

A Machine Learning Auditing Model for Detection of
Multi-Tenancy Issues Within Tenant Domain

Cleverton Vicentini¹,², Altair Santin¹, Eduardo Viegas¹, Vilmar Abreu¹

¹Graduate Program in Computer Science / Pontifical Catholic University of Parana, Curitiba, Parana, Brazil
²Federal Institute of Parana, Curitiba, Parana, Brazil

{cleverton, santin, eduardo.viegas, vilmar.abreu}@ppgia.pucpr.br

Abstract—Cloud computing is intrinsically based on multi-
tenancy, which enables a physical host to be shared amongst
several tenants (customers). In this context, for several reasons, a
cloud provider may overload the physical machine by hosting
more tenants that it can adequately handle. In such a case, a tenant
may experience application performance issues. However, the
tenant is not able to identify the causes, since most cloud providers
do not provide performance metrics for customer monitoring, or
when they do, the metrics can be biased. This study proposes a
two-tier auditing model for the identification of multi-tenancy
issues within the tenant domain. Our proposal relies on machine
learning techniques fed with application and virtual resource
metrics, gathered within the tenant domain, for identifying
overloading resources in a distributed application context. The
evaluation using Apache Storm as a case study, has shown that our
proposal is able to identify a node experiencing multi-tenancy
interference of at least 6%, with less than 1% false-positive or
false-negative rates, regardless of the affected resource.
Nonetheless, our model was able to generalize the multi-tenancy
interference behavior based on private cloud testbed monitoring,
for different hardware configurations. Thus, a system
administrator can monitor an application in a public cloud
provider, without possessing any hardware-level performance
metrics.

Keywords— Multi-tenancy Interference; Cloud Computing;
Machine Learning Classifier; Stream Processing, Provider and
Client (tenant) Auditing

I. INTRODUCTION

Cloud computing aims at providing scalable and on-demand
computing resources, such as processing, storage, and network
[1]. The key aspects of cloud computing model are elasticity and
multi-tenancy. Elasticity enables users to scale and pay for the
consumed resources only, eliminating the need to maintain their
own hardware infrastructure. In contrast, multi-tenancy enables
several cloud computing clients (tenants) to share the same
physical hardware infrastructure [2].

Multi-tenancy is achieved through the virtualization of the
physical resources, which is performed by a software known as
hypervisor, such as Xen [3] and KVM [4]. The hypervisor acts
as the middleware between the tenants and the physical
hardware. In this context, tenants are typically represented as
virtual machines (VMs), which access the same physical
hardware resources according to the hypervisor policies [5].

Thus, as a single physical resource (e.g., CPU) can be shared
amongst several tenants, its performance may get impacted. For

example, a cloud provider that hosts more tenants than the
physical hardware can handle (typically referred as overbooking
of resources), to maximize the profits. However, this
overbooking of resources is invisible to the cloud computing
customer, who is only able to monitor the virtualized (tenant)
resources, which are accessible only within the hypervisor
domain [6].

The overbooking of resources in general, will result in the
increase or a highly variable response time for the application
running in the tenant domain. However, for a near real-time
application (e.g., stream processing platforms) it implies
processing time constraints; in this case a highly variable
application response time increase may inhibit its use on a cloud
computing platform [7].

Current approaches to deal with overbooking of resources in
general, aim at changing the tenant disposal policies in the
hardware infrastructure, typically for the energy saving purposes
[8] for a cloud provider. Thus, these approaches consider the
perspective of the cloud provider only. On the other hand,
approaches for auditing cloud Service Level Agreements
(SLAs) consider the cloud client perspective, focusing on the
availability of resources [9], but not their performance.
Moreover, this multi-tenancy issue may not be correctly
reported by a public cloud provider owing to a possible conflict
of interests [10].

In the light of this situation, this study proposes a cloud
independent auditing model for the identification of multi-
tenancy issues from the tenant (client) perspective. This work
presents two insights for the identification of multi-tenancy
issues. First, we apply a two-tier auditing model: resource-based
and application-based. The purpose of the two-tier auditing
model is to provide metrics (features) to enable the identification
of deviation between the used resources (virtualized) and the
application performance. Second, based on the extracted
features, we employ machine learning techniques that enable to
identify multi-tenancy issues in public clouds (e.g., Amazon),
where the provided performance metrics could be biased.
Through our technique one is able to use a model trained in a
controlled environment, to monitor her application behavior in a
public cloud testbed.

The contribution of this study is twofold. First, through the
evaluation of a stream processing platform (Apache Storm), we
show that multi-tenancy significantly degrades the application
performance (increasing the response time by up to 9 times).
Second, we propose a model that enables to identify when an

application experiences multi-tenancy interferences within the
tenant domain, in a cloud independent manner. In this manner,
our proposal is able to generalize the application behavior (and
the expected resources usage) through a two-tier auditing model
by employing machine learning techniques. More specifically,
we are able to train our model in a controlled environment,
generalize the system behavior enabling the monitoring of the
same application in a public cloud domain, while also
considering both different application workloads and hardware
configurations.

The remainder of this paper is organized as follows. Section
II presents the work preliminaries. Section III presents our two-
tier auditing model. Section IV describes our prototype. Section
V depict prototype evaluation. Section VI the related works, and
finally Section VII draws concludes.

II. PRELIMINARIES

In this section, we discuss the background for our proposal,
and some experiments showing the multi-tenancy impact on
cloud infrastructures.

