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Abstract—Cloud computing is intrinsically based on multi-
tenancy, which enables a physical host to be shared amongst 
several tenants (customers). In this context, for several reasons, a 
cloud provider may overload the physical machine by hosting 
more tenants that it can adequately handle. In such a case, a tenant 
may experience application performance issues. However, the 
tenant is not able to identify the causes, since most cloud providers 
do not provide performance metrics for customer monitoring, or 
when they do, the metrics can be biased. This study proposes a 
two-tier auditing model for the identification of multi-tenancy 
issues within the tenant domain. Our proposal relies on machine 
learning techniques fed with application and virtual resource 
metrics, gathered within the tenant domain, for identifying 
overloading resources in a distributed application context. The 
evaluation using Apache Storm as a case study, has shown that our 
proposal is able to identify a node experiencing multi-tenancy 
interference of at least 6%, with less than 1% false-positive or 
false-negative rates, regardless of the affected resource. 
Nonetheless, our model was able to generalize the multi-tenancy 
interference behavior based on private cloud testbed monitoring, 
for different hardware configurations. Thus, a system 
administrator can monitor an application in a public cloud 
provider, without possessing any hardware-level performance 
metrics.  

Keywords— Multi-tenancy Interference; Cloud Computing; 
Machine Learning Classifier; Stream Processing, Provider and 
Client (tenant) Auditing  

I. INTRODUCTION 

Cloud computing aims at providing scalable and on-demand 
computing resources, such as processing, storage, and network 
[1]. The key aspects of cloud computing model are elasticity and 
multi-tenancy. Elasticity enables users to scale and pay for the 
consumed resources only, eliminating the need to maintain their 
own hardware infrastructure. In contrast, multi-tenancy enables 
several cloud computing clients (tenants) to share the same 
physical hardware infrastructure [2].  

Multi-tenancy is achieved through the virtualization of the 
physical resources, which is performed by a software known as 
hypervisor, such as Xen [3] and KVM [4]. The hypervisor acts 
as the middleware between the tenants and the physical 
hardware. In this context, tenants are typically represented as 
virtual machines (VMs), which access the same physical 
hardware resources according to the hypervisor policies [5].  

Thus, as a single physical resource (e.g., CPU) can be shared 
amongst several tenants, its performance may get impacted. For 

example, a cloud provider that hosts more tenants than the 
physical hardware can handle (typically referred as overbooking 
of resources), to maximize the profits. However, this 
overbooking of resources is invisible to the cloud computing 
customer, who is only able to monitor the virtualized (tenant) 
resources, which are accessible only within the hypervisor 
domain [6]. 

The overbooking of resources in general, will result in the 
increase or a highly variable response time for the application 
running in the tenant domain. However, for a near real-time 
application (e.g., stream processing platforms) it implies 
processing time constraints; in this case a highly variable 
application response time increase may inhibit its use on a cloud 
computing platform [7].  

Current approaches to deal with overbooking of resources in 
general, aim at changing the tenant disposal policies in the 
hardware infrastructure, typically for the energy saving purposes 
[8] for a cloud provider. Thus, these approaches consider the 
perspective of the cloud provider only. On the other hand, 
approaches for auditing cloud Service Level Agreements 
(SLAs) consider the cloud client perspective, focusing on the 
availability of resources [9], but not their performance. 
Moreover, this multi-tenancy issue may not be correctly 
reported by a public cloud provider owing to a possible conflict 
of interests [10].  

In the light of this situation, this study proposes a cloud 
independent auditing model for the identification of multi-
tenancy issues from the tenant (client) perspective. This work 
presents two insights for the identification of multi-tenancy 
issues. First, we apply a two-tier auditing model: resource-based 
and application-based. The purpose of the two-tier auditing 
model is to provide metrics (features) to enable the identification 
of deviation between the used resources (virtualized) and the 
application performance. Second, based on the extracted 
features, we employ machine learning techniques that enable to 
identify multi-tenancy issues in public clouds (e.g., Amazon), 
where the provided performance metrics could be biased. 
Through our technique one is able to use a model trained in a 
controlled environment, to monitor her application behavior in a 
public cloud testbed. 

The contribution of this study is twofold. First, through the 
evaluation of a stream processing platform (Apache Storm), we 
show that multi-tenancy significantly degrades the application 
performance (increasing the response time by up to 9 times). 
Second, we propose a model that enables to identify when an 



 

 

application experiences multi-tenancy interferences within the 
tenant domain, in a cloud independent manner. In this manner, 
our proposal is able to generalize the application behavior (and 
the expected resources usage) through a two-tier auditing model 
by employing machine learning techniques. More specifically, 
we are able to train our model in a controlled environment, 
generalize the system behavior enabling the monitoring of the 
same application in a public cloud domain, while also 
considering both different application workloads and hardware 
configurations.  

