
Using Huffman Trees in Features Selection to Enhance
Performance in Spam Detection

Cleber K. Olivo1, Altair O. Santin1, Luiz E. S. Oliveira2

1 Graduate Program in Computer Science – Pontifical Catholic University of Paraná
(PUCPR)

2 Department of Informatics – Federal University of Paraná (UFPR)
Curitiba – PR - Brazil

{cleber,santin}@ppgia.pucpr.br, lesoliveira@inf.ufpr.

Abstract. Spam detection is very costly when compared to the simple task of
spreading spam. Most approaches aim to reach higher accuracy percentages,
leaving the classification performance in background, what may cause many
problems, such as bottlenecks in the e-mail system, huge infrastructure
investments and waste of resources pooling. To avoid these problems, this paper
proposes a hierarchical spam features organization using Huffman Trees, where
the most important features stay closer to the root. With the reduction of these
trees (leaves pruning) the feature space is significantly reduced, speeding up the
e-mail classification process. The experiments showed a performance 60 times
faster when compared to Spam Assassin.

1. Introduction

Spam is the term assigned to messages sent indiscriminately, usually without the consent
of the recipient. Although this term was first attributed to a message sent to multiple users
in an electronic medium [1], spam is not limited to its virtual form. However, because it
can be easily sent, it is in the electronic media that spam causes the biggest problems. In
recent decades, even with the popularization of other communication services, e-mail has
prevailed as one of the most popular tools for user communication, making it the preferred
service for spreading spam.

Historically, spam statistics have always been worrying. In 1997, AOL estimated
that 5 to 30 percent of its 10 million e-mails received per day were spam [2]. In 2004, a
study predicted that this percentage would reach 95 percent on a global scale by 2015 [3].
Statistics released by Symantec showed a percentage of 89.1 percent in 2010 [4], being
the highest percentage until then [5]. The spam percentages have declined in recent years,
with 66% in 2013, 60% in 2014 and 53% in 2015. However, it is estimated that the daily
global volume of e-mails on the Internet daily is approximately 190 billion, with a forecast
increase of 4% (more than 197 million) by the end of 2016 [6].

Spamming goes far beyond the user annoyance. Internet service providers and
their users have a high cost, caused by bandwidth waste and the costs of the technologies
used to detect it [1]. In some more serious cases, such as phishing, the damage done can
go far beyond a simple annoyance, causing the users to compromise their computers or
even having financial losses [7].

Most of the proposed approaches in the literature do not consider the performance
(resource consumption) of the antispam system as a key factor of the e-mail system,
focusing only on the classifier's accuracy. Usually a large number of features is used to

achieve a good percentage of correctness in the classification. The greater the number of
features, the greater the complexity of the classification model and the consumption of
resources. When a large volume of e-mail is received in a short period, if the classification
system is too complex, there may be a queuing of messages that can be perceived by
users.

This paper proposes a way to reduce the complexity of the classification model
without great impact on the classifier's accuracy. The frequency of the words is used as a
feature in the classification model. Words are arranged hierarchically in a Huffman Tree,
so that the most frequent words in spam messages are closer to the root of the tree, and
the less frequent words closest to the leaves. The size of the tree can be reduced, reducing
the complexity of the classification model. The presented results showed that this
approach can be promising.

The paper is organized as follows. Section 2 presents an overview of the e-mail
system, the spam detection as a textual problem and some of the main approaches
proposed to mitigate the problem. Section 3 explains the Huffman tree generation, and
how this structure can be used to detect spam. Section 4 details the implementation of the
proposal and the obtained results. Section 5 shows related works. Finally, Section 6
presents the conclusions about the proposal.

2. The E-mail Spam

Spam detection techniques based on message content (e.g. text and images) usually
involve the area of pattern recognition. The classification of messages using these
techniques is usually done in the e-mail servers, before arriving in the user's mailbox.

2.1. The E-mail Service

Simple Mail Transfer Protocol (SMTP) is the standard protocol for e-mail transfer [8].
The rules for exchanging messages between e-mail servers are defined in RFC 2821,
which specifies that e-mail consists of an envelope and a content [8]. The content is
divided into two parts: header and body. The e-mail body can be composed of images and
text using hypertext features such as HTML (Hypertext Markup Language). The body of
the e-mail is structured according to the MIME format – Multipurpose Internet Mail
Extensions [9].

The SMTP protocol itself has limitations that are exploited by spammers, making
it possible, for example, to replace the address in the sender's field with a different one
from the e-mail of whom is sending the message. However, it's in the e-mail body that
spammers use most of their tricks to circumvent antispam mechanisms.