A. Machine Learning

Machine learning techniques are extensively used for the
classification of events into groups (classes) [11]. These
techniques in general rely on supervised learning through pattern
recognition techniques to do the classification. In such a case,
the learner is provided a set of previously labeled events,
represented as a feature vector, from the considered classes. The
classifier algorithm then learns the behavior of each class to
obtain a model. Finally, through the model, the user is able to
classify new events into the considered classes.

As the classification is performed through the extracted set
of features, the model may wrongly classify similar events [11].
Thus, an important stage of the model building process is its
evaluation. In such a case, the model is evaluated regarding its
expected accuracy rates, typically measured in terms of false-
positive (FP) and false-negative (FN) terms.

The FP rates denote the rate of examples from a modeled
class wrongly classified as not belonging to it, while the FN rate
represents the opposite classes error. In this manner, the data
used during the evaluation process must represent all the
production (real-world) environment properties as close as
possible, since the accuracy rates will be calculated from that.

B. Cloud Computing

Cloud computing can be deployed either on-premises in a
controlled (private and community), or in a public environment
[1]. In the former, the cloud customers have access to the cloud
physical infrastructure and its management interface (e.g.,
Eucalyptus HPE [12]). Thus, a customer is able to manage his
tenant’s allocation disposal. However, in public clouds, the
management of resources is done by the cloud providers [1],
who offer the cloud resources as a service for profit purposes.

As the customer in a public cloud does not have control over
the physical infrastructure, the cloud provider provides a
contract for the client, known as Service Level Agreement
(SLA) [9]. An SLA defines the customer guarantees such as
availability (probability that a system is operational at a given
time) and data security amongst others.

The majority of the public cloud providers provide SLAs
specific to the resource’s availability, which can be easily
monitored by the cloud customer through Service Level
Indicators (SLI) [9, 13]. In contrast, when the performance of
the resources is desired, the client must trust the cloud provider
as the SLAs typically do not provide such guarantees. Moreover,
when performance metrics are provided (e.g., CPU steal time1),
a conflict of interests may occur if the cloud provider changes
the performance metrics for profit purposes [9, 13] or because of
its inability to monitor the given resource when it is overloaded.

A typical scenario in which the expected performance of
resources can be degraded is shown in Figure 1. In such a case,
the cloud provider overbooks the node physical resources using
multi-tenancy, either to maximize profits or because of operator
configuration error, in a scenario commonly referred as
overbooking of resources. In the Figure 1, several tenants
(Tenant 1 to N) compete to access the node physical resources
through the hypervisor. However, as the number of provided
resources (e.g., virtualized CPU cores) is greater than the
number of available physical resources, the tenants will have
their performance degraded. In this case, the hypervisor will not
be able to service all resource access requests in real-time. This
leads to a possible increase in the application response time.
Nonetheless, the customer is not able to identify such a scenario
within the tenant perspective because he is only able to access
the virtualized resources usage, but not the physical ones.

In this context, the overbooking of resources may
significantly degrade or even inhibit the deployment of
processing architectures in cloud environments. For instance,

Figure 2 – Typical stream processing platform execution architecture.

Figure 1 – Typical overbooking of resources at hardware level in cloud
environments.

 1 CPU time that was requested by the tenant, which the hypervisor was not
able to provide.

Stream processing platforms, which often demand processing
time constraints are an example of the above.

C. Stream Processing Platform

Big data stream (near real-time) processing platforms are
distributed systems designed to process an amount of data that
is unfeasible to manage with conventional processing and
storage tools [14]. These distributed platforms require adequate
infrastructure to support the high computational demand. Thus,
they are often deployed in cloud computing environments.

The data processing in stream processing platforms (e.g.,
Apache Storm [15]) is performed through the definition of
topologies (similar to a Hadoop job). A topology defines the
processing configuration to process the data from diverse
sources. A sample topology configuration shown in Figure 2 has
two main components: (i) Spouts and (ii) Bolts. Spouts read data
from sources (internal or external) and generate internal data
streams. Bolts consume the spouts’ data and perform related
processing. Bolts may also consume data generated by another
bolt.

Each unit generated by spouts or bolts is called a tuple. A
topology has also several executors (threads), which are
predetermined to perform tasks for the spouts or bolts. A
topology in execution, formed by spouts and bolts is also known
as a logical abstraction of the Apache Storm environment. When
a topology is submitted (Topology Execution, Figure 2), the
Storm scheduling policy distributes the topology executors in a
cluster as a default configuration in a round-robin manner.

In order to achieve near real-time stream processing, Apache
Storm assumes that the processing time required for processing
each tuple is small. Thus, for each new tuple generated is
allocated in a memory buffer until an executor is ready to
process it. In order to deal with this memory buffer growth,
Apache Storm employs a backpressure mechanism [15], which
suppress the tuple generation allowing the memory buffer to
decrease its size.

The backpressure mechanism in an overbooking of
resources context may significantly slow the overall topology
processing capacity, because, if the topology has one node that
is experiencing multi-tenancy issues, the backpressure
mechanism will suppress the tuple generation from all executors

that are sending tuples to it, greatly increasing the application
response time.

D. Multi-tenancy in Stream Processing Platforms

In this subsection, we evaluate the Apache Storm
performance when deployed in a cloud computing environment
with multi-tenant issues. The purpose of this evaluation is to
identify the performance impact in the contexts with and without
multi-tenancy issues.