The remainder of this paper is organized as follows. Section 
II presents the work preliminaries. Section III presents our two-
tier auditing model. Section IV describes our prototype. Section 
V depict prototype evaluation. Section VI the related works, and 
finally Section VII draws concludes. 

II. PRELIMINARIES 

In this section, we discuss the background for our proposal, 
and some experiments showing the multi-tenancy impact on 
cloud infrastructures.  

A. Machine Learning 

Machine learning techniques are extensively used for the 
classification of events into groups (classes) [11]. These 
techniques in general rely on supervised learning through pattern 
recognition techniques to do the classification. In such a case, 
the learner is provided a set of previously labeled events, 
represented as a feature vector, from the considered classes. The 
classifier algorithm then learns the behavior of each class to 
obtain a model. Finally, through the model, the user is able to 
classify new events into the considered classes. 

As the classification is performed through the extracted set 
of features, the model may wrongly classify similar events [11]. 
Thus, an important stage of the model building process is its 
evaluation. In such a case, the model is evaluated regarding its 
expected accuracy rates, typically measured in terms of false-
positive (FP) and false-negative (FN) terms.  

The FP rates denote the rate of examples from a modeled 
class wrongly classified as not belonging to it, while the FN rate 
represents the opposite classes error. In this manner, the data 
used during the evaluation process must represent all the 
production (real-world) environment properties as close as 
possible, since the accuracy rates will be calculated from that. 

B. Cloud Computing 

Cloud computing can be deployed either on-premises in a 
controlled (private and community), or in a public environment 
[1]. In the former, the cloud customers have access to the cloud 
physical infrastructure and its management interface (e.g., 
Eucalyptus HPE [12]). Thus, a customer is able to manage his 
tenant’s allocation disposal. However, in public clouds, the 
management of resources is done by the cloud providers [1], 
who offer the cloud resources as a service for profit purposes.  

As the customer in a public cloud does not have control over 
the physical infrastructure, the cloud provider provides a 
contract for the client, known as Service Level Agreement 
(SLA) [9]. An SLA defines the customer guarantees such as 
availability (probability that a system is operational at a given 
time) and data security amongst others.  

The majority of the public cloud providers provide SLAs 
specific to the resource’s availability, which can be easily 
monitored by the cloud customer through Service Level 
Indicators (SLI) [9, 13]. In contrast, when the performance of 
the resources is desired, the client must trust the cloud provider 
as the SLAs typically do not provide such guarantees. Moreover, 
when performance metrics are provided (e.g., CPU steal time1), 
a conflict of interests may occur if the cloud provider changes 
the performance metrics for profit purposes [9, 13] or because of 
its inability to monitor the given resource when it is overloaded.  

A typical scenario in which the expected performance of 
resources can be degraded is shown in Figure 1. In such a case, 
the cloud provider overbooks the node physical resources using 
multi-tenancy, either to maximize profits or because of operator 
configuration error, in a scenario commonly referred as 
overbooking of resources. In the Figure 1, several tenants 
(Tenant 1 to N) compete to access the node physical resources 
through the hypervisor. However, as the number of provided 
resources (e.g., virtualized CPU cores) is greater than the 
number of available physical resources, the tenants will have 
their performance degraded. In this case, the hypervisor will not 
be able to service all resource access requests in real-time. This 
leads to a possible increase in the application response time. 
Nonetheless, the customer is not able to identify such a scenario 
within the tenant perspective because he is only able to access 
the virtualized resources usage, but not the physical ones.  

In this context, the overbooking of resources may 
significantly degrade or even inhibit the deployment of 
processing architectures in cloud environments. For instance, 

Figure 2 – Typical stream processing platform execution architecture. 

Figure 1 – Typical overbooking of resources at hardware level in cloud
environments. 

 1 CPU time that was requested by the tenant, which the hypervisor was not 
able to provide.   



 

 

Stream processing platforms, which often demand processing 
time constraints are an example of the above. 

C. Stream Processing Platform 

Big data stream (near real-time) processing platforms are 
distributed systems designed to process an amount of data that 
is unfeasible to manage with conventional processing and 
storage tools [14]. These distributed platforms require adequate 
infrastructure to support the high computational demand. Thus, 
they are often deployed in cloud computing environments. 

The data processing in stream processing platforms (e.g., 
Apache Storm [15]) is performed through the definition of 
topologies (similar to a Hadoop job). A topology defines the 
processing configuration to process the data from diverse 
sources. A sample topology configuration shown in Figure 2 has 
two main components: (i) Spouts and (ii) Bolts. Spouts read data 
from sources (internal or external) and generate internal data 
streams. Bolts consume the spouts’ data and perform related 
processing. Bolts may also consume data generated by another 
bolt.  

