
Stream Learning and Anomaly-based Intrusion
Detection in the Adversarial Settings

Eduardo Viegas, Altair Santin, Vilmar Abreu
Graduate Program in Computer Science

Pontifical Catholic University of Parana
Curitiba, Parana - Brazil

{eduardo.viegas, santin, vilmar.abreu}@ppgia.pucpr.br

Luiz S. Oliveira
Informatics Department

Federal University of Parana
Curitiba, Parana - Brazil

luiz.oliveira@ufpr.br

Abstract—Despite existing many anomaly-based intrusion
detection studies in the literature, they are not frequently adopted
by the industry in production environments (products). Such a
usage gap occurs mainly due to the difficulty to maintain the
detection rate in acceptable level, given the occurrence of false
alarms. In general, the literature does not consider the adversarial
settings, when an opponent attempt to evade the detection system,
thus possibly rendering the system unreliable over time. In this
paper, we propose and evaluate a new approach to reliably
perform real time stream learning for anomaly-based intrusion
detection. We employ a class-specific stream outlier detector to
automatically update the intrusion detection engine over the time,
and a rejection mechanism, which makes it possible to obtain
indications that an evasion attempt might being happening.
Furthermore, the proposal is resilient to causative attacks,
providing a secure intrusion detection mechanism even when the
attacker can inject misclassified instances in the training dataset.
The evaluation tests show that the proposed approach is resilient
to exploratory attacks, allowing the system administrator to know
when an evasion attempt might be occurring.

Keywords—Adversarial Settings, Outlier Detection, Stream
Learning, Intrusion Detection.

I. INTRODUCTION

 A common approach used for the detection of attacks in the
network is through an Intrusion Detection System (IDS). The
IDS allows the detection of attacks, malicious or inadequate
usage of a computational system or a network of computers [1].
In general, the detection of intrusion attempts in most IDSs is
performed through the usage of machine learning techniques [2].
In such approach, the system is trained with a set of known
profiles/behaviors. Afterwards, during its deployment in
production, any event, e.g. a network packet, which significantly
deviates from the previously known profiles is classified as an
intrusion attempt [3]. In this way, the anomaly-based intrusion
detection can detect new attacks.
 However, despite the promising results reported in the
literature, the anomaly-based intrusion detection approach is
rarely considered in production (real-world) environments [4].
Thereby, the signature-based still is the most used approach [5],
in which the classification is performed by pattern matching a
set of well-known attacks. This discrepancy between the
literature and real-life occurs mainly because the high number of
false alarms [4] and the need to update the intrusion detection
algorithm over time [6] due to the changes in the environment
behavior, such as the occurrence of new network traffic and new
attacks [5].

 In light of this, over the last years, a great amount of research
effort has been performed on stream learning techniques [7].
Such a technique is often employed in scenarios in which the set
of target concepts (classes) changes over time [7]. For instance,
in the network-based intrusion detection context, the legitimate
client (normal) behavior changes over time with the usage of
new services, whilst the attacker behavior (intrusion) also
changes gradually due to the generation of new attacks [4].
Therefore, in an evolving context the detection mechanism
update is often performed based on time intervals (sliding
window) [8]. Thereby, due to the characteristics of the data,
recent events are given a greater importance during the detection
stage, whilst older events are often discarded [8].
 Because of its capacity to deal with evolving data, several
works have argued that the stream-based learning techniques
enables the usage of anomaly-based intrusion detection
approaches in production environments [2]. However, in the
literature, there is a lack of proper evaluation of such systems,
especially in the intrusion detection field [4]. In general, the
works in literature does not consider the adversarial settings,
where an attacker will attempt to evade the intrusion detection
mechanism, either by perverting the intrusion detection
mechanism properties or by injecting attacks during the training
stage [9].
 In this paper, we present an approach to reliably deal with
evolving data streams to perform anomaly-based intrusion
detection. The proposal relies in a class-specific stream outlier
detector to automatically and reliably update the intrusion
detection engine over time. The proposal considers the
adversarial settings by rejecting potentially evasion attempts or
non-reliable decisions.

