset 
as normal events. On the other hand, the exploratory attacks aim 
at exploring the machine learning algorithm properties [9], e.g. 
craft the intrusion attempt in a manner that the detection engine 
classifies it as a normal activity.  
 An example of causative attack at a traditional Stream 
Learning classifier is shown in Figure 1. In such scenario, the 
classifier is classifying attacks (Outliers) events over time. At 
Time 1 (Figure 1, Time 1) the sliding window is fully populated 
with inliers (normal) events, thereby the attack is classified as 
outlier. However, regardless of its assigned class, the attack, 
initially classified as outlier, is added in the sliding window, 
whilst an inlier (oldest event in the sliding window) is removed. 
The same property occurs at Time 2 (Figure 1, Time 2), however 
the new attack is still classified as outlier, as there are not enough 
events in its neighborhood. Finally, at Time 3 (Figure 1, Time 3) 
the attacker can inject enough attacks in the sliding window, as 
the number of neighbors is close enough to form a cluster and 
be classified as inliers (normal) events. 
 Thus, the usage of machine learning techniques, specially 
Stream Learning, in the adversarial settings seeks at designing 
detection mechanisms that can resist or to be resilient to the 
before mentioned (sophisticated) attacks. 

III.  PROPOSAL 

 The objective of this proposal is to provide a reliable stream 
learning approach for anomaly-based intrusion detection that 
can automatically update the intrusion detection engine over 
time. Therefore, the proposed approach relies in a class-specific 
stream outlier detection algorithm to be resilient to both 
causative and exploratory attacks. The overall proposed method 
is shown in Figure 2 and described in the next subsections.  

A. Detection Scheme 

 The proposed method considers that the detection scheme 
relies in a class-specific stream outlier detection algorithm. For 
example, an outlier detection for normal events and an outlier 
detection for attack events. The detection is performed 
accordingly to Figure 2, (i) the set of features are extracted from 
the considered event, e.g. a network packet; (ii) a feature vector 

Figure 2 – Proposed method for anomaly-based intrusion detection through 
stream learning algorithm in adversarial settings. 

 

Figure 1 – Sliding Window behavior in Traditional Stream Learning Classifier. 
Outliers (Attacks) are added in the Sliding Window regardless of their class. 



is supplied to each outlier detection algorithm; (iii) each outlier 
detection perform its detection, assigning a class either outlier 
(event does not belong to outlier detection class group) or inlier 
(event does belong to outlier detection class group); (iv) the 
detection engine receives the decision from each outlier 
detection and attempts to find an consensus among the 
decisions; (v) if a decision unanimity is found the class is 
assigned, otherwise, the event decision is rejected. 
 When receiving an event decision, the detection engine 
decides whether the event classification is reliable or not. The 
class assignment reliability of an event classification (output 
‘class X’ in Figure 2) comes from the nullity of intersection of 
decision from all classifiers. The reliability computation process 
is shown in Eq. 1, where ݀݁ܿ݅݊݋݅ݏ௜ denotes to each Outlier 
Detection classifier output.  

⋂ ሺ݀݁ܿ݅݊݋݅ݏ௜ሻ
௡
௜ୀଵ ൌ 	∅      (1) 

 As an example, consider two outlier detection algorithms 
(Eq. 1), one for normal events and one for attacks; an event 
which is classified as an inlier for normal and outlier for attack 
is reliable – the decision is an unanimity, because there is not 
intersection between classification classes in the different 
detection engine for the same event. However, an event which is 
classified as inlier for more than one outlier detection should be 
rejected, as the decision is not reliable. Rejected classifications 
indicates that a potential evasion attempt or a false alarm might 
be occurring and another detection mechanism should be used, 
for instance, a signature-based intrusion detection mechanism or 
manual inspection. 

B. Ensuring Adversarial Machine Learning - Exploratory 

 Unlike the traditional stream learning algorithms, our 
approach provides resilience to exploratory attacks, by relying 
in the immutable behavior of each outlier detection algorithm. 
The immutable behavior is defined by a restriction that do not 
allow an outlier to become an inlier in the outlier detection 
algorithm over time (in a considered sliding windows). Our 
approach considers that in the anomaly-based intrusion 
detection field an event that is initially classified as outlier will 
not become an inlier at any moment in time. For example, an 
attack that was classified as an outlier (attack) by the normal 
outlier detection algorithm, must not be classified as a normal 
event afterwards, even if its occurrence increases in the sliding 
window over time. 
 By using the immutable behavior, the attacker will not be 
able to exploit the sliding window range to pervert (pollute) the 
classification of events being analyzed by an outlier detector. It 
is important to note that events classified as inlier continue to be 
added into the stream learning sliding window, thus the 
algorithm is still able to adapt to changes in the stream. But, the 
proposal mitigates a possible evasion attack, when the number 
of outlier events become predominant in a sliding window, 
therefore they will trigger the behavior mutation from outlier to 
inlier. 