Each unit generated by spouts or bolts is called a tuple. A 
topology has also several executors (threads), which are 
predetermined to perform tasks for the spouts or bolts. A 
topology in execution, formed by spouts and bolts is also known 
as a logical abstraction of the Apache Storm environment. When 
a topology is submitted (Topology Execution, Figure 2), the 
Storm scheduling policy distributes the topology executors in a 
cluster as a default configuration in a round-robin manner.  

In order to achieve near real-time stream processing, Apache 
Storm assumes that the processing time required for processing 
each tuple is small. Thus, for each new tuple generated is 
allocated in a memory buffer until an executor is ready to 
process it. In order to deal with this memory buffer growth, 
Apache Storm employs a backpressure mechanism [15], which 
suppress the tuple generation allowing the memory buffer to 
decrease its size.  

The backpressure mechanism in an overbooking of 
resources context may significantly slow the overall topology 
processing capacity, because, if the topology has one node that 
is experiencing multi-tenancy issues, the backpressure 
mechanism will suppress the tuple generation from all executors 

that are sending tuples to it, greatly increasing the application 
response time. 

D. Multi-tenancy in Stream Processing Platforms 

In this subsection, we evaluate the Apache Storm 
performance when deployed in a cloud computing environment 
with multi-tenant issues. The purpose of this evaluation is to 
identify the performance impact in the contexts with and without 
multi-tenancy issues.  

Thus, to provide the desired fine-grained control over the 
resources, a private cloud deployment was considered through 
the Eucalyptus HPE version 4.2.2 [12]. The testbed is a five-
node cluster in which four nodes are used as the Eucalyptus node 
controllers; they are responsible for the virtual machines 
instantiation. One of the nodes is used for the cloud 
infrastructure management. Each computer is equipped with an 
8-core Intel Core i7 processor, 16 GB RAM, and is connected 
through a Gigabit Ethernet interface. For the virtual machines 
instantiation, the KVM hypervisor was used.  

To achieve generality and impartiality, the evaluated 
workload was generated through the well-known word count 
problem [15], which has pre-defined Storm topologies and is 
commonly used in related literature. Three distinct Apache 
Storm topologies were evaluated according to their resource-
bound nature: CPU, disk, and network: 

 CPU-bound Topology: A spout generates random 
sentences from a book [16]; a bolt (split) divides the 
sentences into words; and a bolt (count) counts words 
occurrence. 

 Disk-bound Topology: A spout generates random 
sentences from a book [17]; a bolt (split) divides 
sentences into words; and a bolt (count) counts words 
occurrence and writes them to disk. 

 Network-bound Topology: A spout generates random 
messages up to 10 KB; a bolt (consumer) receives such 
messages (Throughput Test) [18]. 

Furthermore, all topologies spouts randomly vary the 
frequency of the generated messages to generate a more realistic 
workload. Thus, also varying the usage of the processing 
resources overtime. Each of the aforementioned topologies is 
composed of 8 spouts and 32 bolts. The processing cluster is 

   

(a) CPU-bound topology; overbooking degree is 
measured through CPU steal-time. 

(b) Disk-bound topology; overbooking degree is 
measured through CPU wait time. 

(c) Network-bound topology; overbooking degree is 
measured at hypervisor-level through the monitoring 

over the tenant’s network usage.  

Figure 3 – Multi-tenant interferences in the Apache Storm performance, showing the average and standard deviation response time; the physical resources degradation
is transparent to the client in the tenant perspective.  



 

 

composed of four nodes, which are instantiated as virtual 
machines (VM).  

For each VM was allocated 8 cores and 8 GB of memory. To 
generate an overbooking of resources scenario, we have 
mirrored the processing cluster, as belonging to another cloud 
tenant. Thus, each physical machine hosts two virtual machines, 
generating an overbooking of resources of at most factor one 
(only 8 physical cores are available to 16 allocated virtual cores, 
while one disk and one NIC (Network Interface Card) is divided 
by two tenants). In order to better measure the overbooking of 
resources impact, the testbed scenario was executed for 72 h for 
each of the evaluated topologies.  

Figure 3 shows the relation between the topologies average 
response time for each tuple (total processing time for each 
message issued from the spouts) and the overbooking of 
resources degree, regarding each of the evaluated topologies. 
Considering the CPU-bound topology, the average response 
time is only 2989 ms when the overbooking of resources factor 
is zero. However, as the overbooking degree increases, the 
response time also increases, increasing by up to 74% with an 
80% of overbooking of resources degree, and also significantly 
increasing the variation in the response time.  