2.2. Spam as a Textual Classification Problem

Spammers often develop new techniques for spreading spam to circumvent detection
techniques. In the message content, they involve technical subterfuges to circumvent the
textual classification filters. These techniques range from the purposeful insertion of
words, which confuse the e-mail classifier, to the use of technical subterfuges, such as
hypertext language (HTML) features incorporated into the e-mail.

In order to confuse antispam tools based on the words frequency, spammers can
intentionally insert some words that are also common for non-spam messages. This can
occur, for example, with Bayesian classifiers [10], which rely on the most frequent words

for both classes (spam or non-spam) to determine whether a message is spam.

A technique known as textual obfuscation performs the exchange exclusion, or
insertion of characters in the words. This creates a new string of characters, but remains
providing the same human understanding. The single word 'viagra' can have more than
one sextillion of variations [11]. This is possible due to the large number of characters
existing in the Unicode pattern, which offers 120,672 codes representing multi-lingual
characters, ideograms and symbol collections (v8.0) [12]. The negative effect of textual
obfuscation was demonstrated by Liu and Stamm [13], through an experiment where the
substitution of characters totally impaired the classification of spam messages.

As it can be seen, there are several factors that make it difficult to classify e-mails,
requiring classifiers to use refined techniques or even preprocessing steps before the
classification. The refinement of these techniques has as an aggravating factor the
consequent increase of computational cost.

2.3. Approaches for Textual Spam Detection

Pattern recognition consists of the automatic discovery of patterns in the data, using
computational algorithms that allow to classify the data in different categories [14]. Some
of the most used techniques used in the fight against spam are the Bayesian classifiers,
Neural Networks, and Support Vector Machines.

Among the proposals that use word frequency for the classification of e-mails,
Bayesian filters are among the most common ones. Bayesian decision theory is a
fundamental statistical approach to the classification problem [10], with the Naïve Bayes
(NB) classifier being one of the most used for textual classification [15]. Its simplicity
makes it easy to be implemented, usually achieving good accuracy, when compared to
other more sophisticated machine learning algorithms [16]. NB has been one of the most
applied algorithms in commercial antispam tools [17]. Chen, C. and colleagues [17]
compared three proposals using NB [18, 19, 20] and four other traditional approaches
(SVM, C4.5, NB and KNN). They conclude that it is better an improved NB algorithm
than traditional methods of classification (including NB itself).

Drucker, H., Wu, S., and Vapnik, V. N [21] presented a piece of work that, showed
several of the main concepts used in detection techniques based on terms frequency, such
as TF (Term Frequency) – number of times a word appears in a document, TF-IDF (Term
Frequency - Inverse Document Frequency) – which defines the relevance of a term within
a collection of documents, and Stop List – a list of terms that should not appear in the
features vector. In addition, they also present several widely-used techniques to evaluate
the performance of the classifier and validate the results, as well as to study the use of the
SVM classifier in comparison with other classification algorithms (Ripper, Rocchio and
Boosting Decision Trees).

Due to the variety of existing techniques, there are several papers that analyze or
test several of these techniques in the e-mail classification [22, 23]. Although highly
promising, the most commonly used classifiers become known to spammers, who may
exploit certain limitations in important stages of classification. A spammer may send
messages that intentionally contain frequent words in e-mails that are not spam, so these
words would proportionally generate false positives if those messages are included in the
training database. This technique, known as evasion [24], is often used in other security-
related applications such as IDS (Intrusion Detection System) [25].

3. Hierarchical Features Organization

Most e-mail classification approaches are not concerned with making better use of the
features used in the classification model. A reduction in the number of features can bring
significant performance gains for the antispam system in terms of reducing the
computational cost, avoiding problems such as message queuing or resource wastage. A
way to reduce the features number is organizing them according to their occurrence.

 Some of the most widely used and accepted ways to measure the occurrence of
terms in textual documents are TF (Term Frequency), IDF (Inverse Document Frequency)
and TF-IDF (multiplication of TF by IDF). These metrics measure the importance of
certain words in a document [26]. Due to its simplicity and good results during
preliminary tests, TF was chosen to conduct the experiments.