II. BACKGROUND

 In this work, two approaches are considered for anomaly-
based intrusion detection: traditional machine learning and
stream learning.

A. Traditional Machine Learning (TML)

 The traditional machine learning refers to the pattern
recognition algorithms [10], in which its process commonly
relies in an immutable database. In this case, the intruder and
normal user behavior are obtained and stored in a dataset. The
dataset, usually referred as training dataset, is used during the
classifier (pattern recognition algorithm) training stage. During
this process, a false-positive (FP) and false-negative (FN) rate
are estimated, through another dataset commonly referred to as

testing dataset. The FP rate refers to the rate in which normal
events are wrongly classified as an intrusion attempt, whilst the
FN rate refers to the rate that intrusion events are wrongly
classified as normal activity. In the traditional machine learning
process, when the attacker behavior changes, the pattern
recognition algorithm must be retrained. However, the training
process is often a costly task, as the environment must be
monitored, the new behaviors must be identified, often
manually, the classifier must be retrained and the FP and FN
rates must be estimated. Moreover, identifying the environment
behavior change is a challenging task, given the identification is
often based in the increase of the FP and FN rates, which is also
identified manually through experts’ assistance [4].
 The easiness to update becomes relevant in the anomaly-
based intrusion detection field. New attacks are discovered in a
daily-basis, along with new services and their contents. Thus,
regardless of the used intrusion detection mechanism, the system
must be continually updated [4].

B. Traditional Stream Learning (TSL)

 Traditional Stream Learning techniques aim at automatically
dealing with the environment changes over time [7]. In such a
case, the stream learning algorithm is executed in a repeated
cycle, in which the algorithm is updated according to the
incoming events from the network data stream [8]. Thereby,
such process, occurs per memory and processing bounds. In this
case the memory bounds are defined according with the number
of events considered during the classification process. For this
purpose, most strategies rely in a sliding window approach, in
which a window (pre-defined range) of recent events is
maintained, and the older events are discarded according to a set
of rules [8].
 Due to its adaptive nature, a data stream classification
algorithm must present the following properties [8]: (i) process
and inspect one example at a time, at most; (ii) use a limited
amount of memory; (iii) classify in a restricted amount of time
and (iv) predict new events at any time.

C. Adversarial Settings

 Over the last years, the traditional machine learning and
stream learning techniques have been successfully applied to
several fields [4], such as image recognition, product
recommendation systems, natural language translation [11]
amongst others. However, in the intrusion detection field, there
still a lack of applicability in production usage [4].

 An emerging field of research, known as adversarial
machine learning [9] considers the use of machine learning in
the settings of an adversary – called adversarial settings. In such
cases, the adversary (attacker) will attempt to evade the intrusion
detection mechanism using sophisticated types of attacks, called
causative and exploratory [9]. The causative attacks refer to
attacks that occurs during the training process [9], e.g. the
attacker inject misclassified intrusions into the training dataset
as normal events. On the other hand, the exploratory attacks aim
at exploring the machine learning algorithm properties [9], e.g.
craft the intrusion attempt in a manner that the detection engine
classifies it as a normal activity.
 An example of causative attack at a traditional Stream
Learning classifier is shown in Figure 1. In such scenario, the
classifier is classifying attacks (Outliers) events over time. At
Time 1 (Figure 1, Time 1) the sliding window is fully populated
with inliers (normal) events, thereby the attack is classified as
outlier. However, regardless of its assigned class, the attack,
initially classified as outlier, is added in the sliding window,
whilst an inlier (oldest event in the sliding window) is removed.
The same property occurs at Time 2 (Figure 1, Time 2), however
the new attack is still classified as outlier, as there are not enough
events in its neighborhood. Finally, at Time 3 (Figure 1, Time 3)
the attacker can inject enough attacks in the sliding window, as
the number of neighbors is close enough to form a cluster and
be classified as inliers (normal) events.
 Thus, the usage of machine learning techniques, specially
Stream Learning, in the adversarial settings seeks at designing
detection mechanisms that can resist or to be resilient to the
before mentioned (sophisticated) attacks.