The same behavior could be evidenced for each of the 
evaluated topologies, increasing the response time in average to 
482% and 9% for the Disk-bound and Network-bound 
topologies, respectively. However, regardless of the average 
topologies response time increase, the standard deviation 
significantly increases. In such a case, the response time 
regardless of the considered topology, will significantly vary 
between requests. 

 Thus, the overbooking of resources poses a significant 
challenge for real-time applications, when deployed in cloud 
environments. The reason for that, is because the increase of 
response time, in the average, for both the load processing and 
the variation between such processing, may inhibit its use in the 
cloud context. Moreover, such processing interferences are 
invisible to the cloud customer, since in most cases the public 
cloud providers do not provide any performance metric of the 
physical resources. 

III. TWO-TIER AUDITING MODEL 

Owing to a possible conflict of interest in cloud provider and 
the customer, the identification of multi-tenancy issues based 
solely on the cloud provider metrics (e.g., CPU steal time) may 
be biased. The cloud provider may be either unable to measure 
it accurately, change or even reduce the provided resources 

without the cloud client consent, decreasing the application 
performance.  

If the client does not monitor the resources performance, she 
is not able to know that her application is having a poor 
performance owing to cloud provider fault, because the client is 
only able to access the virtual resources performance, and does 
not have access to the physical ones. Nonetheless, if the client 
monitors only the application performance, she is not able to 
know if the application performance is running low owing to the 
cloud provider fault or because of the highly application demand 
for resources.   

In the light of this, our proposal relies in a two-tier auditing 
model: resource-based and application-based. The model 
assumption is that it is possible to identify multi-tenancy issues 
through the identification of deviations between the used 
resources (virtualized, within the tenant domain) and the 
application performance. The model architecture is shown in 
Figure 4. 

A. Architecture 

In the model architecture (Figure 4), we consider the 
perspective of a cloud client who wishes to monitor his 
application running in a distributed fashion, e.g., Apache Storm 
(Figure 2). The proposal considers a set of tenants (virtual 
machines) running over a cloud provider infrastructure. Each 
tenant has a distributed application with a set of executors. In 
each monitored tenant, two monitors are executed, the 
Application Monitor and the Virtual Resources Monitor.  

The Application Monitor is responsible to periodically 
collect application performance metrics from each executor, 
e.g., processed units in the last 10 s (see Section IV). While the 
Virtual Resources Monitor periodically collects metrics over the 
virtual resources within the tenant domain, e.g., CPU load (see 
Section IV). Periodically, both monitors send the collected 
metrics for an Auditing Agent to perform the actual resources 
performance auditing.  

For instance, consider a cluster of tenants executing an 
Apache Storm topology as a distributed application. In such a 
case, a specific tenant may execute two spouts and three bolts, 
for instance. The Application Monitor will periodically collect 
application performance metrics for the five executors (two 
spouts and three bolts). While the Virtual Resources Monitor, 
will periodically collect a single virtual resources metrics, 
regarding the specific tenant. Then, periodically the 
performance metrics of five applications and one virtual 
resources are sent to the auditing agent. 

 

  Figure 4 – Two-tier Auditing Model architecture. 



 

 

The proposed architecture enables to easily scale according 
to the number of tenants. This because each tenant is able to 
monitor itself, without requiring a centralized entity, e.g., a 
master node. Moreover, the features are collected within each 
tenant domain, making it difficult for the cloud provider to 
provide the collected metrics incorrectly. This occurs mainly 
because our model relies in a two-tier auditing scheme: 
resource-based and application-based. Thereby, even if the 
cloud provider modifies the virtual resource metrics, the 
application-based features can still be trusted. Therefore, the 
customer is still able to identify performance issues. 

B. Auditing Agent 

The identification of multi-tenant interferences in distributed 
applications is a challenging task. This because the performance 
of such applications varies greatly over time, according to the 
generated workload (normally according to the client requests) 
and the monitored executors, which perform different 
computations when compared to their pairs. In order to enable 
the identification of multi-tenancy issues, the auditing agent 
employs machine learning techniques over the collected metrics 
from the application monitor and the virtual resources monitor. 

The purpose of the Auditing Agent is to identify whether the 
last collected performance metrics were obtained in a multi-
tenant interference free context (Normal) or not (Multi-tenant 
conditions). The Auditing Agent scheme is shown in Figure 5.  

The agent takes the performance metrics collected by the 
monitors as an input. For each executor performance metric 
(Figure 5, Executor Metrics), the agent builds an executor 
feature vector composed of both the executor performance 
metric and the corresponding virtual resource metrics. Note that 
an executor feature vector is built for each collected executor 
performance metric.  