Thus, to provide the desired fine-grained control over the
resources, a private cloud deployment was considered through
the Eucalyptus HPE version 4.2.2 [12]. The testbed is a five-
node cluster in which four nodes are used as the Eucalyptus node
controllers; they are responsible for the virtual machines
instantiation. One of the nodes is used for the cloud
infrastructure management. Each computer is equipped with an
8-core Intel Core i7 processor, 16 GB RAM, and is connected
through a Gigabit Ethernet interface. For the virtual machines
instantiation, the KVM hypervisor was used.

To achieve generality and impartiality, the evaluated
workload was generated through the well-known word count
problem [15], which has pre-defined Storm topologies and is
commonly used in related literature. Three distinct Apache
Storm topologies were evaluated according to their resource-
bound nature: CPU, disk, and network:

 CPU-bound Topology: A spout generates random
sentences from a book [16]; a bolt (split) divides the
sentences into words; and a bolt (count) counts words
occurrence.

 Disk-bound Topology: A spout generates random
sentences from a book [17]; a bolt (split) divides
sentences into words; and a bolt (count) counts words
occurrence and writes them to disk.

 Network-bound Topology: A spout generates random
messages up to 10 KB; a bolt (consumer) receives such
messages (Throughput Test) [18].

Furthermore, all topologies spouts randomly vary the
frequency of the generated messages to generate a more realistic
workload. Thus, also varying the usage of the processing
resources overtime. Each of the aforementioned topologies is
composed of 8 spouts and 32 bolts. The processing cluster is

(a) CPU-bound topology; overbooking degree is
measured through CPU steal-time.

(b) Disk-bound topology; overbooking degree is
measured through CPU wait time.

(c) Network-bound topology; overbooking degree is
measured at hypervisor-level through the monitoring

over the tenant’s network usage.

Figure 3 – Multi-tenant interferences in the Apache Storm performance, showing the average and standard deviation response time; the physical resources degradation
is transparent to the client in the tenant perspective.

composed of four nodes, which are instantiated as virtual
machines (VM).

For each VM was allocated 8 cores and 8 GB of memory. To
generate an overbooking of resources scenario, we have
mirrored the processing cluster, as belonging to another cloud
tenant. Thus, each physical machine hosts two virtual machines,
generating an overbooking of resources of at most factor one
(only 8 physical cores are available to 16 allocated virtual cores,
while one disk and one NIC (Network Interface Card) is divided
by two tenants). In order to better measure the overbooking of
resources impact, the testbed scenario was executed for 72 h for
each of the evaluated topologies.

Figure 3 shows the relation between the topologies average
response time for each tuple (total processing time for each
message issued from the spouts) and the overbooking of
resources degree, regarding each of the evaluated topologies.
Considering the CPU-bound topology, the average response
time is only 2989 ms when the overbooking of resources factor
is zero. However, as the overbooking degree increases, the
response time also increases, increasing by up to 74% with an
80% of overbooking of resources degree, and also significantly
increasing the variation in the response time.

The same behavior could be evidenced for each of the
evaluated topologies, increasing the response time in average to
482% and 9% for the Disk-bound and Network-bound
topologies, respectively. However, regardless of the average
topologies response time increase, the standard deviation
significantly increases. In such a case, the response time
regardless of the considered topology, will significantly vary
between requests.

 Thus, the overbooking of resources poses a significant
challenge for real-time applications, when deployed in cloud
environments. The reason for that, is because the increase of
response time, in the average, for both the load processing and
the variation between such processing, may inhibit its use in the
cloud context. Moreover, such processing interferences are
invisible to the cloud customer, since in most cases the public
cloud providers do not provide any performance metric of the
physical resources.

III. TWO-TIER AUDITING MODEL

Owing to a possible conflict of interest in cloud provider and
the customer, the identification of multi-tenancy issues based
solely on the cloud provider metrics (e.g., CPU steal time) may
be biased. The cloud provider may be either unable to measure
it accurately, change or even reduce the provided resources

without the cloud client consent, decreasing the application
performance.

If the client does not monitor the resources performance, she
is not able to know that her application is having a poor
performance owing to cloud provider fault, because the client is
only able to access the virtual resources performance, and does
not have access to the physical ones. Nonetheless, if the client
monitors only the application performance, she is not able to
know if the application performance is running low owing to the
cloud provider fault or because of the highly application demand
for resources.

In the light of this, our proposal relies in a two-tier auditing
model: resource-based and application-based. The model
assumption is that it is possible to identify multi-tenancy issues
through the identification of deviations between the used
resources (virtualized, within the tenant domain) and the
application performance. The model architecture is shown in
Figure 4.

A. Architecture

In the model architecture (Figure 4), we consider the
perspective of a cloud client who wishes to monitor his
application running in a distributed fashion, e.g., Apache Storm
(Figure 2). The proposal considers a set of tenants (virtual
machines) running over a cloud provider infrastructure. Each
tenant has a distributed application with a set of executors. In
each monitored tenant, two monitors are executed, the
Application Monitor and the Virtual Resources Monitor.

The Application Monitor is responsible to periodically
collect application performance metrics from each executor,
e.g., processed units in the last 10 s (see Section IV). While the
Virtual Resources Monitor periodically collects metrics over the
virtual resources within the tenant domain, e.g., CPU load (see
Section IV). Periodically, both monitors send the collected
metrics for an Auditing Agent to perform the actual resources
performance auditing.