C. Ensuring Adversarial Machine Learning - Causative 

 In order to provide resilience to causative attacks, the 
proposal relies in both immutable behavior (Section III.B) and 
class-specific outlier detectors. It considers that resilience to 

causative attacks must be provided at two stages: initial training 
and ongoing readapting (retraining). 
 The initial training is related to the initial outlier detector 
sliding window population – the filling of events in a sliding 
window. In this stage, the outlier detectors sliding window are 
still being populated, thus susceptible to causative attacks. 
Thereby, the proposed approach assumes that at least there are 
an initial population allowing the correct classification for one 
outlier detector, since the sliding window will be updated 
according to the initial events. A way of assuring the reliability 
of the initial training is preset the sliding windows with a 
predominant number of copies of the same inlier event.  Thus, 
given the outlier detector is reliable, the classification outputs 
can be trusted if decision unanimity is reached, otherwise the 
classification is rejected. 
 In order to provide a secure ongoing readapting, the proposal 
relies in both class-specific single class detection mechanism 
and immutable behavior (Section III.B). The single class 
detection mechanism provides resilience to event behavior 
manipulation. For example, the attacker must manipulate the 
event behavior in a manner that it behaves as a normal event, 
while also being an outlier for the attack outlier detection 
mechanism. Whilst, the immutable behavior difficult the attack 
over the sliding window, since the attacker must have skills to 
manipulate the events in a manner that pervert all outlier’s 
detectors.  

IV. EVALUATION 

 Due to the well-known limitations of the current approaches 
regarding datasets for network-based intrusion detection 
evaluation [4], the approach proposed in our previous work [19] 
was used to gather the network traffic. In this way, two classes 
of network traffic compose the dataset: normal and attack. The 
testbed consists of 100 interconnected client machines, 3 
attacker hosts and a single server.  
 To generate the normal traffic, the services provided in the 
testbed scenario were HTTP (Hypertext Transfer Protocol), 
SSH (Secure Shell), SMTP (Simple Mail Transfer Protocol), 
SNMP (Simple Network Management Protocol) and name 
resolution requests (DNS, Domain Name System). Three set of 
attacks were generated: SYNFlood, UDPFlood and ICMPFlood. 
The testbed described in [19] was executed for 30 minutes, the 
total amount of generated network traffic for each service and 
attack is reported in Table 1. For each network packet 23 
features are extracted [19]. 
 For the tests purposes the well-known Micro-cluster-based 
Continuous Outlier Detection (MCOD) [12] algorithm has been 
considered in our proposed method (Figure 2, Section III). For 
comparison purposes two other approaches were considered: the 
Traditional Machine Learning (TML, Section II.A) and 
Traditional Stream Learning (TLS, Section II.B).  

TABLE I.  NETWORK TRAFFIC DISTRIBUTION

Class Traffic Number of Packets

Normal 

HTTP 20,238,802
SMTP 2,298,222 
SSH 1,048,482 

SNMP 3,017,731 
DNS 135,188 

Attack 
SYNFlood 471,288 
UDPFlood 121,645 
ICMPFlood 130,698 



A. Model Obtainment Process 

 For the proposed method (Section III), two classes were 
considered: normal and attack. Thereby, for each test, two 
outlier detectors were used, one for normal and one for attack. 
A sliding window of 10,000 events was considered. A total of 50 
events were established as neighbor (k) parameter. Each class 
outlier detection has its own radius parameter. A series of tests 
were conducted to establish the radius parameters; the choosing 
criteria was to minimize the fitness value in Eq. 2. 