After building the feature vectors, the classification process 
is performed in a component dependent manner because each 
component performs a different computation. Thus, the executor 
feature vectors are supplied to the classifier according to their 
component type: spout, split, or bolt. Finally, the tenant class 
(Normal or Multi-tenant) is assigned through a voting scheme. 
In this manner, the resources provided to a tenant are classified 
as Normal only if the majority of its executors are classified as 
Normal, otherwise, it is assumed to have Multi-tenant issues. 

C. Model Building Process 

The proposed model collects only information in a tenant 
domain, which mitigates a possible conflict of interests. 
However, in order to properly identify multi-tenancy issues, the 
classifier relies in the prior knowledge of the event classes, e.g., 
the executor feature vectors classes (Normal or Multi-tenant) 
must be previously labeled to enable the model building from 
the training2 sentences in machine learning. Although some 
cloud providers provide performance metrics that may enable to 
identification of performance issues, the proposed model 
building process assumes that such metrics may be biased.  

Our model performs the model training in a controlled 
environment in order to provide correct class labeling. The 
customers execute the application in their private cloud 
(controlled environment), and use the obtained model to monitor 
their application in the public cloud during production 
deployment.  

During the model training process in the private cloud, the 
client is able to manage the physical resources usage in a fine-
grained manner. In such a case, it becomes possible to evaluate 
the client application behavior under several scenarios of multi-
tenancy issues (as shown in Section II).  

Finally, with the training dataset built, the client is able to 
train the component’s classifiers (Figure 5) and properly 
evaluate the system accuracy. However, in this case, with the 
correct event labeling, the testbed is performed in a private 
cloud, under the client management.  

IV. PROTOTYPE 

The model prototype is shown in Figure 6. A distributed 
stream processing framework was considered. To this end, the 
Apache Storm [15] was deployed in the monitored tenants (see 
Section II.D), in which, each tenant has slots, which vary 
according to the evaluated hardware configuration. Each slot 
holds a set of executors.  

For the metrics collection process, the application monitor 
(Figure 6) periodically requests the metrics for each of the 
tenant’s executors to the Apache Storm REST UI [19]. On the 
other hand, the virtual resources metrics collect the information 

Figure 5 – Application-based Auditing Agent scheme. 

 2 Although unsupervised machine learning techniques can be applied, they 
often assume that the least occuring patterns are outliers. However, in our context
it is not possible to infer the pattern classes according to their occurrences, i.e. 
multi-tenancy issue may occur at either none or up to all of the measured cases. 



 

 

through the CollectL API [20]. Each monitor is responsible to 
build the extracted features by computing the metrics in a 10 sec. 
interval, defined after experimental evaluation tests. A total of 7 
application-based and 11 virtual-resources-based metrics are 
extracted; the features are shown in Table 1. The virtual-
resources-based feature set was defined considering only the 
virtual resources features.  

Finally, the auditing agent machine learning algorithm was 
implemented using the Weka API [21]. The agent receives the 
metrics collected from both monitors every 10 s and builds a 
Weka feature vector. The classifier training process is described 
in Section V.A.  

V. EVALUATION 

 Two cloud testbeds were considered during the evaluation 
process: private and public. For the private cloud deployment, 
the same testbed shown in Section II.D was considered, i.e., an 
Eucalyptus HPE infrastructure with four node controllers, 8-core 
Intel CPU, and 16 GB of memory for each node. On the other 
hand, the Amazon AWS [31], Google Cloud Platform [32], and 
Microsoft Azure Platform [33] were evaluated for the public 
cloud testbed.  

 Our evaluation aimed at answering four research questions: 
(V.i) What is the minimum multi-tenancy interference needed 
according to each resource, for our model be able to properly 
classify the nodes? (V.ii) How challenging is the classification 
in different hardware configurations? (V.iii) How does our 
model perform in a public cloud environment, using the model 
obtained in a controlled environment (private cloud testbed)? 
(V.iv) How could our model be used in public cloud 
infrastructures without having access to neither hypervisor-level 
metrics nor private cloud testbeds? 

 The next subsections show the model building process used 
in our work, and its evaluation in both private and public clouds. 

A. Model Building Process  

As discussed in Section III.C, the classifiers are trained 
through the testbed in the private cloud. Three topologies shown 
in Section II.D were evaluated, in which each topology is bound 
to a specific resource: CPU, disk, or network. Similarly, for each 
evaluated topology, its mirror is executed in parallel in another 
tenant on the same physical host. In this way, the overbooking 
of resource degree may periodically vary from a factor of zero 
to 1.0 (remember that each physical node hosts two tenants with 
eight virtual cores each). Each of the evaluated topologies was 
executed for 48 h. The secondary topology (executed in the 

secondary tenants) was executed for 24 h, starting at the 12th 
hour until the 36th hour.  