For instance, consider a cluster of tenants executing an
Apache Storm topology as a distributed application. In such a
case, a specific tenant may execute two spouts and three bolts,
for instance. The Application Monitor will periodically collect
application performance metrics for the five executors (two
spouts and three bolts). While the Virtual Resources Monitor,
will periodically collect a single virtual resources metrics,
regarding the specific tenant. Then, periodically the
performance metrics of five applications and one virtual
resources are sent to the auditing agent.

 Figure 4 – Two-tier Auditing Model architecture.

The proposed architecture enables to easily scale according
to the number of tenants. This because each tenant is able to
monitor itself, without requiring a centralized entity, e.g., a
master node. Moreover, the features are collected within each
tenant domain, making it difficult for the cloud provider to
provide the collected metrics incorrectly. This occurs mainly
because our model relies in a two-tier auditing scheme:
resource-based and application-based. Thereby, even if the
cloud provider modifies the virtual resource metrics, the
application-based features can still be trusted. Therefore, the
customer is still able to identify performance issues.

B. Auditing Agent

The identification of multi-tenant interferences in distributed
applications is a challenging task. This because the performance
of such applications varies greatly over time, according to the
generated workload (normally according to the client requests)
and the monitored executors, which perform different
computations when compared to their pairs. In order to enable
the identification of multi-tenancy issues, the auditing agent
employs machine learning techniques over the collected metrics
from the application monitor and the virtual resources monitor.

The purpose of the Auditing Agent is to identify whether the
last collected performance metrics were obtained in a multi-
tenant interference free context (Normal) or not (Multi-tenant
conditions). The Auditing Agent scheme is shown in Figure 5.

The agent takes the performance metrics collected by the
monitors as an input. For each executor performance metric
(Figure 5, Executor Metrics), the agent builds an executor
feature vector composed of both the executor performance
metric and the corresponding virtual resource metrics. Note that
an executor feature vector is built for each collected executor
performance metric.

After building the feature vectors, the classification process
is performed in a component dependent manner because each
component performs a different computation. Thus, the executor
feature vectors are supplied to the classifier according to their
component type: spout, split, or bolt. Finally, the tenant class
(Normal or Multi-tenant) is assigned through a voting scheme.
In this manner, the resources provided to a tenant are classified
as Normal only if the majority of its executors are classified as
Normal, otherwise, it is assumed to have Multi-tenant issues.

C. Model Building Process

The proposed model collects only information in a tenant
domain, which mitigates a possible conflict of interests.
However, in order to properly identify multi-tenancy issues, the
classifier relies in the prior knowledge of the event classes, e.g.,
the executor feature vectors classes (Normal or Multi-tenant)
must be previously labeled to enable the model building from
the training2 sentences in machine learning. Although some
cloud providers provide performance metrics that may enable to
identification of performance issues, the proposed model
building process assumes that such metrics may be biased.

Our model performs the model training in a controlled
environment in order to provide correct class labeling. The
customers execute the application in their private cloud
(controlled environment), and use the obtained model to monitor
their application in the public cloud during production
deployment.

During the model training process in the private cloud, the
client is able to manage the physical resources usage in a fine-
grained manner. In such a case, it becomes possible to evaluate
the client application behavior under several scenarios of multi-
tenancy issues (as shown in Section II).

Finally, with the training dataset built, the client is able to
train the component’s classifiers (Figure 5) and properly
evaluate the system accuracy. However, in this case, with the
correct event labeling, the testbed is performed in a private
cloud, under the client management.

IV. PROTOTYPE

The model prototype is shown in Figure 6. A distributed
stream processing framework was considered. To this end, the
Apache Storm [15] was deployed in the monitored tenants (see
Section II.D), in which, each tenant has slots, which vary
according to the evaluated hardware configuration. Each slot
holds a set of executors.

For the metrics collection process, the application monitor
(Figure 6) periodically requests the metrics for each of the
tenant’s executors to the Apache Storm REST UI [19]. On the
other hand, the virtual resources metrics collect the information

Figure 5 – Application-based Auditing Agent scheme.

 2 Although unsupervised machine learning techniques can be applied, they
often assume that the least occuring patterns are outliers. However, in our context
it is not possible to infer the pattern classes according to their occurrences, i.e.
multi-tenancy issue may occur at either none or up to all of the measured cases.

through the CollectL API [20]. Each monitor is responsible to
build the extracted features by computing the metrics in a 10 sec.
interval, defined after experimental evaluation tests. A total of 7
application-based and 11 virtual-resources-based metrics are
extracted; the features are shown in Table 1. The virtual-
resources-based feature set was defined considering only the
virtual resources features.

Finally, the auditing agent machine learning algorithm was
implemented using the Weka API [21]. The agent receives the
metrics collected from both monitors every 10 s and builds a
Weka feature vector. The classifier training process is described
in Section V.A.

V. EVALUATION

 Two cloud testbeds were considered during the evaluation
process: private and public. For the private cloud deployment,
the same testbed shown in Section II.D was considered, i.e., an
Eucalyptus HPE infrastructure with four node controllers, 8-core
Intel CPU, and 16 GB of memory for each node. On the other
hand, the Amazon AWS [31], Google Cloud Platform [32], and
Microsoft Azure Platform [33] were evaluated for the public
cloud testbed.

