
Enabling Anomaly-based Intrusion Detection
Through Model Generalization

Eduardo Viegas, Altair Santin, Vilmar Abreu
 Graduate Program in Computer Science
 Pontifical Catholic University of Parana

 Curitiba, Parana - Brazil
 {eduardo.viegas, santin, vilmar.abreu}@ppgia.pucpr.br

Luiz S. Oliveira
 Informatics Department

 Federal University of Parana
 Curitiba, Parana - Brazil

 luiz.oliveira@ufpr.br

Abstract—Anomaly-based intrusion detection by the means of
machine learning techniques is extensively studied in the literature
mainly due to its promise to detect new attacks. However, despite
the promising reported results, it is hardly deployed to real world
environments. The main challenge in its adoption is the
discrepancy between the accuracy rates obtained during the
classifier development process and the rates obtained during its
use in production environments. Such a discrepancy is mainly
caused by non-representative training databases and non-
generalizable (scenario-specific) classifier’s model. This paper
presents a method to create intrusion databases, which aims at
mimicking the production environments characteristics by using
well-known tools. Moreover, we present and evaluate a new
validation technique, which aims at ensuring the generalization
capacity of the obtained models, reached using cross-validating
with different intrusion databases. The evaluation tests showed the
feasibility of the proposed method. The feature selection technique
ensured the model generalization capacity, improving its accuracy
rate by 13%, while testing in different intrusion databases. Finally,
the proposed anomaly-based approach was compared with Snort,
reaching an accuracy rate of 99% against 27% of Snort for
detecting DoS attacks.

Keywords—Anomaly-based Intrusion Detection; Model
Generalization; Machine Learning; Genetic Algorithm

I. INTRODUCTION

Intrusion Detection System (IDS) allows the detection of
attacks, malicious or inadequate usage of a computational
system or a network of computers [7]. Anomaly-based intrusion
detection can help at detecting a growing number of new
vulnerabilities [11] on IDSs is mostly framed as a pattern
recognition problem, by the means of machine learning
techniques.

Machine learning for IDS relies on an inference engine
(classifier) and a model to classify new attacks. The process
consists of inferring a behavior from a dataset, obtaining then
an attack model. The attack model is used for intrusion
detection on production (real-world) environments. The
behavior is learned from an input dataset – a set of events (e.g.
network packets, represented by a preset of features). In this
case, the features are derived from the network packets fields
(attributes).

Events from different classes (e.g. normal or attack) which
presents similar behaviors, previous modeled, can be wrongly
classified by an IDS. Thus, the classifier accuracy rate should

be tested using a testing dataset, in order to reduce such possible
errors (false positive or false negative).

When the IDS is used to detect network attacks, the machine
learning expert believe that the classifier accuracy obtained
during the model testing process will be observed during its
usage in production environments. Thus, the dataset used
during the IDS test process must precisely represent the
network packets observed in production environments.
However, according to Mahbod Tavallaee [15] more than 50%
of works in literature used DARPA1998 [10] or similar
datasets. The DARPA dataset was created in 1998 and updated
in 2000. However, despite its extensive usage, the results
obtained using DARPA1998 can be considered unreliable,
because the network traffic constantly changes due to new
network services offering and new attacks reported every day.

Different IDS evaluation datasets were proposed in the
literature [4] since DARPA1998 [10]. However, the majority of
the approaches have failed, either by its non-reproducibility,
non-representative events or by not being publicly available
[17]. Thus, hindering their usage to benchmark intrusion
detection approaches.

Sommer and Paxson [19] noted the lack of applicability of
the results reported in the literature. The authors mentioned the
lack of coherent validation methods and the lack of usage of the
anomaly-based approach in production environments. A reason
pointed by them consists of unreliable classifier accuracy.
Additionally, when an IDS is used on production, generated
alerts are not necessarily attacks, in this case, called false-
positives. A reason pointed to the detection methods failing is
the lack of model generalization ability. In other words, the
model is unable to detect attacks independently of the
environment and conditions where it was obtained, thus being
scenario-specific.