III. PROPOSAL

 The objective of this proposal is to provide a reliable stream
learning approach for anomaly-based intrusion detection that
can automatically update the intrusion detection engine over
time. Therefore, the proposed approach relies in a class-specific
stream outlier detection algorithm to be resilient to both
causative and exploratory attacks. The overall proposed method
is shown in Figure 2 and described in the next subsections.

A. Detection Scheme

 The proposed method considers that the detection scheme
relies in a class-specific stream outlier detection algorithm. For
example, an outlier detection for normal events and an outlier
detection for attack events. The detection is performed
accordingly to Figure 2, (i) the set of features are extracted from
the considered event, e.g. a network packet; (ii) a feature vector

Figure 2 – Proposed method for anomaly-based intrusion detection through
stream learning algorithm in adversarial settings.

Figure 1 – Sliding Window behavior in Traditional Stream Learning Classifier.
Outliers (Attacks) are added in the Sliding Window regardless of their class.

is supplied to each outlier detection algorithm; (iii) each outlier
detection perform its detection, assigning a class either outlier
(event does not belong to outlier detection class group) or inlier
(event does belong to outlier detection class group); (iv) the
detection engine receives the decision from each outlier
detection and attempts to find an consensus among the
decisions; (v) if a decision unanimity is found the class is
assigned, otherwise, the event decision is rejected.
 When receiving an event decision, the detection engine
decides whether the event classification is reliable or not. The
class assignment reliability of an event classification (output
‘class X’ in Figure 2) comes from the nullity of intersection of
decision from all classifiers. The reliability computation process
is shown in Eq. 1, where ݀݁ܿ݅݊݋݅ݏ௜ denotes to each Outlier
Detection classifier output.

⋂ ሺ݀݁ܿ݅݊݋݅ݏ௜ሻ
௡
௜ୀଵ ൌ 	∅ (1)

 As an example, consider two outlier detection algorithms
(Eq. 1), one for normal events and one for attacks; an event
which is classified as an inlier for normal and outlier for attack
is reliable – the decision is an unanimity, because there is not
intersection between classification classes in the different
detection engine for the same event. However, an event which is
classified as inlier for more than one outlier detection should be
rejected, as the decision is not reliable. Rejected classifications
indicates that a potential evasion attempt or a false alarm might
be occurring and another detection mechanism should be used,
for instance, a signature-based intrusion detection mechanism or
manual inspection.

B. Ensuring Adversarial Machine Learning - Exploratory

 Unlike the traditional stream learning algorithms, our
approach provides resilience to exploratory attacks, by relying
in the immutable behavior of each outlier detection algorithm.
The immutable behavior is defined by a restriction that do not
allow an outlier to become an inlier in the outlier detection
algorithm over time (in a considered sliding windows). Our
approach considers that in the anomaly-based intrusion
detection field an event that is initially classified as outlier will
not become an inlier at any moment in time. For example, an
attack that was classified as an outlier (attack) by the normal
outlier detection algorithm, must not be classified as a normal
event afterwards, even if its occurrence increases in the sliding
window over time.
 By using the immutable behavior, the attacker will not be
able to exploit the sliding window range to pervert (pollute) the
classification of events being analyzed by an outlier detector. It
is important to note that events classified as inlier continue to be
added into the stream learning sliding window, thus the
algorithm is still able to adapt to changes in the stream. But, the
proposal mitigates a possible evasion attack, when the number
of outlier events become predominant in a sliding window,
therefore they will trigger the behavior mutation from outlier to
inlier.