 Our evaluation aimed at answering four research questions:
(V.i) What is the minimum multi-tenancy interference needed
according to each resource, for our model be able to properly
classify the nodes? (V.ii) How challenging is the classification
in different hardware configurations? (V.iii) How does our
model perform in a public cloud environment, using the model
obtained in a controlled environment (private cloud testbed)?
(V.iv) How could our model be used in public cloud
infrastructures without having access to neither hypervisor-level
metrics nor private cloud testbeds?

 The next subsections show the model building process used
in our work, and its evaluation in both private and public clouds.

A. Model Building Process

As discussed in Section III.C, the classifiers are trained
through the testbed in the private cloud. Three topologies shown
in Section II.D were evaluated, in which each topology is bound
to a specific resource: CPU, disk, or network. Similarly, for each
evaluated topology, its mirror is executed in parallel in another
tenant on the same physical host. In this way, the overbooking
of resource degree may periodically vary from a factor of zero
to 1.0 (remember that each physical node hosts two tenants with
eight virtual cores each). Each of the evaluated topologies was
executed for 48 h. The secondary topology (executed in the

secondary tenants) was executed for 24 h, starting at the 12th
hour until the 36th hour.

In this manner three distinct training datasets were built:
CPU, disk, and network. Each dataset contains the feature
vectors (Table 1) from all tenants in the corresponding scenario.
For the classification process, two distinct classifiers were
evaluated because of their fast classification skill: the Naïve
Bayes (NB) and the Decision Tree (DT). The supervised
discretization process from M. Fayadd [21] was used for the NB,
while the J48 [21] algorithm was used for the DT.

B. Private Cloud Infrastructures

 To answer question V.i, the first evaluation aimed at defining
the best threshold between the Normal and the Multi-tenant
classes. To this end, the instance labels were defined according
to the overbooking of resource degree, in which a tenant is
considered Normal only if its overbooking of resource degree is
lower than the defined threshold, else Tenant. The classifiers
were trained with two nodes and tested with the remaining two
nodes. Figure 7 shows the relation between the FP (rate of
Normal instances wrongly classified as Tenant) and FN (rate of
Tenant wrongly classified as Normal) rates.

 It can be noted that our two-tier auditing model is able to
correctly classify Normal and Tenant nodes for all the evaluated
topologies, and for both the evaluated classifiers. Regarding the
CPU-bound topology, our model was able to classify when a
node was experiencing more than 6 % (Figure 7.a) and 7%
(Figure 7.d) of multi-tenancy issues, presenting FP rates of only
0.05% and 0.01%, and FN rates of 0.81% and 0.43 % for the NB
and the DT, respectively. The same occurs for the disk-bound
and network-bound topologies with a reasonable detection when
the overbooking degree is over 7% for the NB classifier and 5%
and 6% for the DT classifier respectively. The evaluated
classifiers presented a similar performance regarding their
chosen operation point.

 Finally, it can be noted that the accuracy is relative to the
overbooking threshold, since the application performance and
the resources usage difference becomes more significant. The
minimal multi-tenancy interference needed for each classifier
and topology is marked as Operation Point in Figure 7, chosen
when both FP and FN rates reach less than 1%.

 To answer question V.ii, we have deployed the CPU-bound
topology testbed described in Section V.A with different virtual
machine configurations, varying it from 8 to 1 virtual CPU

TABLE I. EXTRACTED FEATURES OBTAINED WITHIN THE TENANT
DOMAIN

Feature Group Features

Application-
based

Number of input tuples; Number of output tuples; Average
delay; Average processed tuples per second; Difference
from last number of input tuples; Difference from last
number of output tuples; Difference from last average delay;
Difference from last average processed tuples per second

Virtual-
Resources-
based

CPU load; Average CPU load last 1 min; Average CPU load
last 5 min; KB read from disk; KB written to disk; Disk
write requests; Disk read requests; Network packets
received; Network packets sent; Network data received;
Network data sent;

Figure 6 – Model prototype architecture.

cores. Figure 8 shows the FP and FN rates with different
hardware configurations for both NB and DT classifiers,
considering that it was trained in the 8 virtual-core CPU testbed
and evaluated in the remaining configurations. It can be noted
that the NB classifier outperforms the DT classifier when a
different hardware configuration is considered. Moreover, the
FP and FN rates increase according to the difference between
the training environment (Figure 8, 8 VCPUs) and the evaluated
hardware configuration. When VMs with a single VCPU testbed
are considered, the FP rate increases by 0.12% points and by
4.21% points for the NB and DT, respectively. However, when
a more similar environment is considered, the FP and FN rates
do not change significantly.

 Thus, it becomes possible to note, that our proposed auditing
model is able to perform the detection, presenting similar
detection rates, even with different hardware configurations.
Thus, if the hardware configuration is not changed significantly,
the detection rates remains similar.

C. Public Cloud with Performance Metric

 The evaluation of multi-tenant issues in public cloud
environments is a challenging task. This is because the cloud
client is not able to manage the physical machine resources. To
answer question V.iii and in face of such a challenge, we have
considered the evaluation of the CPU-bound topology in the
Amazon AWS [31] cloud. In order to provide a ground truth
(correct prior event labels) we have used the Amazon provided
CPU steal time metric3. The same testbed described in Section
V.A was deployed, but the hardware configuration was also
varied.