In the light of this, this work proposes a new method to
create datasets for network-based intrusion detection
evaluation, without the main problems reported in the literature.
Furthermore, we propose and evaluate a new method that
evaluates the generalization capacity of the used classifiers.
Finally, the anomaly-based approach using our proposed
method is compared with the commonly used tools to detect
such attacks. In summary, the main contributions of this paper
are (i) a method to create datasets for IDS evaluation, (ii) a
method to obtain the generalization capacity of the attack model
and (iii) a comparison of the detection approach used on
production environments against our anomaly-based approach.

The paper is organized as follows. Section II presents
related works. Section III describes the proposal. Section IV
shows scenario and evaluation, and Section V draws
conclusions.

II. RELATED WORK

The main problem during the IDS development is the lack of
public and updated intrusion datasets to testing the proposals.
Currently, the most used IDS evaluation database is the
DARPA1998 [10]. Which was obtained in a controlled
environment, reproducing a real air-force network traffic
behavior. The DARPA1998 was used to create the well-known
dataset KDD99 [16], whose main problem is its creation date
(1998). The reason was new services are provided and new
attacks are discovered daily, therefore DARPA1998 traffic
became outdated. Since then, several works have proposed the
creation of new intrusion datasets.

Shiravi [1] proposed the use of profiles, which describes the
client and attacker behavior in an environment. Each profile is
statistically modeled by the analysis of the user behavior during
a certain period of time. However, the statistical modeling of
the user behavior is strictly for a given period of time and
application. In addition, the user profile frequently changes on
production environment [5]. Thus, approaches that aim at
modeling the user behavior presents difficult to deal with
updates and becomes scenario dependent. The usage of real
network traces is also proposed in the literature [2, 12, 18].
However, those approaches prevent the dataset sharing among
the researchers, requiring a sanitization process in order to
remove sensitive data. Thus, the approach we propose in our
work aim at providing a publicly available intrusion database
by the means of well-known tools in a controlled environment,
providing the expected properties from an intrusion
database/dataset.

On the other hands, the attack model evaluation technique
is hardly considered in the literature. The authors mostly
assume a static environment by using the traditional machine
learning testing schemes [3, 19], assuming that the training
environment will be the same as the production environment.
An extensive criticism is made by Sommer and Paxson [19],
which relates the lack of anomaly-based usage in production
environments. In our point of view, such situation happens due
to the differences between the rates obtained during the IDS
development (accuracy estimation) and its use in production.
Thus, providing a wrong assumption that anomaly-based is less
effective, in processing and accuracy terms than the signature-
based approach. In fact, the signature-based approach does not
have an accuracy estimation, because this kind of evaluation is
not applied during the IDS development.

Siqi Ma et al. [21] used the GA (Genetic Algorithm) in order
to optimize the classifier inputs in a HIDS (Host-based
Intrusion Detection System) environment. On the other side,
Gary Stein et al. [6] evaluate the GA (Genetic algorithm) impact
while using it as a feature selection technique for the DT
(Decision Tree) classifier. The authors used the KDD99 [16]
dataset during the tests and the GA to reduce the classifier error
rate. V. Bolón-Canedo et al. [22] evaluate the impact of feature

selection for the NB (Naïve Bayes) and DT. The authors
obtained accuracy gains and an average of 80% reduction in the
number of used features, when GA is considered. It was not
found any work that evaluate the feature selection impact on the
model generalization capacity, neither how the attack model
performs in a different environment than it was obtained.

III. PROPOSAL

Our proposal is to establish metrics that define the
generalization capacity of the attack model. Thus, providing
accuracy rates regarding the way the system would perform, if
used in another environment. This is reached by performing
cross validation over distinct intrusion datasets during the
evaluation process, considering the same attack type. Thereby,
it becomes possible to establish the model capacity to operate
independently of the environment it was created.

The proposal is divided into three steps (Figure 1). Section
III.A describes the creation method and intrusion database
evaluation, which was used in our work in order to obtain a
publicly available intrusion dataset, without the main problems
reported in the literature [1]. Section III.B shows the extracted
features set in order to obtain the dataset, allowing the cross
validation with a distinct database. Finally, section III.C
describes the feature selection method adopted in our work, in
order to obtain the attack models.