 This section shows how a Huffman Tree can better organize the classifier's
features space. Huffman encoding is a lossless data compression technique, i.e., when
data decompression occurs, the result is a bit-by-bit sequence identical to the original data
sequence [27]. The data organization is done through a binary tree, in which a distribution
of the data occurs based on the occurrence of symbols. The most frequent symbols are
positioned closer to the root of the tree. In the case of spam, the symbols used to distribute
the data in a Huffman tree may be the words found in the messages. The distribution of
these words is arranged in the tree, so that the most frequent words of the database are
closer to the root and the less frequent words are closer to the leaves.

Figure. 1 represents the hierarchical distribution of the spam words, based on the
frequency at which they occur, in a Huffman Tree. At the first step (i) the symbols (words)
are given a weight, which represents the frequency at which they occur on the spam
database. Words are ordered by their respective weights in an increasing way, and then
each pair of words have their weights added together. The sums are always made with the
leftmost pairs, grouping from the lowest weight to the largest one. The result is five small
trees, with their roots having the sum of the weights of their leaves. After grouping, roots
should be rearranged based on weight, if necessary.

In the next step (ii), a new grouping is done, but the root of greater number (weight
68) ends up being left over. Again, the trees are rearranged so that the weighted root 68
is moved to the middle (iii). A new sum of the weights of the roots is made, and this time
the remaining one is the root with weight 108. Finally, the two remaining roots are
rearranged and have their weights added, forming a single tree (Huffman Tree).

As words are arranged in the tree, it is possible to observe that the most frequent
ones (result, please, new, viagra, look and best) are positioned at a level closer to the root
than the less frequent words (report, success, price, offer).

This hierarchical distribution facilitates the feature selection process, where less
frequent spam words are usually further from the root. These features are usually non-
discriminatory and therefore do not have much use in the message classification process.
A reduced number of features (a reduced tree) results in a simplified classification model
and, therefore, less computationally costly. With multilevel distribution, the tree can be
reduced (pruned) level by level, significantly reducing the number of features at each
pruning, until the result of classification starts to be impaired. The remaining tree contains
the most discriminating and most useful features (words) for the classifier.

Figure 1. Feature Distribution in a Huffman Tree

4. Implementation of the Proposal

The proposal of this research was implemented in 4 main stages. The first step (section
4.1) involved the preparation of the databases and features extraction. The second step
(section 4.2) is the e-mail classification, that also involves a gradual pruning of the
Huffman Tree. In third step (section 4.3), performance tests were conducted. Finally,
(section 4.4) the results of this approach were compared to Spam Assassin.

4.1. Database Preparation and Features Extraction

This proposal used different e-mail databases that are available online. One of the chosen
databases was the Enron-Spam corpus [28, 29]. The Enron-Spam database consists of
spam messages received by six users, with spam from various sources [30]. There is a
total of 19,088 legitimate messages (not spam) and 32,988 spams. It is a public database
very explored in the literature and still has non-spam messages. However, this is a very
old database considering the evolution of spam over the years.

Thus, this proposal also used a second and a third database that were composed of
e-mails from the database Untroubled Spam [31]. It is also available online and contains
messages collected since 1998, but does not have non-spam e-mails. In addition, e-mails
from users of mailing lists were collected on the Internet to compose the non-spam
database. The second database (Untroubled 2015) consisted of 182,933 e-mails, of which
111,788 were spam (with spam of the whole year of 2015) and 71,145 were not spam e-
mails. The third database (Untroubled 2016) consisted of 264,647 e-mails, with 212,216
spam messages (with spam of the whole year of 2016) and 52,431 non-spam messages.
These numbers of spam messages were achieved after removing e-mails composed
essentially of Asian charsets (e.g. KOI8-R, SHIFT-JIS, EUC-KR etc.), that are more than

700 thousand messages in the original 2015 and 2016 Untroubled databases. We consider
that classifiers specialized in specific idioms are better than generalized classifiers. This
proposal is focused in English language.

Prior to feature extraction, all the terms found in the training databases were
validated after a search in an English dictionary. Terms that were not present in the
dictionary were not considered as a feature. Additionally, all databases were preprocessed
for e-mail header removal, stop-word removal, and suffix reduction.

The Python NLTK (Python Natural Language Toolkit) [32] was used for the
removal of non-English words, stop-words and word stemming. Stop-words are terms
that are among the most common in a language, for example articles and prepositions.
The removal of these words is recommended before processing natural language, since
they do not have much use in the classification process, and may even spoil the result.
The reduction of suffixes (stemming) was done using the Snowball algorithm. For
example, the words "receive" and "receiving", after being processed by the Snowball
algorithm, both result in "receiv". Once the stop words removal and the word stemming
were done, the features vectors were extracted using TF as a measurement of the words
frequencies.