ݏݏ݁݊ݐ݂݅ ൌ ௥௔௧௘ݎ݋ݎݎ݁ ൅  ௥௔௧௘ (2)݊݋݅ݐ݆ܿ݁݁ݎ

 The ݁ݎ݋ݎݎ௥௔௧௘ and ݊݋݅ݐ݆ܿ݁݁ݎ௥௔௧௘ were defined through the 
detection of the initial 10,000 normal events followed by 
detecting 10,000 attack events from the training dataset (Table 
1). The radius values for each class outlier detector, normal and 
attack, was varied in a 0.01 interval from zero to 2.00.  
 The k-Nearest Neighbor (kNN) classifier was used for the 
TML (Section II.A). To allow comparison, a total of 5000 events 
for each class, normal and attack, are used for the classifier 
neighbor computation. The 5000 events of each class are defined 
by the k-means clustering algorithm [13], using the training 
dataset (25% of randomly chosen events from Table 1). The 
kNN neighbors set are not updated during the classification 
process. Finally, for the TSL (Section II.B2), the MCOD is used. 
However only the normal class is considered, as commonly 
performed in related works [12], whilst the radius obtainment 
process was established only by the ݁ݎ݋ݎݎ௥௔௧௘ minimization. 

B. Traditional Evaluation 

 Initially, the traditional evaluation process was considered 
for the evaluated approaches. In the traditional evaluation, the 
adversarial settings (Section II.C) are not considered.  
 For the kNN classifier, the dataset was divided into: training, 
validation and testing, containing, 25%, 25% and 50%, 
respectively of the whole dataset (Table 1). Due to the adaptive 
nature of the considered stream learning algorithm, the whole 
dataset is used for the traditional evaluation. The events are 
replayed in the exact same order as they appear in the original 
dataset (Table 1). Table 2 shows the accuracy rates regarding 
each of the evaluated approaches, where the method column 
refers to the used approach during the detection stage. Each 
approach is tested with a different set of attacks used during the 
training stage, shown in brackets in the method column.  

 One can notice that both the proposed approach and the 
traditional machine learning (kNN) can detect the same set of 
attacks, with a significantly high accuracy rate. Regarding the 
detection of attacks, both the proposed approach and the kNN 
presented a FN rate of zero percent, when detecting the same set 
of attacks the system has been trained with. Considering the FP 
rate, the kNN classifier achieved 0.17, 0.07 and zero percent 
when trained with SYNFlood, UDPFlood and ICMPFlood 
attacks, respectively. The proposed approach achieved a FP rate 
of 0.00 percent in all tested cases. However, the proposed 
approach rejected potentially wrong classifications. In such a 
case, 0.04, 0.98 and 0.97 percent of normal events were rejected 
for SYNFlood, UDPFlood and ICMPFlood attacks, 
respectively. It can be observed that the proposed approach 
presents a similar detection accuracy when compared to the 
traditional machine learning approach. However, the proposed 
approach rejects potentially wrong classifications, which can be 
observed by comparing the kNN FP rate and the proposed 
approach rejection rate. 
 Considering the traditional stream learning approach, it was 
possible to notice that when events are replayed in the exact 
same order as they appear in the original dataset (Table 1), the 
method can detect only the initial attacks – when the sliding 
window is almost fully populated with normal events. However, 
as the attacks occurrence increases, the further attack events are 
classified as inlier (normal). Such a property occurs due to the 
adaptive nature of stream learning algorithms, which allows that 
an event, initially classified as outlier (attack), to be added in the 
sliding window, hence, allowing that an attack to become an 
inlier over time, perverting the outlier detector behavior. In this 
manner, the traditional stream learning algorithms, must 
consider such property – in the intrusion detection field, which 
is dealt in this work by considering the immutable behavior 
(Section III.B).  

C. Adversarial Settings – Exploratory attacks 

 Two types of attacks were evaluated in this experiment: the 
traditional evasion and the window interval exploit. 

1) Traditional Evasion 
 The traditional evasion refers to the detection of attacks with 
a different kind of behavior to the attack that the system was 
trained with, however with the same or similar outcome. For 
example, attacks aiming at generating a significant amount of 
network traffic at the targeted victim, regardless of the 
considered protocol, e.g. UDP, TCP or ICMP floods. In this 
way, each of the considered approaches were also tested with a 
different flood attack than the system was trained with. The 
obtained accuracy is shown in Table 2. 
 Regarding the traditional machine learning (kNN), the 
attacker could evade the system, while generating an attack that 
produces the same or similar outcome. When the kNN was used, 
the evasion possibility was evidenced for all evaluated attacks: 
SYNFlood, UDPFlood and ICMPFlood. For instance, when the 
system was trained with SYNFlood attacks, the attacker is still 
able to evade the detection system by generating ICMPFlood 
attacks. Moreover, the tested approach accepted only the 
classifications outputs regarding the attacks the system was 
trained with. Such a high rejection rate, and in this case 
reliability increase, due to the possible increase in the error rate, 