C. Ensuring Adversarial Machine Learning - Causative

 In order to provide resilience to causative attacks, the
proposal relies in both immutable behavior (Section III.B) and
class-specific outlier detectors. It considers that resilience to

causative attacks must be provided at two stages: initial training
and ongoing readapting (retraining).
 The initial training is related to the initial outlier detector
sliding window population – the filling of events in a sliding
window. In this stage, the outlier detectors sliding window are
still being populated, thus susceptible to causative attacks.
Thereby, the proposed approach assumes that at least there are
an initial population allowing the correct classification for one
outlier detector, since the sliding window will be updated
according to the initial events. A way of assuring the reliability
of the initial training is preset the sliding windows with a
predominant number of copies of the same inlier event. Thus,
given the outlier detector is reliable, the classification outputs
can be trusted if decision unanimity is reached, otherwise the
classification is rejected.
 In order to provide a secure ongoing readapting, the proposal
relies in both class-specific single class detection mechanism
and immutable behavior (Section III.B). The single class
detection mechanism provides resilience to event behavior
manipulation. For example, the attacker must manipulate the
event behavior in a manner that it behaves as a normal event,
while also being an outlier for the attack outlier detection
mechanism. Whilst, the immutable behavior difficult the attack
over the sliding window, since the attacker must have skills to
manipulate the events in a manner that pervert all outlier’s
detectors.

IV. EVALUATION

 Due to the well-known limitations of the current approaches
regarding datasets for network-based intrusion detection
evaluation [4], the approach proposed in our previous work [19]
was used to gather the network traffic. In this way, two classes
of network traffic compose the dataset: normal and attack. The
testbed consists of 100 interconnected client machines, 3
attacker hosts and a single server.
 To generate the normal traffic, the services provided in the
testbed scenario were HTTP (Hypertext Transfer Protocol),
SSH (Secure Shell), SMTP (Simple Mail Transfer Protocol),
SNMP (Simple Network Management Protocol) and name
resolution requests (DNS, Domain Name System). Three set of
attacks were generated: SYNFlood, UDPFlood and ICMPFlood.
The testbed described in [19] was executed for 30 minutes, the
total amount of generated network traffic for each service and
attack is reported in Table 1. For each network packet 23
features are extracted [19].
 For the tests purposes the well-known Micro-cluster-based
Continuous Outlier Detection (MCOD) [12] algorithm has been
considered in our proposed method (Figure 2, Section III). For
comparison purposes two other approaches were considered: the
Traditional Machine Learning (TML, Section II.A) and
Traditional Stream Learning (TLS, Section II.B).

TABLE I. NETWORK TRAFFIC DISTRIBUTION

Class Traffic Number of Packets

Normal

HTTP 20,238,802
SMTP 2,298,222
SSH 1,048,482

SNMP 3,017,731
DNS 135,188

Attack
SYNFlood 471,288
UDPFlood 121,645
ICMPFlood 130,698

A. Model Obtainment Process

 For the proposed method (Section III), two classes were
considered: normal and attack. Thereby, for each test, two
outlier detectors were used, one for normal and one for attack.
A sliding window of 10,000 events was considered. A total of 50
events were established as neighbor (k) parameter. Each class
outlier detection has its own radius parameter. A series of tests
were conducted to establish the radius parameters; the choosing
criteria was to minimize the fitness value in Eq. 2.

ݏݏ݁݊ݐ݂݅ ൌ ௥௔௧௘ݎ݋ݎݎ݁ ൅ ௥௔௧௘ (2)݊݋݅ݐ݆ܿ݁݁ݎ

 The ݁ݎ݋ݎݎ௥௔௧௘ and ݊݋݅ݐ݆ܿ݁݁ݎ௥௔௧௘ were defined through the
detection of the initial 10,000 normal events followed by
detecting 10,000 attack events from the training dataset (Table
1). The radius values for each class outlier detector, normal and
attack, was varied in a 0.01 interval from zero to 2.00.
 The k-Nearest Neighbor (kNN) classifier was used for the
TML (Section II.A). To allow comparison, a total of 5000 events
for each class, normal and attack, are used for the classifier
neighbor computation. The 5000 events of each class are defined
by the k-means clustering algorithm [13], using the training
dataset (25% of randomly chosen events from Table 1). The
kNN neighbors set are not updated during the classification
process. Finally, for the TSL (Section II.B2), the MCOD is used.
However only the normal class is considered, as commonly
performed in related works [12], whilst the radius obtainment
process was established only by the ݁ݎ݋ݎݎ௥௔௧௘ minimization.