By containing all the "known" features of a spam database, the Huffman Tree was
essential for the execution of the work. Therefore, it was of total importance that the
Huffman tree was composed only by spam features collected in the training database. The
features of non-spam messages were not used in this work. In other words, if a word
appears only in e-mails that are not spam or spam messages in the test database, it does
not appear in the tree of that classification model.

The Huffman Tree can also be used as a tool to see the more significant changes
in spam features (most used terms) among bases or over the years. Table 1 lists the most
common terms from the top 50 that are common to all the three bases. That is, after
collecting the top 50 words for each base, there are 22 terms that common to all of them.

 Considering the Enron Spam database is more than one third smaller than the
Untroubled databases, for the training and test steps, similar to k-fold cross-validation,
the database were divided into 10 parts (10-fold cross validation). In 10 steps, each part
k is separated to test the model, and the remaining parts k-1 are used to train the model.
Then a Huffman Tree was generated for each k-1, ensuring that there was a unique set of
features and a distinct frequency of words for each step of the cross-validation. The
experiments with Untroubled 2015 and 2016 databases were conducted with half of the
messages for training the models and the other half for testing. The Untroubled Huffman
trees were generated only with the training sets.

Table 1. Most Common terms from top 50 (occurring in all spam
databases)

Also Best Day Get Go Like Look Make
New One Order See Stop Take Time Us

Use Visit Want Way Work Year

 The Enron-Spam tree was composed of 13,159 words that were distributed in 12
different levels. In the trees formed with messages from both Untroubled Spam databases
and mailing lists there were 9,067 and 10,161 features distributed in 13 different levels.

4.2. E-mail Classification

The classifier applied for the messages classification was Liblinear [33, 34]. When the
number of instances and features is very large, the Liblinear classifier usually consumes
less memory, being much faster and with a precision very similar to LibSVM [35], which
is usually one of the best classifiers for the detection of spam [17, 21, 23]. Before creating
the model, the best value to calibrate each classifier parameter was obtained. The
classification method used was the primal-based support vector classification. Table 2
shows the accuracies after each Huffman Tree pruning. In a simple definition, accuracy
represents the total of samples correctly classified.

Table 2. Accuracy rate after Huffman tree pruning

No. of Pruning
E-Mail Database

Enron Untroubled 2015 Untroubled 2016

0 98.12 97.90 98.66

1 98.04 97.88 98.64

2 98.14 97.86 98.62

3 97.58 97.70 98.59

4 95.64 97.63 98.50

5 95.26 97.48 98.36

6 94.70 97.32 98.31

7 93.45 97.23 97.55

8 90.46 95.97 97.27

9 84.93 95.53 96.55

10 70.16 92.26 94.67

11 - 87.19 91.68

12 - 75.99 84.76

Note that, for the Enron database there was a decrease of only 0.54% after 3
consecutive pruning steps, which proves that the essential features remain at the top of
the Huffman Tree. After 4 consecutive prunings the accuracy drops more than 1%. With
11 prunings the result is inconclusive due to the lack of features for classification.

For the 2015 database, the result after the third pruning decreases only 0.2%. The
accuracy kept above 97% even after the seventh pruning. The Untroubled 2016 had a
result with only 0.16% lower than the original tree after 4 prunings.

Table 3 shows the number of terms present in the tree after each pruning step. One
can be noticed that, for example, in the Enron database, with a tree divided in 9 levels
(after three prunings), the accuracy of the classifier drops only 0.54%, but with a reduction
of more than 71% in the number of features). Reducing the number of features results in
a lighter classifier, providing significant performance gains, as will be shown in Section
4.3. Moreover, an effective feature selection leads to parsimonious classifiers that require

less memory and are faster to train and test, and can also reduce the feature extraction
costs and lead to better generalization [36].

Table 3. Quantity of Features After Tree Reductions

Tree Size
E-mail Database

Enron Untroubled 2015 Untroubled 2016

13 - 9066 10160

12 13159 8544 9219

11 11566 6867 7420

10 7424 5487 5459

9 3744 4206 4118

8 2402 3111 3147

7 1578 2430 2423

6 1021 1900 1940

5 633 1500 1487

4 338 967 794

3 124 333 349

2 27 80 102

1 1 10 15

If the system administrator considers an accuracy of 97% as acceptable, the
reduction of the feature space is even greater for the Untroubled bases, reaching a
reduction of 79% (a tree of 6 levels for 2015) and 85% (a tree of 5 levels for 2016).