 Figure 9 shows the auditing model performance in the public
cloud environment when using the model trained in the private
cloud testbed. The proposed auditing model was able to
generalize the application behavior from a private cloud testbed

 3 For evaluation purposes we assumed the Amazon CPU steal time is not
biased. A realistic assumption considering it is a major public cloud provider.

(a) NB for different hardware
configurations in a public cloud

testbed.

(b) DT for different hardware
configurations in a public cloud

testbed.

Figure 9 – Auditing model accuracy in different hardware configurations for the
CPU-bound topology in the public cloud environment; the classifiers were
trained in the private cloud testbed.

(a) NB for different hardware
configurations

(b) DT for different hardware
configurations

Figure 8 – Auditing model accuracy when trained with 8 virtual CPU cores and
evaluated in different hardware configurations for the CPU-bound topology.

(a) NB for CPU-bound topology (8 virtual Cores) (b) NB for disk-bound topology (c) NB for network-bound topology

(d) DT for CPU-bound topology (8 virtual Cores) (e) DT for disk-bound topology (f) DT for network-bound topology

Figure 7 – Overbooking of resources granularity-Accuracy tradeoff; operation points for multi-tenancy detection are marked. Operation points are defined when both
Normal and Tenant accuracy rates are lower than 1%.

to a public one. The FP and FN rates were lower than 1% for
both the evaluated classifiers in all considered hardware
configurations, presenting a similar performance when
compared to the private cloud testbed (Figure 8.a and 8.b).

 In this manner, the proposed two-tier auditing mechanism is
able to detect when an application is experiencing multi-tenancy
interferences i.e., if the overbooking degree is at least more than
6% in both public and private clouds, considering different type
of resources. Moreover, a system administrator is able to train
the proposed mechanism in a private cloud, with a different
hardware configuration, and properly monitor his application in
a public cloud environment, even if the cloud provider does not
provide any kind of performance metrics (Section V.D), since
the FP and FN rates are lower than 1 %, and the proposed
auditing scheme does not rely on any hypervisor-level metric
(see Table 1).

D. Assessing Public Cloud Providers Without Hypervisor-
level Metrics

 As mentioned earlier, most public cloud providers do not
provide any type of hypervisor-level metrics, which could be
used to detect interferences caused by the sharing of physical
resources in cloud computing. Nonetheless, as our scheme relies
on a private cloud testbed to perform the model building process,
the system administrator may have difficulties in applying such
a scheme for application monitoring. In this context, the
identification of multi-tenancy issues becomes a challenging
task. Therefore, to enable the proper evaluation of our model in
such contexts, we employed a similar approach as that applied
by Schad et al. [22] for the identification of multi-tenancy
interferences.

 Our assumption is that, as proposed in [22], multi-tenancy
issues can be detected through micro-benchmarks. However,
unlike their proposal that implies wasted processing cycles,
caused by the need to perform periodic micro-benchmarks, and
also to answer question V.iv, we conducted two tests using
different cloud providers: Google Cloud Platform [32] and
Microsoft Azure Platform [33]. The same experiment, with the
same testbed configuration as described in section V.C, was
performed for 48 h. However, during the experiments, a periodic
CPU micro-benchmark was performed in parallel within the
tenant. The Sysbench [34] was used as a CPU micro-benchmark
tool, which computes a set of prime numbers.

 Each micro-benchmark execution time was used as a
measure to evaluate whether or not the tenant is experiencing
multi-tenancy interferences. To decrease the testbed interference
caused by the micro-benchmark execution, Apache Storm was
configured to use only seven CPU cores instead of all (eight
virtual CPU cores). When scheduled, we ran the micro-
benchmarks in the eighth core.

 As an evaluation approach, we considered the measurement
class according to Eq. 1, where ܾ݄݁݊ܿ.௖௨௥௥௘௡௧ denotes the
current micro-benchmark time, ܾ݄݁݊ܿ.௔௩௚ the average time
during the testbed execution, and ܾ݄݁݊ܿ.௦௧ௗௗ௘௩ the standard
deviation time.

݂ሺ݈ܿܽݏݏሻ ൌ ൜
,݈ܽ݉ݎ݋ܰ ܾ݄݁݊ܿ.௖௨௥௥௘௡௧ ൏ ܾ݄݁݊ܿ௔௩௚ ൅ ܾ݄݁݊ܿ௦௧ௗௗ௘௩
,ݐ݊ܽ݊݁ܶ ܾ݄݁݊ܿ,௖௨௥௥௘௡௧ ൒ ܾ݄݁݊ܿ௔௩௚ ൅ ܾ݄݁݊ܿ௦௧ௗௗ௘௩

 (1)

 It is important to note that the approach used for the class
assignment process can be customized according to the
administrator needs. For instance, one could monitor the system
performance over a long interval, and manually establish when
the system has experienced performance degradation.

 Figure 10 shows the time distribution demanded for each
micro-benchmark execution, and their assigned class labels (Eq.
1), for both Google Cloud Platform (Figure 10-a) and Azure
(Figure 10-b).

(a) Google Cloud Platform

(b) Microsoft Azure Platform

Figure 10 – Assessment of overbooking degree through periodic CPU micro-benchmarks. Tenant class is assumed if micro-benchmark is above average plus standard
deviation during the testbed execution time.