In this manner three distinct training datasets were built: 
CPU, disk, and network. Each dataset contains the feature 
vectors (Table 1) from all tenants in the corresponding scenario. 
For the classification process, two distinct classifiers were 
evaluated because of their fast classification skill: the Naïve 
Bayes (NB) and the Decision Tree (DT). The supervised 
discretization process from M. Fayadd [21] was used for the NB, 
while the J48 [21] algorithm was used for the DT.  

B. Private Cloud Infrastructures 

 To answer question V.i, the first evaluation aimed at defining 
the best threshold between the Normal and the Multi-tenant 
classes. To this end, the instance labels were defined according 
to the overbooking of resource degree, in which a tenant is 
considered Normal only if its overbooking of resource degree is 
lower than the defined threshold, else Tenant. The classifiers 
were trained with two nodes and tested with the remaining two 
nodes. Figure 7 shows the relation between the FP (rate of 
Normal instances wrongly classified as Tenant) and FN (rate of 
Tenant wrongly classified as Normal) rates.  

 It can be noted that our two-tier auditing model is able to 
correctly classify Normal and Tenant nodes for all the evaluated 
topologies, and for both the evaluated classifiers. Regarding the 
CPU-bound topology, our model was able to classify when a 
node was experiencing more than 6 % (Figure 7.a) and 7% 
(Figure 7.d) of multi-tenancy issues, presenting FP rates of only 
0.05% and 0.01%, and FN rates of 0.81% and 0.43 % for the NB 
and the DT, respectively. The same occurs for the disk-bound 
and network-bound topologies with a reasonable detection when 
the overbooking degree is over 7% for the NB classifier and 5% 
and 6% for the DT classifier respectively. The evaluated 
classifiers presented a similar performance regarding their 
chosen operation point.  

 Finally, it can be noted that the accuracy is relative to the 
overbooking threshold, since the application performance and 
the resources usage difference becomes more significant. The 
minimal multi-tenancy interference needed for each classifier 
and topology is marked as Operation Point in Figure 7, chosen 
when both FP and FN rates reach less than 1%. 

 To answer question V.ii, we have deployed the CPU-bound 
topology testbed described in Section V.A with different virtual 
machine configurations, varying it from 8 to 1 virtual CPU 

TABLE I. EXTRACTED FEATURES OBTAINED WITHIN THE TENANT 
DOMAIN 

Feature Group Features 

Application-
based 

Number of input tuples; Number of output tuples; Average 
delay; Average processed tuples per second; Difference 
from last number of input tuples; Difference from last 
number of output tuples; Difference from last average delay; 
Difference from last average processed tuples per second

Virtual-
Resources-
based 

CPU load; Average CPU load last 1 min; Average CPU load 
last 5 min; KB read from disk; KB written to disk; Disk 
write requests; Disk read requests; Network packets 
received; Network packets sent; Network data received; 
Network data sent;  

 

Figure 6 – Model prototype architecture. 



 

 

cores. Figure 8 shows the FP and FN rates with different 
hardware configurations for both NB and DT classifiers, 
considering that it was trained in the 8 virtual-core CPU testbed 
and evaluated in the remaining configurations. It can be noted 
that the NB classifier outperforms the DT classifier when a 
different hardware configuration is considered. Moreover, the 
FP and FN rates increase according to the difference between 
the training environment (Figure 8, 8 VCPUs) and the evaluated 
hardware configuration. When VMs with a single VCPU testbed 
are considered, the FP rate increases by 0.12% points and by 
4.21% points for the NB and DT, respectively. However, when 
a more similar environment is considered, the FP and FN rates 
do not change significantly.  

 Thus, it becomes possible to note, that our proposed auditing 
model is able to perform the detection, presenting similar 
detection rates, even with different hardware configurations. 
Thus, if the hardware configuration is not changed significantly, 
the detection rates remains similar. 

C. Public Cloud with Performance Metric 

 The evaluation of multi-tenant issues in public cloud 
environments is a challenging task. This is because the cloud 
client is not able to manage the physical machine resources. To 
answer question V.iii and in face of such a challenge, we have 
considered the evaluation of the CPU-bound topology in the 
Amazon AWS [31] cloud. In order to provide a ground truth 
(correct prior event labels) we have used the Amazon provided 
CPU steal time metric3. The same testbed described in Section 
V.A was deployed, but the hardware configuration was also 
varied.  

 Figure 9 shows the auditing model performance in the public 
cloud environment when using the model trained in the private 
cloud testbed. The proposed auditing model was able to 
generalize the application behavior from a private cloud testbed 

 3 For evaluation purposes we assumed the Amazon CPU steal time is not 
biased. A realistic assumption considering it is a major public cloud provider.   