Table 4. False Positives and False Negatives

Prunings
Enron Untroubled 2015 Untroubled 2016

FP Rate FN Rate FP Rate FN Rate FP Rate FN Rate
0 0,013 0,022 0,036 0,012 0,041 0,007
1 0,012 0,024 0,036 0,012 0,042 0,007
2 0,012 0,022 0,036 0,012 0,041 0,007
3 0,010 0,032 0,037 0,014 0,042 0,007
4 0,056 0,036 0,038 0,014 0,044 0,008
5 0,060 0,040 0,039 0,016 0,046 0,009
6 0,068 0,044 0,040 0,018 0,047 0,009
7 0,071 0,062 0,041 0,019 0,063 0,015
8 0,129 0,076 0,053 0,032 0,066 0,018
9 0,175 0,137 0,056 0,038 0,074 0,025
10 0,492 0,186 0,083 0,074 0,096 0,043
11 - - 0,151 0,113 0,165 0,063
12 - - 0,329 0,128 0,333 0,087

As a complementary evaluation, the false positives (FP) and false negatives (FN)

are also important to choose the classifier. The values, of these rates are shown in table 4.
Note that for the Enron Spam database the FP and FN rates remain practically unchanged
even after the occurrence of two prunings. If the administrator considers the false
positives a bigger problem than false negatives, the FP rate drops slightly after three
prunings. However, it will result in a worst FN rate. Untroubled bases had minimal
variations after five or six prunings.

The Enron Spam test database was formed with 3299 spam messages and 1909
non-spam messages. The Untroubled 2015 test database was formed with 55,895 spams
and 35,573 non-spam and the Untroubled 2016 test database was formed with 106,111
spam and 26,216 non-spam.

4.3. Performance Tests
The performance tests showed significant performance gains after the reduction of the
number of features used by the classifiers, as can be seen in table 5. The values were
obtained computing an arithmetic mean, after repeating the experiments 10 times. The
coefficient of variation was below 3%. Since the time required for training and
classification of e-mails depends heavily on the environment (software and hardware) in
which it occurs and the number of classified messages, the time required for the original
classifiers (without reduction of features) is considered as 100%. The execution times of
the classifiers that suffered reduction in the number of features are presented as a fraction
of the time of the original classifier, also in percentages.

 The real times took to complete the testing steps (with the original feature space
– represented as 100% in table 5) had an average of 65ms, 1s171ms and 1s205ms,
respectively. These times refer only to the classification process (after preprocessing and
feature extraction). All the performance tests were performed in the same environment
and with the same conditions: Intel® CoreTM i7 4510U (4 threads, 2 GHz up to 3.1GHz,
4MB L3 Cache), 8GB RAM and the operating system GNU/Linux Mint v17.3.

 At the Enron database, it was observed that with three prunings the percentage of
correctness remained almost the same, without significant changes in terms of false
positives and false negatives, and the reduction in the number of features was more than
71%. Additionally, it takes 77% of the time of the original tree, as can be seen in table 5.
This time reduction of 23% in the test stage (most crucial step in a real environment)
could avoid a bottleneck in the e-mail system and also the waste of resources.

 The Untroubled 2015 had a reduction of only 2.65% of time in the testing stage
after the third pruning and Untroubled 2016 had a reduction of 5.58% (with minimal FP
x FN changes). However, supposing the e-mail server is receiving an amount of e-mails
bigger than it can handle, the classifier model could be switched to a simpler one that
obeys a minimal requirement, i.e., an accuracy above 97%. This requirement allows to
apply the feature sets with seven and eight prunings, representing a time reduction of
almost 13% and 21%. After the contingency, the antispam system could make use of the
more complex classifier again.

 It is important to emphasize that, although the increase in performance is one of
the main contributions of this research, the accuracy of the classifier is not in the
background. Obviously, the main effort was to demonstrate the effect of non-
discriminating features on the cost of the classification process (there was no great effort
to raise the accuracy of the classifier). For example, accepting an accuracy of 98% does

not mean ignoring 2% of e-mails. The lighter classifier could be used only at a critical
time, in which the server would have many messages queued, until the situation is
normalized. However, opting for a faster classifier with almost the same results would be
the most correct and proactive decision to make.