B. Traditional Evaluation

 Initially, the traditional evaluation process was considered
for the evaluated approaches. In the traditional evaluation, the
adversarial settings (Section II.C) are not considered.
 For the kNN classifier, the dataset was divided into: training,
validation and testing, containing, 25%, 25% and 50%,
respectively of the whole dataset (Table 1). Due to the adaptive
nature of the considered stream learning algorithm, the whole
dataset is used for the traditional evaluation. The events are
replayed in the exact same order as they appear in the original
dataset (Table 1). Table 2 shows the accuracy rates regarding
each of the evaluated approaches, where the method column
refers to the used approach during the detection stage. Each
approach is tested with a different set of attacks used during the
training stage, shown in brackets in the method column.

 One can notice that both the proposed approach and the
traditional machine learning (kNN) can detect the same set of
attacks, with a significantly high accuracy rate. Regarding the
detection of attacks, both the proposed approach and the kNN
presented a FN rate of zero percent, when detecting the same set
of attacks the system has been trained with. Considering the FP
rate, the kNN classifier achieved 0.17, 0.07 and zero percent
when trained with SYNFlood, UDPFlood and ICMPFlood
attacks, respectively. The proposed approach achieved a FP rate
of 0.00 percent in all tested cases. However, the proposed
approach rejected potentially wrong classifications. In such a
case, 0.04, 0.98 and 0.97 percent of normal events were rejected
for SYNFlood, UDPFlood and ICMPFlood attacks,
respectively. It can be observed that the proposed approach
presents a similar detection accuracy when compared to the
traditional machine learning approach. However, the proposed
approach rejects potentially wrong classifications, which can be
observed by comparing the kNN FP rate and the proposed
approach rejection rate.
 Considering the traditional stream learning approach, it was
possible to notice that when events are replayed in the exact
same order as they appear in the original dataset (Table 1), the
method can detect only the initial attacks – when the sliding
window is almost fully populated with normal events. However,
as the attacks occurrence increases, the further attack events are
classified as inlier (normal). Such a property occurs due to the
adaptive nature of stream learning algorithms, which allows that
an event, initially classified as outlier (attack), to be added in the
sliding window, hence, allowing that an attack to become an
inlier over time, perverting the outlier detector behavior. In this
manner, the traditional stream learning algorithms, must
consider such property – in the intrusion detection field, which
is dealt in this work by considering the immutable behavior
(Section III.B).

C. Adversarial Settings – Exploratory attacks

 Two types of attacks were evaluated in this experiment: the
traditional evasion and the window interval exploit.

1) Traditional Evasion
 The traditional evasion refers to the detection of attacks with
a different kind of behavior to the attack that the system was
trained with, however with the same or similar outcome. For
example, attacks aiming at generating a significant amount of
network traffic at the targeted victim, regardless of the
considered protocol, e.g. UDP, TCP or ICMP floods. In this
way, each of the considered approaches were also tested with a
different flood attack than the system was trained with. The
obtained accuracy is shown in Table 2.
 Regarding the traditional machine learning (kNN), the
attacker could evade the system, while generating an attack that
produces the same or similar outcome. When the kNN was used,
the evasion possibility was evidenced for all evaluated attacks:
SYNFlood, UDPFlood and ICMPFlood. For instance, when the
system was trained with SYNFlood attacks, the attacker is still
able to evade the detection system by generating ICMPFlood
attacks. Moreover, the tested approach accepted only the
classifications outputs regarding the attacks the system was
trained with. Such a high rejection rate, and in this case
reliability increase, due to the possible increase in the error rate,

TABLE II. PROPOSAL AND TRADITIONAL EVASION EVALUATION

Method

Accuracy (Reject)

Normal
Accuracy

(Rejection)

SYNFlood
Accuracy

(Rejection)

UDPFlood
Accuracy

(Rejection)

ICMPFlood
Accuracy

(Rejection)
Proposed Approach
MCOD (SYNFlood)

100.00%
(0.04)

100.00
(0.00)

-
(100.00)

-
(100.00)

Traditional kNN
(SYNFlood)

99.83
(N.A.)