  

(a) NB for different hardware 
configurations in a public cloud 

testbed. 

(b) DT for different hardware 
configurations in a public cloud 

testbed. 

Figure 9 – Auditing model accuracy in different hardware configurations for the 
CPU-bound topology in the public cloud environment; the classifiers were 
trained in the private cloud testbed. 

  

(a) NB for different hardware 
configurations 

(b) DT for different hardware 
configurations 

Figure 8 – Auditing model accuracy when trained with 8 virtual CPU cores and
evaluated in different hardware configurations for the CPU-bound topology. 

   

(a) NB for CPU-bound topology (8 virtual Cores) (b) NB for disk-bound topology (c) NB for network-bound topology 

   

(d) DT for CPU-bound topology (8 virtual Cores) (e) DT for disk-bound topology (f) DT for network-bound topology 

Figure 7 – Overbooking of resources granularity-Accuracy tradeoff; operation points for multi-tenancy detection are marked. Operation points are defined when both 
Normal and Tenant accuracy rates are lower than 1%. 



 

 

to a public one. The FP and FN rates were lower than 1% for 
both the evaluated classifiers in all considered hardware 
configurations, presenting a similar performance when 
compared to the private cloud testbed (Figure 8.a and 8.b).  

 In this manner, the proposed two-tier auditing mechanism is 
able to detect when an application is experiencing multi-tenancy 
interferences i.e., if the overbooking degree is at least more than 
6% in both public and private clouds, considering different type 
of resources. Moreover, a system administrator is able to train 
the proposed mechanism in a private cloud, with a different 
hardware configuration, and properly monitor his application in 
a public cloud environment, even if the cloud provider does not 
provide any kind of performance metrics (Section V.D), since 
the FP and FN rates are lower than 1 %, and the proposed 
auditing scheme does not rely on any hypervisor-level metric 
(see Table 1).  

D. Assessing Public Cloud Providers Without Hypervisor-
level Metrics  

 As mentioned earlier, most public cloud providers do not 
provide any type of hypervisor-level metrics, which could be 
used to detect interferences caused by the sharing of physical 
resources in cloud computing. Nonetheless, as our scheme relies 
on a private cloud testbed to perform the model building process, 
the system administrator may have difficulties in applying such 
a scheme for application monitoring. In this context, the 
identification of multi-tenancy issues becomes a challenging 
task. Therefore, to enable the proper evaluation of our model in 
such contexts, we employed a similar approach as that applied 
by Schad et al. [22] for the identification of multi-tenancy 
interferences. 

 Our assumption is that, as proposed in [22], multi-tenancy 
issues can be detected through micro-benchmarks. However, 
unlike their proposal that implies wasted processing cycles, 
caused by the need to perform periodic micro-benchmarks, and 
also to answer question V.iv, we conducted two tests using 
different cloud providers: Google Cloud Platform [32] and 
Microsoft Azure Platform [33]. The same experiment, with the 
same testbed configuration as described in section V.C, was 
performed for 48 h. However, during the experiments, a periodic 
CPU micro-benchmark was performed in parallel within the 
tenant. The Sysbench [34] was used as a CPU micro-benchmark 
tool, which computes a set of prime numbers.  

 Each micro-benchmark execution time was used as a 
measure to evaluate whether or not the tenant is experiencing 
multi-tenancy interferences. To decrease the testbed interference 
caused by the micro-benchmark execution, Apache Storm was 
configured to use only seven CPU cores instead of all (eight 
virtual CPU cores). When scheduled, we ran the micro-
benchmarks in the eighth core.   

 As an evaluation approach, we considered the measurement 
class according to Eq. 1, where .  denotes the 
current micro-benchmark time, .  the average time 
during the testbed execution, and .  the standard 
deviation time. 

, .
, ,   (1) 

 It is important to note that the approach used for the class 
assignment process can be customized according to the 
administrator needs. For instance, one could monitor the system 
performance over a long interval, and manually establish when 
the system has experienced performance degradation. 

 Figure 10 shows the time distribution demanded for each 
micro-benchmark execution, and their assigned class labels (Eq. 
1), for both Google Cloud Platform (Figure 10-a) and Azure 
(Figure 10-b).  

 

(a) Google Cloud Platform 

 

(b) Microsoft Azure Platform 

Figure 10 – Assessment of overbooking degree through periodic CPU micro-benchmarks. Tenant class is assumed if micro-benchmark is above average plus standard
deviation during the testbed execution time. 