Table 5. Performance results (testing step)

Pruning Enron Untroubled 2015 Untroubled 2016
0 100,00 100,00 100,00
1 95,41 99,95 98,33
2 90,31 98,96 97,90
3 77,04 97,35 96,29
4 73,47 95,22 94,42
5 68,88 93,13 92,16
6 64,29 90,69 89,74
7 58,16 87,11 85,25
8 46,94 80,11 79,11
9 30,61 67,60 63,11
10 17,86 40,29 44,55
11 11,22 18,27 24,21
12 - 7,42 9,87

4.4. Tests with Spam Assassin

Tests with Spam Assassin [37] were conducted with two different purposes: i)
compare the e-mail classification accuracy of this approach with a well-known antispam
tool; ii) find some criteria to check if this approach has an acceptable performance at
training and classification stages, even without any code improvement.

Spam Assassin reached an accuracy of 99.90% on the Enron database, 99.86% on
Untroubled 2015 and 99.56% on Untroubled 2016. The tool threshold was changed
(manually) to obtain the best possible result. These results evidence the feasibility of the
proposed approach, once a better accuracy could be reached testing another classifier or
using another feature representation (e.g. TF-IDF).

The performance comparison was done by sampling, using a total of 2 thousand
e-mails, which were half spam and half non-spam. This step took 10s294ms to perform
both classes training. The testing stage, where classification occurs, was executed with
the reading of each e-mail of the testing dataset and took 471s434ms to complete.

 The training stage of this approach involves the header and stop-words removal,
dictionary checking, word stemming, TF calculation, creation of the Huffman Tree,
feature extraction and creation of the classification model by LIBLINEAR. All these tasks
took 10s728ms. At the testing stage, the e-mails of the test dataset were preprocessed
likewise the training stage and the feature vectors were composed. The features vectors
were submitted to the classifier, finishing the testing process in 7s743ms. When
comparing the real time took for this testing step (with preprocessing and feature
extraction) to the real time took by the classification job (section 4.3), it is evident that
the heaviest work is previous to the classification itself.

As an overview of the results, the training process of this approach was 4.21%
times slower than SpamAssassin, but the testing stage was 60 times faster. It must be

considered that SpamAssassin is a very robust antispam tool and the time calculation does
not consider its internal processes during training and classification. However, it should
also be considered that this approach was coded in Python language, without any special
programming treatment to improve performance. Moreover, the main difference in time
occurs at the testing stage, which is the more important (computational costly) step in real
environments to prevent bottlenecks in e-mail ingoing. Another advantage of this
approach is that these times can be reduced even more with the tree pruning, as shown in
table 5.

5. Related Works

The feature subset selection is a procedure which can reduce not only the cost of pattern
recognition, but provides a better classification accuracy in some cases [39]. In spam
detection as a problem of textual classification, the feature space has a high dimension. A
feature space with a large number of terms can be unsuitable for a classifier or even
decrease the categorization accuracy, once the ambiguity of meaning of terms can also
prohibit the classifier from choosing the categories deterministically [40].

Meng, J. et. al. (2011) proposed a feature selection method named feature
contribution degree (FCD). The FCD calculation considers that the features have different
distributions in different categories. When a feature has a larger value of FCD, the feature
probably has a stronger distinction capacity for categorization. Thus, if the feature has a
larger value of FCD, it has a better chance of being selected [40].

Wiratunga et al. evaluated the use of generalization after feature selection in a
spam base (LingSpam corpus). The results of generalization combined with boosting
outperformed the other algorithms, with the highest accuracy approaching 99% with only
110 features. However, the authors suggest the domain is relatively easy because the
LingSpam corpus has a few very discriminatory features for non-spam messages that are
sufficient to differentiate spam messages [41].

Trivedi and Dey tested the Genetic feature search and Greedy Stepwise feature
search techniques. For the Enron dataset, with only 48 best features out of 1500 initially
created features, the Genetic Search reached an accuracy of 87.1% and the Greedy Search
reached an accuracy of 94.2% [42].

 Most of the related work propose improvements in the feature selection method.
There is not much information about the impacts of feature selection in e-mail
classification performance, being the main efforts concentrated in classifiers accuracy.
Furthermore, when studying spam, a critical issue is the possibility to observe how it
changes over the time (due to the spammer tricks or seasonality), what is possible using
a tool such as the Huffman Tree.

6. Conclusions

This approach has as main objective the reduction in the time necessary for the
spam detection, without significant lost in the accuracy of the classification. This avoids
wasting resource pooling, required infrastructure investments, and is also useful in
situations such as message queuing caused by the antispam system. Although the
accuracy of the classifier is not the main contribution, the results obtained were very close
to what was achieved with Spam Assassin. Thus, better results would probably be
obtained if there was a special effort to do it.