A. Database Creation Method

To create intrusion evaluation databases, in our case, two
classes are considered: normal (legitimate content) and
intrusion (attack). The normal traffic is generated using the
client-server model. For the server-side traffic generation, the
honeypot technique is used. The honeypot is a technique used
to obtain information about possible attackers as appearing as a
vulnerable host in the network. In this way, all traffic generated
by the server (honeypot) is real (containing traffic that can be
observed in a production environment) and valid (well-formed
packets, part of request and response messages). To generate
the client-side traffic, workload tools are used. Thus, the
generated traffic is real and valid for both client and server. The
attacks are generated using well-known system auditing tools.

The method used for the normal traffic generation must
ensure that the client-server interaction correctly occurs. Thus,
ensuring that the client behavior evidenced on the IDS
evaluation database is similar to the behavior evidenced on
production environments. To this end, normal network traffic
must be generated according to two perspectives, the client and
the server. The client is responsible to generate requests to the
available services on the server. The server is responsible to

Figure 1 – Proposal overview

properly reply the client requests. It is expected that the
provided services, as well as its contents requested by the
clients, present a considerable variability in order to ensure
network traffic diversity. The goal is to avoid repeated traffic,
which is not desirable during an IDS evaluation and neither
represents the production environment characteristics.

To mimic the client behavior, a set of services are provided,
while each service provides a set of possible contents to be
requested. Each client performs a real and valid request by the
means of a workload tool to a predetermined service and
content. The workload tool in our proposal is used only to
generate a real, valid and easy to update traffic on the client-
side. The tool becomes responsible to perform the valid
communication between the client-server, being specific to the
requested service. After the end of the client-server interaction,
the client waits a pseudo-random time and performs a new
content request.

The usage of a real server difficult the database update. In
this way, our proposal uses a technique that mimics the server
behavior, allowing the easy update and the generation of a real
and valid traffic. A set of predetermined services are provided
by the honeypot. In this way, every request regardless of the
requested service is properly interpreted and a valid response is
provided. Thus, the proposed method generates a real, valid and
easy to update normal traffic.

On the network attack traffic creation side, the lack of a tool
implementation standardization is the main issue. In general, in
the literature, the authors implement a known attack according
to its discretion. Which difficult the attacks reproducibility, as
it is not possible to ensure that the attack implementation
follows the attack modus operandi. Therefore, it is not possible
to establish a common baseline for benchmark and
generalization purposes. After a new attack becomes known
and reported, initiatives such as the Common Vulnerabilities
Exposure (CVE, cve.mitre.org) details the modus operandi of a
vulnerabilities/attack and affected services. Implementations
that are CVE compatible, ensure that attack behavior is, in fact,
acting as reported. Thus, tools that uses a de facto standard (e.g.
CVE compatible) are auditable and allows reproducibility.

In this proposal, we adopt well-known and de facto standard
tools for the attacks generation. Thus, we are able to ensure that
all the available attacks on the database are correctly
implemented and will generate the proper kind of attack traffic,
allowing the reproducibility and correct detected in production
environment.

B. Feature Extraction

For each network packet read from NIC (Network Interface
Card), a set of predetermined features are extracted and
forwarded to a classifier engine for classification. The set of
features used in this work was adapted from [8, 9]; a total of 50
features are extracted for each network packet.

The defined set of extracted features considers a NIDS
scenario (further explained in section IV.A).

C. Feature Selection

The set of extracted features are generic enough to cover a
broad kind of a NIDS (Network-based Intrusion Detection

Systems). However, for a specific purpose, the IDS demands a
features selection process, which allows selecting only the
features that best characterize the target attacks. In the
literature, the feature selection is mostly used to improve the
attack model accuracy and to improve the IDS performance.

In this work, the feature selection is twofold. First, it aims
at verifying the accuracy impact on the IDS. It is expected that
the attack model obtained through the feature selection method
will present a better accuracy when compared to the use of all
features – without the feature selection. Second, the attack
model generalization capacity will be measured. It is reported
in the literature that the features reduction allows the
improvement on the IDS accuracy. However, none of the
literature proposals have studied the generalization impact
when using a feature selection method.

This work considers the Genetic Algorithm (GA) for feature
selection.