TABLE II.  SYSTEM ACCURACY WITHOUT PERFORMANCE METRICS

Cloud Provider Classifier 
Accuracy Rates (%) 

FP FN 

Google Cloud Platform 
DT 0.00 1.30 
NB 0.00 1.88 

Microsoft Azure 
DT 0.48 0.00
NB 0.50 0.00



 

 

 After the class assignment process, the first 24 h of each 
testbed was used for the training process, and the remaining 24 
h for the test phase. Table 2 lists the FP and FN rates for the 
evaluated classifiers. The worst case was the NB classifier on 
Google Cloud Platform with an FN rate of 1.88 % and FP rate 
of zero.  

 Our proposed model was able to detect multi-tenancy 
interferences within the tenant domain even in the absence of 
hypervisor-level metrics. For production usage, our model 
enables the identification of multi-tenancy issues without the use 
of micro-benchmarks, as it presents significantly low FN and FP 
rates.  

VI. RELATED WORKS 

Performance impact in cloud computing environments have 
been reported by a number of works [23, 24]. Schad et al. [22] 
conducted a series of experiments on Amazon EC2 instances 
and reported a coefficient of variation of 24%, 20%, and 19% 
for CPU-bound, disk-bound and network-bound applications, 
respectively. The reported results are similar to our findings in 
our private cloud testbed (section II).  

However, current approaches to deal with processing impact 
caused by overbooking of resources typically consider the cloud 
provider perspective. Tomás et al. [23] addressed overbooked 
datacenters by establishing different VM priorities in their work; 
high priority VMs would get pinned to a specific physical CPU, 
while lower ones would share unpinned CPUs. The author’s 
approach required access to hypervisor-level features, thus was 
not feasible for public cloud environments. Another typical 
approach relies on VM migration [25]. For instance, Zhang et al. 
[25] designed a VM migration for over committed clouds. The 
authors aimed at balancing the over commitment ratio amongst 
the nodes. In their work, the cloud client perspective is not 
considered. 

Moreover, when the identification of host overload is 
considered, it also assumes the cloud provider perspective. 
Anton B. and Rajkumar B. [24] aimed at identifying overloaded 
hosts for VM migration. The authors identified CPU overload 
through a utilization threshold on the physical resource. 
Similarly, in Breigtgand et al. [26], they overcommitted the 
physical nodes according to their current processing load, during 
the VM allocation. In their work, a node was assumed to be idle 
according to a simple CPU processing threshold. In this manner, 
both approaches are not applicable for highly variable tasks such 
as stream processing frameworks.  

A more realistic approach was employed by Bobroff et al. 
[27], in which the authors relied on a time-series forecasting 
mechanism to minimize the number of physical hosts and SLA 
violations. The goal of minimization of physical hosts while 
providing SLA guarantees was also chased by Breigtgand and 
Epstein [26]. In their work, the authors identified network 
performance SLA violations at cloud provider level by 
employing a stochastic bin packing modeling over the VMs 
network usage. The cloud client perspective was not addressed 
by their works. 

Some works attempt to classify the processing load in cloud 
computing environments [28]. In Dabbagh et al. [28] the authors 
attempted to predict the VMs’ resources usage through a 

weighted sum over the recent observed utilization samples. 
Their approach focused on VM placement and migration at 
cloud provider-level. A machine learning technique was used by 
Segalin et al. [30] for establishing whether a VM should be 
reallocated to a more robust hardware or not. However, in their 
approach, the authors assume that the overcommit does not 
occur. 

To the best of our knowledge, this is the first work that 
addresses the conflict of interest between the client and the cloud 
provider for over commitment detection. To this end, our work 
detects performance issues within the tenant domain, without 
relying on any of the cloud provider metrics. 

VII. CONCLUDING REMARKS 

The overbooking of resources in cloud computing 
environments is a common approach used by cloud providers, 
given that it is not possible to forecast each tenant demand of 
physical resource. Therefore, in order to maximize the hardware 
resource usage, the providers might favor the interference 
problem. Owing to a possible conflict of interest between the 
client and the cloud provider, the identification of this kind of 
issue based solely in the cloud provider metrics is a naïve 
approach.  

This work addressed the overbooking of resources detection 
in the tenant domain, from the cloud client perspective. To this 
end, we employed a two-tier auditing model which aims at 
identifying deviations between the application performance and 
the resources usage. Our model does not rely on any metric that 
could be biased by the cloud provider (e.g., CPU steal time) 
during the detection stage.  

The evaluation, using the Apache Storm as case study, has 
shown the feasibility of our proposal. Our model enables the 
system administrator to train his system in a controlled 
environment in a private cloud testbed and generalize it for a 
public cloud environment. Our model was able to reach FP and 
FN rates below 1% when detecting overbooking degrees of over 
6%. Finally, our scheme has also enabled the monitoring of the 
application behavior in a public cloud environment, even in the 
absence of hypervisor-level metrics, and a private cloud testbed 
for the model building process. 
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