The features organization in a Huffman Tree is a simple and efficient solution and
can be easily implemented by hierarchically organizing the features of spam with the most
relevant terms quickly accessed (i.e., positioned closer to the root). This form of
organization could also, through the observation of trees obtained in different months or
years, analyze in a different way the changes in the main words of spam in different
epochs. The use of trees of different sizes to train the classifier is an approach that
demonstrates a lot of feasibility and flexibility if used in a real environment.

The proposed method of using Huffman Trees to organize and reduce the feature
space could also be easily implemented for another idiom such as Portuguese. The
Huffman Tree could be reconstructed or updated as necessary, for example, if the
administrator perceives an increase of false positives or false negatives.

In general, the main objectives of this work were achieved. It was evidenced that
a waste occurs in the number of features used in the classification models. Most of these
features are non-discriminatory and, therefore, have no use for the classifier. The
performance tests found the wastage in processing time when no type of feature selection
is performed. Complementary tests also have shown that the classification phase is 60
times faster than the well-known Spam Assassin tool.

7. References

[1] K. Kleiner. Happy Spamyversary! Spam Reaches 30 [Online]. Available:
https://www.newscientist.com/article/dn13777-happy-spamiversary-spam-reaches-
30/

[2] B. Hoanca, "How good are our weapons in the spam wars?", IEEE Technology and
Society Magazine, vol. 25, issue 1, pp. 22-30, 2006.

[3] B. Whitworth and E. Whitworth, "Spam and the social technical gap", IEEE
Computer, vol. 37, issue 10, pp. 38-45, 2004.

[4] Symantec, “January 2011 Intelligence Report” [Online]. Available:
https://www.navixia.com/images/pdf/newsletter/MLI_2011_01_January_Final_en-
us.pdf

[5] Symantec, “May 2013 Intelligence Report” [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/security-
center/archives/intelligence-report-may-13-en.pdf

[6] Symantec, “Internet Security Threat Report” [Online]. Rep. 21, Apr. 2016. Available:
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

[7] Olivo, C. K.; Santin, A. O.; Oliveira, L. S., “Obtaining the Threat Model for E-mail
Phishing”, Applied Soft Computing, vol. 13, issue 12, pp. 4841-4848, 2013.

[8] J. Klensin. (2001, April). RFC 2821 - Simple Mail Transfer Protocol [Online].
Available: http://www.ietf.org/rfc/rfc2821.txt

[9] N. Freed and I. Borenstein. (1996, November). RFC 2045 - Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet Message Bodies [Online].
Available: http://tools.ietf.org/rfc/rfc2045.txt

[10] R. Duda, P. Hart and D. Stork, Pattern Classification, 2nd edition, Wiley-Interscience,
2000.

[11] There are 600,426,974,379,824,381,952 ways to spell Viagra [Online], Available:
http://cockeyed.com/lessons/viagra/viagra.html

[12] The Unicode Standard – Technical Introduction [Online]. Available:
http://www.unicode.org/standard/principles.html

[13] C. Liu and S. Stamm, “Fighting Unicode-Obfuscated Spam”, Proceedings of the
Anti-Phishing Working Group - 2nd Annual eCrime Researchers Summit, pp. 45-59,
ACM, 2007.

[14] C. Bishop, Pattern Recognition and Machine Learning, 1st edition, Springer, 2007.

[15] K. Schneider, “A comparison of event models for Naive Bayes anti-spam e-mail
filtering”, Proceedings of the 10th conference on European chapter of the Association
for Computational Linguistics, vol. 1, pp. 307-314, ACM, 2003.

[16] I. Androutsopoulos, G. Paliouras and E. Michelakis, “Learning to Filter Unsolicited
Commercial E-Mail” [Online], NCSR “Demokritos” Technical Rep. 2004/2, Mar.
2004. Available: http://nlp.cs.aueb.gr/pubs/TR2004_updated.pdf

[17] C. Chen, Y. Tian and C. Zhang, “Spam Filtering with Several Novel Bayesian
Classifiers”, IEEE 19th International Conference on Pattern Recognition, pp. 1-4, 2008.

[18] E. Frank, M. Hall and B. Pfahringer, “Locally Weighted Naive Bayes”, Proceedings
of the 19th conference on Uncertainty in Artificial Intelligence, ACM, pp. 249-256,
2002.