100.00
(N.A.)

100.00
(N.A.)

0.01
(N.A.)

Proposed Approach
MCOD (UDPFlood)

100.00
(0.98)

-
(100.00)

100.00
(0.10)

-
(100.00)

Traditional kNN
(UDPFlood)

99.93
(N.A.)

49.97
(N.A.)

100.00
(N.A.)

0.01
(N.A.)

Proposed Approach
MCOD (ICMPFlood)

100.00
(0.97)

-
(100.00)

-
(100.00)

100.00
(0.12)

Traditional kNN
(ICMPFlood)

100.00
(N.A.)

3.23
(N.A.)

100.00
(N.A.)

100.00
(N.A.)

Traditional Stream
Learning MCOD

99.19
(N.A.)

0.81
(N.A.)

0.69
(N.A.)

0.22
(N.A.)

occurred due to the lack of decision unanimity between the
outlier detectors, and thereby rejecting the assigned class.

2) Window Interval Exploit
 The second evaluated exploratory attack is called as sliding
window exploit. The sliding window exploit attack aims at
evaluating the traditional stream learning accuracy according to
the attack occurrence in a sliding window. As noted in Section
IV.B, the increase in the attack frequency in the sliding window
renders the stream learning algorithm unreliable. Figure 3 (right
chart) shows the error rate regarding each of the evaluated
attacks, during the 8 to 9 million packets in the created dataset.
The error rate is evaluated in a 1,000 packets interval.
 It is possible to observe that during the normal events
detection, the traditional stream learning algorithm error rate
remains similar to the rate obtained during the traditional
evaluation (Section IV.B, 0.81 percent). However, as the attacks
begins to occur (around the 8.2 millionth packet), the attack
detection error rate increases, due to the increasing in the attack
occurrence. In this manner, the attacker can exploit the
traditional stream learning algorithm sliding window, by
increasing the attack occurrence (Figure 3, left chart), causing
the attacks to be classified as inlier (normal) due to their
frequency increase in the sliding window.
 The sliding window exploit does not occur in the proposed
approach due to the immutable behavior (Section III.B) and the
class-specific single class detection mechanism (Section III.A).
The results are shown in Table 2. The attacker is not able to add
attacks in the normal outlier detector sliding window due to the
immutable behavior. Whilst, if the detection mechanism
wrongly classifies an event, and thereby add it in its sliding
window, the event will be rejected, because it will not be possible
to establish an unanimity between the others outliers’ detectors,
given the outliers decision have a non-null intersection.

D. Adversarial Machine Learning – Causative attacks

Finally, to evaluate the causative attacks resilience, a
training dataset poisoning approach was adopted. The traditional
machine learning (TML) and the proposed approach were

evaluated regarding the influence that attacks, initially injected
into the training dataset as normal events, have in the resulting
accuracy. Thereby, the goal was to evaluate each of the
considered methods, regarding their resilience to dataset
poisoning attacks. Figure 4 shows the relation between the attack
detection rate and the attacker control percentage over the
training dataset, while successfully injecting attacks labeled as
normal activity.
 Regarding the TML, it is possible to note that the three
evaluated attacks can evade the detection mechanism when
injected in the training dataset as normal events. The accuracy
rate for SYNFlood attacks dropped for 50% when 3% of normal
events were SYNFlood injected attacks. Whilst, for ICMPFlood
and UDPFlood the attacker could evade the detection system
when 9% of attacks were injected. On the other side, the
proposed approach could detect when attacks were injected into
the training dataset and reject further classifications. Such a
characteristic occurred due to class specific outlier detector, the
attacks injected into the training dataset as normal events
incurred in a lack of outliers unanimity in the classification
decision process, thereby, the events were rejected.