TABLE II. SYSTEM ACCURACY WITHOUT PERFORMANCE METRICS

Cloud Provider Classifier
Accuracy Rates (%)

FP FN

Google Cloud Platform
DT 0.00 1.30
NB 0.00 1.88

Microsoft Azure
DT 0.48 0.00
NB 0.50 0.00

 After the class assignment process, the first 24 h of each
testbed was used for the training process, and the remaining 24
h for the test phase. Table 2 lists the FP and FN rates for the
evaluated classifiers. The worst case was the NB classifier on
Google Cloud Platform with an FN rate of 1.88 % and FP rate
of zero.

 Our proposed model was able to detect multi-tenancy
interferences within the tenant domain even in the absence of
hypervisor-level metrics. For production usage, our model
enables the identification of multi-tenancy issues without the use
of micro-benchmarks, as it presents significantly low FN and FP
rates.

VI. RELATED WORKS

Performance impact in cloud computing environments have
been reported by a number of works [23, 24]. Schad et al. [22]
conducted a series of experiments on Amazon EC2 instances
and reported a coefficient of variation of 24%, 20%, and 19%
for CPU-bound, disk-bound and network-bound applications,
respectively. The reported results are similar to our findings in
our private cloud testbed (section II).

However, current approaches to deal with processing impact
caused by overbooking of resources typically consider the cloud
provider perspective. Tomás et al. [23] addressed overbooked
datacenters by establishing different VM priorities in their work;
high priority VMs would get pinned to a specific physical CPU,
while lower ones would share unpinned CPUs. The author’s
approach required access to hypervisor-level features, thus was
not feasible for public cloud environments. Another typical
approach relies on VM migration [25]. For instance, Zhang et al.
[25] designed a VM migration for over committed clouds. The
authors aimed at balancing the over commitment ratio amongst
the nodes. In their work, the cloud client perspective is not
considered.

Moreover, when the identification of host overload is
considered, it also assumes the cloud provider perspective.
Anton B. and Rajkumar B. [24] aimed at identifying overloaded
hosts for VM migration. The authors identified CPU overload
through a utilization threshold on the physical resource.
Similarly, in Breigtgand et al. [26], they overcommitted the
physical nodes according to their current processing load, during
the VM allocation. In their work, a node was assumed to be idle
according to a simple CPU processing threshold. In this manner,
both approaches are not applicable for highly variable tasks such
as stream processing frameworks.

A more realistic approach was employed by Bobroff et al.
[27], in which the authors relied on a time-series forecasting
mechanism to minimize the number of physical hosts and SLA
violations. The goal of minimization of physical hosts while
providing SLA guarantees was also chased by Breigtgand and
Epstein [26]. In their work, the authors identified network
performance SLA violations at cloud provider level by
employing a stochastic bin packing modeling over the VMs
network usage. The cloud client perspective was not addressed
by their works.

Some works attempt to classify the processing load in cloud
computing environments [28]. In Dabbagh et al. [28] the authors
attempted to predict the VMs’ resources usage through a

weighted sum over the recent observed utilization samples.
Their approach focused on VM placement and migration at
cloud provider-level. A machine learning technique was used by
Segalin et al. [30] for establishing whether a VM should be
reallocated to a more robust hardware or not. However, in their
approach, the authors assume that the overcommit does not
occur.

To the best of our knowledge, this is the first work that
addresses the conflict of interest between the client and the cloud
provider for over commitment detection. To this end, our work
detects performance issues within the tenant domain, without
relying on any of the cloud provider metrics.

VII. CONCLUDING REMARKS

The overbooking of resources in cloud computing
environments is a common approach used by cloud providers,
given that it is not possible to forecast each tenant demand of
physical resource. Therefore, in order to maximize the hardware
resource usage, the providers might favor the interference
problem. Owing to a possible conflict of interest between the
client and the cloud provider, the identification of this kind of
issue based solely in the cloud provider metrics is a naïve
approach.

This work addressed the overbooking of resources detection
in the tenant domain, from the cloud client perspective. To this
end, we employed a two-tier auditing model which aims at
identifying deviations between the application performance and
the resources usage. Our model does not rely on any metric that
could be biased by the cloud provider (e.g., CPU steal time)
during the detection stage.

The evaluation, using the Apache Storm as case study, has
shown the feasibility of our proposal. Our model enables the
system administrator to train his system in a controlled
environment in a private cloud testbed and generalize it for a
public cloud environment. Our model was able to reach FP and
FN rates below 1% when detecting overbooking degrees of over
6%. Finally, our scheme has also enabled the monitoring of the
application behavior in a public cloud environment, even in the
absence of hypervisor-level metrics, and a private cloud testbed
for the model building process.

ACKNOWLEDGMENT

This work was partially sponsored by the Brazilian National
Council for Scientific and Technological Development (CNPq),
grants 310671/2012-4 and 404963/2013-7. Cleverton Vicentini
and Eduardo Viegas wish to thank CAPES for the scholarship,
grants 1451212 and 88887.122831/2016-00, respectively.

REFERENCES
[1] P. Mell, T. Grance, The NIST definition of cloud computing, National

Institute of Standards and Technology, 2009. doi:10.6028/NIST.SP.800-
145

[2] S. Subashini, V. Kavitha, “A survey on security issues in service delivery
models of cloud computing,” Journal of Network and Computer
Applications, vol.34, no.1, 2011, pp. 1–11,
doi:10.1016/j.jnca.2010.07.006.