[19] H. Zhang, L. Jiang and J. Su, “Hidden Naive Bayes”, Proceedings of the 20th
National Conference on Artificial Intelligence, vol. 2, ACM, pp. 919-914, 2005.

[20] G. Webb, J. Boughton, and Z. Wang, “Not so Naive Bayes: Aggregating One-
Dependence Estimators”, Machine Learning, vol. 58, issue 1, pp. 5-24, 2005.

[21] H. Drucker, S. Wu and V. Vapnik, “Support Vector Machines for Spam
Categorization”, IEEE Transactions on Neural Networks, vol. 10, issue 5, pp. 1048-
1054, 1999.

[22] R. S. S. Kiran and I. Atmosukarto, “Spam or Not Spam – That is the Question”
[Online], Technical Report, University of Washington, 2005. Available:
http://courses.cs.washington.edu/courses/cse573/04au/Project/mini2/Ravi&Indri/spa
mfilter_ravi_indri.pdf

[23] T. Guzella and W. Caminhas, “A Review of Machine Learning Approaches to Spam
Filtering”, Expert Systems with Applications, Elsevier, vol. 36, issue 7, pp. 10206-
10222, 2009.

[24] B. Nelson, B. Rubinstein, L. Huang, A. Joseph and J. Tygar, “Classifier Evasion:
Models and Open Problems”, Privacy and Security Issues in Data Mining and Machine
Learning, vol. 6549, Lecture Notes in Computer Science, p. 92-98, Springer, 2011.

[25] M. Barreno, B. Nelson, R. Sears, A. Joseph and J. Tygar, “Can Machine Learning be
Secure?”, Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, pp. 16-25, 2006.

[26] “TF-IDF: A Single Page Tutorial – Information Retrieval and Text Mining [Online].
Available: http://www.tfidf.com

[27] M. Sharma, “Compression Using Huffman Coding”, International Journal of
Computer Science and Network Security, vol. 10 no.5, pp. 133-141, 2010.

[28] V. Metsis, I. Androutsopoulos and G. Paliouras, "Spam Filtering with Naive Bayes
– Which Naive Bayes?", Proceedings of the 3rd Conference on E-mail and Anti-Spam
(CEAS 2006), Mountain View, CA, USA, 2006.

[29] The Enron-Spam Datasets [Online], Available:
http://www.aueb.gr/users/ion/data/enron-spam

[30] G. Cormack, “E-mail Spam Filtering: A Systematic Review”, Foundations and
Trends in Information Retrieval, vol. 1, n.4, pp. 335-455, 2006.

[31] Untroubled Spam Archive [Online]. Available: http://untroubled.org/spam/

[32] Natural Language Toolkit – NLTK 3.0 documentation [Online]. Available:
http://www.nltk.org

[33] R. Fan, K. Chang, C. Hsieh, X. Wang and C. Lin, “LIBLINEAR: A Library for Large
Linear Classification”, Journal of Machine Learning Research, vol. 9, 2008.

[34] LIBLINEAR: A Library for Large Linear Classification [Online]. Available:
https://www.csie.ntu.edu.tw/~cjlin/liblinear

[35] C. Hsu, C. Chang and C. Lin. A Practical Guide to Support Vector Classification
[Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

[36] Z. Xu, G. Huang and K. Weinberger, "Gradient Boosted Feature Selection",
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 522-531, 2014.

[37] SpamAssassin – The #1 Enterprise Open-Source Spam Filter [Online], Available:
http://spamassassin.apache.org

[38] SpamAssassin Configuration File [Online]. Available:
http://spamassassin.apache.org/full/3.3.x/doc/Mail_SpamAssassin_Conf.html#langua
ge_options

[39] A. Jain and D. Zongker, "Feature Selection: Evaluation, Application, and Small
Sample Performance", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, issue 2, pp. 153-158, 1997.

[40] J. Meng, H. Lin and Y. Yu, "A Two-stage Feature Selection Method for Text
Categorization", Computers and Mathematics with Applications, Elsevier, pp. 2793-
2800, 2011.

[41] N. Wiratunga, I. Koychev and S. Massie, "Feature Selection and Generalization for
Retrieval of Textual Cases", Proceedings of the 7th European Conference on Case-
Based Reasoning, Springer Verlag, pp. 806-820.

[42] S. Trivedi and S. Dey, "Effect of Feature Selection Methods on Machine Learning
Classifiers for Detecting Email Spams", Proceedings of the 2013 Research in Adaptive
and Convergent Systems, ACM, pp. 35-40, 2013.