TABLE II.  PROPOSAL AND TRADITIONAL EVASION EVALUATION

Method 

Accuracy (Reject) 

Normal  
Accuracy 

(Rejection) 

SYNFlood  
Accuracy 

(Rejection) 

UDPFlood  
Accuracy 

(Rejection) 

ICMPFlood  
Accuracy 

(Rejection) 
Proposed Approach 
MCOD (SYNFlood) 

100.00% 
(0.04) 

100.00 
(0.00)

- 
(100.00) 

- 
(100.00)

Traditional kNN 
(SYNFlood) 

99.83 
(N.A.) 

100.00 
(N.A.)

100.00 
(N.A.) 

0.01 
(N.A.)

Proposed Approach 
MCOD (UDPFlood) 

100.00 
(0.98) 

- 
(100.00)

100.00 
(0.10) 

- 
(100.00)

Traditional kNN 
(UDPFlood) 

99.93 
(N.A.) 

49.97 
(N.A.)

100.00 
(N.A.) 

0.01 
(N.A.)

Proposed Approach 
MCOD (ICMPFlood) 

100.00 
(0.97) 

- 
(100.00)

- 
(100.00) 

100.00 
(0.12)

Traditional kNN 
(ICMPFlood) 

100.00 
(N.A.) 

3.23 
(N.A.)

100.00 
(N.A.) 

100.00 
(N.A.)

Traditional Stream 
Learning MCOD  

99.19 
(N.A.) 

0.81 
(N.A.)

0.69 
(N.A.) 

0.22 
(N.A.)

 



occurred due to the lack of decision unanimity between the 
outlier detectors, and thereby rejecting the assigned class. 
 

2) Window Interval Exploit 
 The second evaluated exploratory attack is called as sliding 
window exploit. The sliding window exploit attack aims at 
evaluating the traditional stream learning accuracy according to 
the attack occurrence in a sliding window. As noted in Section 
IV.B, the increase in the attack frequency in the sliding window 
renders the stream learning algorithm unreliable. Figure 3 (right 
chart) shows the error rate regarding each of the evaluated 
attacks, during the 8 to 9 million packets in the created dataset. 
The error rate is evaluated in a 1,000 packets interval. 
 It is possible to observe that during the normal events 
detection, the traditional stream learning algorithm error rate 
remains similar to the rate obtained during the traditional 
evaluation (Section IV.B, 0.81 percent). However, as the attacks 
begins to occur (around the 8.2 millionth packet), the attack 
detection error rate increases, due to the increasing in the attack 
occurrence. In this manner, the attacker can exploit the 
traditional stream learning algorithm sliding window, by 
increasing the attack occurrence (Figure 3, left chart), causing 
the attacks to be classified as inlier (normal) due to their 
frequency increase in the sliding window. 
  The sliding window exploit does not occur in the proposed 
approach due to the immutable behavior (Section III.B) and the 
class-specific single class detection mechanism (Section III.A). 
The results are shown in Table 2. The attacker is not able to add 
attacks in the normal outlier detector sliding window due to the 
immutable behavior. Whilst, if the detection mechanism 
wrongly classifies an event, and thereby add it in its sliding 
window, the event will be rejected, because it will not be possible 
to establish an unanimity between the others outliers’ detectors, 
given the outliers decision have a non-null intersection.  

D. Adversarial Machine Learning – Causative attacks 

Finally, to evaluate the causative attacks resilience, a 
training dataset poisoning approach was adopted. The traditional 
machine learning (TML) and the proposed approach were 

evaluated regarding the influence that attacks, initially injected 
into the training dataset as normal events, have in the resulting 
accuracy. Thereby, the goal was to evaluate each of the 
considered methods, regarding their resilience to dataset 
poisoning attacks. Figure 4 shows the relation between the attack 
detection rate and the attacker control percentage over the 
training dataset, while successfully injecting attacks labeled as 
normal activity.  
 Regarding the TML, it is possible to note that the three 
evaluated attacks can evade the detection mechanism when 
injected in the training dataset as normal events. The accuracy 
rate for SYNFlood attacks dropped for 50% when 3% of normal 
events were SYNFlood injected attacks. Whilst, for ICMPFlood 
and UDPFlood the attacker could evade the detection system 
when 9% of attacks were injected. On the other side, the 
proposed approach could detect when attacks were injected into 
the training dataset and reject further classifications. Such a 
characteristic occurred due to class specific outlier detector, the 
attacks injected into the training dataset as normal events 
incurred in a lack of outliers unanimity in the classification 
decision process, thereby, the events were rejected. 