[3] The Xen Project. [Online] Available: www.xenproject.org [Accessed:
October 2017]

[4] KVM - Kernel-based Virtual Machine. [Online] Available: www.linux-
kvm.org [Accessed: October 2017]

[5] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: current
technology and future trends,” IEEE Computer, vol. 38, no. 5, 2005, pp.
39–47, doi:10.1109/MC.2005.176.

[6] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of
oversubscription in cloud,” 2nd USENIX Conf. Hot Top. Manag. Internet,
Cloud, Enterp. Networks Serv. USENIX Assoc. pp. 7–7, 2012.

[7] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and
modeling resource usage of virtualized applications,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5346 LNCS,
pp. 366–387.

[8] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle,
“Managing energy and server resources in hosting centers,” Acm Sigops,
vol. 35, no. 5, p. 103, 2001.

[9] J. Seidel, O. Waldrich, W. Ziegler, R. Yahyapour, and R. Yahyapour,
“Using SLA for resource management and scheduling-a survey,”
Network, vol. 8, pp. 335–347, 2007.

[10] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, “Cloud resource
management: A survey on forecasting and profiling models,” Journal of
Network and Computer Applications, vol. 47. pp. 99–106, 2015.

[11] X. Zhu, “Semi-Supervised Learning Literature Survey,” Technical Report
1530, Univ. of Wisconsin-Madison, 2006.

[12] HPE Helion Eucalyptus. [Online] Available:
http://www8.hp.com/us/en/cloud/helion-eucalyptus-overview.html
[Accessed: October 2017]

[13] A. Sahai, V. Machiraju, M. Sayal, A. Van Moorsel, and F. Casati,
“Automated SLA monitoring for web services,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2002, vol. 2506, pp.
28–41.

[14] NIST. Big Data Interoperability Framework: Volume 1, Definitions,
NIST Special Publication 1500-1, 2015, pp. 1-32,
doi:10.6028/NIST.SP.1500-1

[15] Apache Storm, 2016. [Online]. Available: http://storm-project.net/
[Accessed: October 2017]

[16] Word Count Topology, 2013. [Online]. Available:
https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/storm/starter/WordCountTopology.java [Accessed:
October 2017]

[17] J. Xu, Z. Chen, J. Tang, and S. Su, “T-storm: Traffic-aware online
scheduling in storm,” in Proceedings - International Conference on
Distributed Computing Systems, 2014, pp. 535–544.

[18] Storm Throughput Test, 2012. [Online]. Available:
github.com/stormprocessor/storm-
benchmark/blob/master/src/jvm/storm/benchmark/ThroughputTest.java
[Accessed: October 2017]

[19] Storm UI REST, 2014. [Online]. Available: github.com/Parth-
Brahmbhatt/incubator-storm/blob/master/storm-ui-rest-api.md
[Accessed: October 2017]

[20] Collectl [Online]. Available: collectl.sourceforge.net/ [Accessed: October
2017]

[21] Weka [Online]. Available: weka.sourceforge.net [Accessed: October
2017]

[22] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in
the cloud,” Proc. VLDB Endow., vol. 3, no. 1–2, pp. 460–471, 2010. x

[23] L. Tomas, E. B. Lakew, and E. Elmroth, “Service level and performance
aware dynamic resource allocation in overbooked data centers,” 2016
16th IEEE/ACM Int. Symp. Clust. Cloud Grid Comput., pp. 42–51,
2016.x

[24] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality of
service constraints,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 7, pp.
1366–1379, 2013.

[25] X. Zhang, Z. Y. Shae, S. Zheng, and H. Jamjoom, “Virtual machine
migration in an over-committed cloud,” in Proceedings of the 2012 IEEE
Network Operations and Management Symposium, NOMS 2012, 2012,
pp. 196–203

[26] D. Breitgand, Z. Dubitzky, A. Epstein, O. Feder, A. Glikson, I. Shapira,
and G. Toffetti, “An adaptive utilization accelerator for virtualized
environments,” in Proceedings - 2014 IEEE International Conference on
Cloud Engineering, IC2E 2014, 2014, pp. 165–174.

[27] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing SLA violations,” in 10th IFIP/IEEE International
Symposium on Integrated Network Management 2007, IM ’07, 2007, pp.
119–128.

[28] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient
datacenter resource utilization through cloud resource overcommitment,”
in Proceedings - IEEE INFOCOM, 2015, vol. 2015–August, pp. 330–335.

[29] Z. Rehman, O. K. Hussain, and F. K. Hussain, “User-side cloud service
management: State-of-the-art and future directions,” J. Netw. Comput.
Appl., vol. 55, pp. 108–122, 2015.

[30] D. Segalin, A. O. Santin, J. E. Marynowski, and L. Segalin, “An approach
to deal with processing surges in cloud computing,” in Proc. of Int.
Comput. Softw. Appl. Conf., vol. 2, 2015, pp. 897–905, doi:
10.1109/COMPSAC.2015.138.

[31] Amazon AWS [Online]. Available: aws.amazon.com [Accessed: October
2017]

[32] Google Cloud Platform [Online]. Available: cloud.google.com
[Accessed: October 2017]

[33] Microsoft Azure [Online]. Available: azure.microsoft.com [Accessed:
October 2017]

[34] Sysbench - Modular, cross-platform and multi-threaded benchmark tool
for evaluating OS parameters. [Online] Available:
https://launchpad.net/sysbench [Accessed: October 2017]