V. RELATED WORKS

The lack of usage of anomaly-based intrusion detection
methods in production environments was noted over the last
years by several works [4]. Such gap may be caused by several
aspects; however, it is a consensus that the detection method
must be at least reliable and easy to update [4].
 The detection reliability is often considered in other areas
[11], to this end, in general the authors [14] rely in the output
class probability to reject or not the decisions, while other
approaches uses an ensemble of classifiers and establishes the
classification reliability through a majority voting approach
[15]. Despite being often considered in other areas, to the best
of our knowledge, the classification reliability has not been
considered in stream learning field yet. However, it must be in
our opinion, because the sliding window can be attacked to

Figure 4 – Traditional Machine Learning (TML) and Proposed Approach resilience to causative attacks (training dataset / poisoning attacks). The horizontal axis
shows the rate of attacks injected into the training dataset labeled as normal activities. The vertical axis shows the accuracy and rejection rate impact while
detecting such attacks, having the infected training dataset.

Figure 3 – Traditional Stream Learning approach behavior under network traffic intensive attacks, left chart shows the network packet classes occurrence while
right chart shows the related error rate. Attack detection error rate increases according to the occurrence of attacks in the sliding window.

deceive the outlier detector. Some authors, however, considered
the adversarial settings in anomaly-based intrusion detection.
 Ling Huang et al. [9] defined a taxonomy used in their work
to classify possible adversarial attacks against the machine
learning system. The authors also evaluated the impacts that a
poisoned training dataset incur in the classifier accuracy, in all
evaluated cases the classifier became unreliable when the
training dataset had misclassified attacks injected.
 In the spam detection scenario, Blaine Nelson et al. [15]
evaluated the training dataset poisoning impact on accuracy, the
authors reported a 36% misclassification increase when the
attacker have control of only 1% of the training dataset. The
authors also evaluated a causative attacks resistance approach
by identifying whether the new added instance results in
accuracy improvements or not, despite this approach is
effective, the authors relied in a supervised dataset (when all
instances are prior classified). Such an approach cannot be
employed in production as the instances are not prior labeled
and the accuracy cannot be estimated in real time. In the
malicious PDF detection scenario, Srndic and Laskov [16]
evaluated a set of attacks against a well-known learning-based
classifier for malicious PDF files, the authors could drop the
classification accuracy from almost 100% to 28%. The authors
also suggested that a multiple classifier system should be more
resilient to such adversarial attacks, due to the need to evade
several complementary classifiers.
 Few authors address causative attacks in the network
intrusion detection field [17], for instance, Benjamin et al. [18]
developed the ANTIDOTE which relies in a robust PCA and a
robust Laplace threshold that is less sensitive to poisoning
attacks. However, their approach remains susceptible to
exploratory attacks.
 To the best of our knowledge this is the first work to address
both causative and exploratory attacks using stream learning
algorithms for intrusion detection field. Our approach remains
reliable during both attacks, causative and exploratory, by
employing a rejection mechanism and a class-specific outlier
detector.

VI. CONCLUSION

 The anomaly-based intrusion detection has been extensively
studied over the last years. However, despite promising results
such an approach is hardly used in production environments,
mainly due to the difficulty in providing reliable and updatable
detection methods. The main issue is the use of machine learning
in adversarial setting, in which an attacker attempt to evade the
detection mechanism.
 This paper presents a novel anomaly-based intrusion
detection method which addresses the use of machine learning
in the adversarial settings. The proposed approach relies in class-
specific single class detection mechanism. It can detect possible
evasion attempts, while providing a reliable and updateable
detection engine. The reliability is achieved by rejecting
potentially wrong classifications or evasion attempts. Through a
set of comprehensive experiments, the proposed method has
shown its resistance for both causative and exploratory attacks.
 As future works, we are pursuing the reduction of the
rejection rate while still being resilient to adversarial attacks. To

this end, we plan to employ a hybrid approach which relies in
both stream learning and traditional machine learning
algorithms.