V. RELATED WORKS 

The lack of usage of anomaly-based intrusion detection 
methods in production environments was noted over the last 
years by several works [4]. Such gap may be caused by several 
aspects; however, it is a consensus that the detection method 
must be at least reliable and easy to update [4].  
 The detection reliability is often considered in other areas 
[11], to this end, in general the authors [14] rely in the output 
class probability to reject or not the decisions, while other 
approaches uses an ensemble of classifiers and establishes the 
classification reliability through a majority voting approach 
[15]. Despite being often considered in other areas, to the best 
of our knowledge, the classification reliability has not been 
considered in stream learning field yet. However, it must be in 
our opinion, because the sliding window can be attacked to 

 
Figure 4 – Traditional Machine Learning (TML) and Proposed Approach resilience to causative attacks (training dataset / poisoning attacks). The horizontal axis 
shows the rate of attacks injected into the training dataset labeled as normal activities. The vertical axis shows the accuracy and rejection rate impact while 
detecting such attacks, having the infected training dataset. 

Figure 3 – Traditional Stream Learning approach behavior under network traffic intensive attacks, left chart shows the network packet classes occurrence while 
right chart shows the related error rate. Attack detection error rate increases according to the occurrence of attacks in the sliding window. 



deceive the outlier detector. Some authors, however, considered 
the adversarial settings in anomaly-based intrusion detection.  
 Ling Huang et al. [9] defined a taxonomy used in their work 
to classify possible adversarial attacks against the machine 
learning system. The authors also evaluated the impacts that a 
poisoned training dataset incur in the classifier accuracy, in all 
evaluated cases the classifier became unreliable when the 
training dataset had misclassified attacks injected.   
 In the spam detection scenario, Blaine Nelson et al. [15] 
evaluated the training dataset poisoning impact on accuracy, the 
authors reported a 36% misclassification increase when the 
attacker have control of only 1% of the training dataset. The 
authors also evaluated a causative attacks resistance approach 
by identifying whether the new added instance results in 
accuracy improvements or not, despite this approach is 
effective, the authors relied in a supervised dataset (when all 
instances are prior classified). Such an approach cannot be 
employed in production as the instances are not prior labeled 
and the accuracy cannot be estimated in real time. In the 
malicious PDF detection scenario, Srndic and Laskov [16] 
evaluated a set of attacks against a well-known learning-based 
classifier for malicious PDF files, the authors could drop the 
classification accuracy from almost 100% to 28%. The authors 
also suggested that a multiple classifier system should be more 
resilient to such adversarial attacks, due to the need to evade 
several complementary classifiers.  
 Few authors address causative attacks in the network 
intrusion detection field [17], for instance, Benjamin et al. [18] 
developed the ANTIDOTE which relies in a robust PCA and a 
robust Laplace threshold that is less sensitive to poisoning 
attacks. However, their approach remains susceptible to 
exploratory attacks.  
 To the best of our knowledge this is the first work to address 
both causative and exploratory attacks using stream learning 
algorithms for intrusion detection field. Our approach remains 
reliable during both attacks, causative and exploratory, by 
employing a rejection mechanism and a class-specific outlier 
detector. 

VI. CONCLUSION 

 The anomaly-based intrusion detection has been extensively 
studied over the last years. However, despite promising results 
such an approach is hardly used in production environments, 
mainly due to the difficulty in providing reliable and updatable 
detection methods. The main issue is the use of machine learning 
in adversarial setting, in which an attacker attempt to evade the 
detection mechanism.  
 This paper presents a novel anomaly-based intrusion 
detection method which addresses the use of machine learning 
in the adversarial settings. The proposed approach relies in class-
specific single class detection mechanism. It can detect possible 
evasion attempts, while providing a reliable and updateable 
detection engine. The reliability is achieved by rejecting 
potentially wrong classifications or evasion attempts. Through a 
set of comprehensive experiments, the proposed method has 
shown its resistance for both causative and exploratory attacks. 
 As future works, we are pursuing the reduction of the 
rejection rate while still being resilient to adversarial attacks. To 

this end, we plan to employ a hybrid approach which relies in 
both stream learning and traditional machine learning 
algorithms. 
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