ACKNOWLEDGMENT

This work was partially sponsored by Intel Lab’s University

Research Office and the Brazilian Coordination for the
Improvement of Higher Education Personnel (CAPES), grant
99999.008512/2014-0.

REFERENCES
[1] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Ferná Ndez, and E. Vá

Zquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Comput. Secur., vol. 28, pp. 18–28, 2009.

[2] V. Jyothsna, V. V Rama Prasad, and K. Munivara Prasad, “A Review
of Anomaly based Intrusion Detection Systems,” Int. J. Comput.
Appl., vol. 28, no. 7, pp. 26–35, 2011.

[3] D. E. Denning, “An intrusion-detection model,” Proc. - IEEE Symp.
Secur. Priv., no. 2, pp. 118–131, 2012.

[4] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” 2010 IEEE
Symp. Secur. Priv., pp. 305–316, 2010.

[5] S. Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion
Detection,” ACM Trans. Inf. Syst. Secur., pp. 186–205, 2000.

[6] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna, “Protecting a
moving target: Addressing web application concept drift,” Lect.
Notes Comput. Sci., vol. 5758 LNCS, pp. 21–40, 2009.

[7] H. He, S. Chen, K. Li, and X. Xu, “Incremental learning from stream
data.,” IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901–14, 2011.

[8] A. Bifet, R. Gavaldà, "Learning from time-changing data with
adaptive windowing", Proc. 7th SIAM Int. Conf. Data Mining, pp.
443-448, 2007.

[9] L. Huang, A.D. Joseph, B. Nelson, B. Rubinstein, and J.D. Tygar,
"Adversarial Machine Learning," Proc. Fourth ACM Workshop
Artificial Intelligence and Security, pp. 43-57, 2011.

[10] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against
intrusion detection systems: Taxonomy, solutions and open issues,”
Inf. Sci. (Ny)., vol. 239, pp. 201–225, Aug. 2013.

[11] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen,
“Automatic recognition of handwritten numerical strings: A
Recognition and Verification strategy,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 11, pp. 1438–1454, 2002.

[12] M. Kontaki, A. Gounaris, A. N. Papadopoulos, K. Tsichlas, and Y
Manolopoulos, "Continuous monitoring of distance-based outliers
over data streams," IEEE Int. Conf. on Data Eng. (ICDE), pp. 135-
146, 2011.

[13] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering
algorithm,” Electical Eng. Comput. Sci., vol. 43, pp. 2-7, 1997.

[14] G. D. C. Cavalcanti, L. S. Oliveira, T. J. M. Moura, and G. V.
Carvalho, “Combining diversity measures for ensemble pruning,”
Pattern Recognit. Lett., vol. 74, pp. 38–45, 2016.

[15] B. Nelson, M. Barreno, F.J. Chi, A.D. Joseph, B.I.P. Rubinstein, U.
Saini, C. Sutton, J.D. Tygar, K. Xia, "Exploiting Machine Learning
to Subvert Your Spam Filter", Proc. First Workshop Large-Scale
Exploits and Emergent Threats, pp. 1-9, 2008.

[16] N. Srndic and P. Laskov, “Practical evasion of a learning-based
classifier: A case study,” Proc. - IEEE Symp. Secur. Priv., pp. 197–
211, 2014.

[17] G. Wang, S. Barbara, T. Wang, H. Zheng, and B. Y. Zhao, “Man vs .
Machine : Practical Adversarial Detection of Malicious
Crowdsourcing Workers,” 23rd USENIX Secur. Symp., pp. 239–254,
2014.

[18] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S. Lau, S.
Rao, N. Taft and J. D. Tygar, “ANTIDOTE : Understanding and
Defending against,” SIGCOMM, no. November, pp. 1–14, 2009.

[19] E. Viegas, A. Santin, A. França, R. Jasinski, V. Pedroni, and L.
Oliveira, “Towards an Energy-Efficient Anomaly-Based Intrusion
Detection Engine for Embedded Systems,” IEEE Transactions on
Computers, vol. 66, no. 1, pp. 1–14, 2017.