IV. SCENARIO AND EVALUATION

This section describes the scenario developed to evaluate the
proposed method and also introduces the intrusion evaluation
database that has been created (section III.A). The attack model
generalization capacity was measured using a well-known
intrusion database. Finally, a comparison against a well-known
and broadly used signature-based tool was made, considering a
production environment for intrusion detection.

A. Scenario

To generate the normal traffic, the services provided in the
scenario were HTTP (Hypertext Transfer Protocol), SSH
(Secure Shell), SMTP (Simple Mail Transfer Protocol) and
SNMP (Simple Network Management Protocol). Every name
resolution (DNS, Domain Name System) was performed by the
honeypot server. Each client requests a service through a
workload tool specific to the requested service. The time
between each request is pseudo-random, ranging from zero to
four seconds, in order to mimic the client unpredictable
behavior while requesting a service. In total, 10 distinct clients
were used. Table I describes the client behavior in each service
request, in order to guarantee the traffic variability. To generate
the attacker traffic, only DoS (Denial of Service) attacks were
considered. The goal was to become possible the comparison
between our proposal and the well-known intrusion evaluation
databases, e.g. DARPA1998. It is worth noting that DoS attacks
are common nowadays, including its usage in botnets.

TABLE I. SERVICES DESCRIPTION

Service Description
HTTP Each client requests a random web page, from a repository

mirrored from the 500 most visited worldwide websites
(moz.com/top500), and stored in the honeypot server.

SMTP Each SMTP client sends an e-mail between 50 and 400
bytes of subject and 100 to 4,000 bytes of content.

SSH Each SSH client login on the honeypot server and executes
a random predetermined command from a list of 30
possibilities.

SNMP Each SNMP client walks through a predetermined MIB on
a list of possible MIBs.

DNS Every name resolution is performed on the honeypot server.

B. Database Creation

The attacker traffic was generated according to two
perspectives, network-level and application-level. In the
application-level, the DoS attacks were generated using the
LOIC tool. The LOIC generates HTTP flood attacks at a
specific URL. The network-level attack was generated using a
synflood plugin available at the Metasploit tool. Every attack
was generated using a well-known and de facto standardized
tool, allowing the correct implementation and code availability
publicly, therefore allowing an anytime database
reproducibility.

The client requests, as well as the generated attacks, were
performed to the honeypot server. The honey tool was used to
deploy the honeypot server.

The scenario was executed for 30 minutes. The attacks
began at the tenth minute and lasted 15 minutes. The generated
traffic was captured and stored on the honeypot machine, using
the tcpdump tool. A total of 2.1 gigabytes of traffic was
generated. Table II presents the traffic distribution on the
created database. The implemented scenario for intrusion
databases creation allowed the solution of some of the main
problems reported in the literature.

The generated traffic is real and valid, as the honeypot
generate valid replies to each of the received requests. The
events classes were automatically established (labeled in
feature vector) in order to avoid manual labeling and providing
an error pruning approach, due to the number of packets to be
evaluated. The automatic labeling was defined according to the
source IP address for each network packet, which was possible,
as the attacker machine generates only attack traffic. It is
important to note that the IP address was not used as a feature
value. Thus, the model is not biased by this knowledge.
Additionally, the manual class labeling or clustering techniques
[14] was avoided, reducing labeling error.

In order to allow the reproducibility of the deployed
scenario, every client and attacker behavior was logged.
Finally, privacy problems did not occur because the database
was obtained on a controlled environment and the generated
traffic does not present any sensitive data.

To elaborate the cross-validation, a well-known and public
intrusion database is needed, making it possible to establish the
generalization capacity from the used attack models. The public
database DARPA1998 was used during the testing process,
which is the network traces used to create the well-known
intrusion dataset KDD99 [16].

To perform the cross-validation, 35 network files provided
by DARPA1998 were used. Each file has a class description for
each connection. The feature extraction, developed in our work,
was modified in order to establish the packets class according
to each file description. Table III shows the network traffic
distribution on DARPA1998. Only DoS attacks were used, as
the goal is to establish the attack model generalization capacity
for the same type of attacks.

C. Attack Model obtainment

A set of 50 features [8, 9] were adopted and a feature extractor
algorithm was developed to obtain each feature from the
network packets. The network packets are captured using the
libpcap library and the feature extractor was implemented
using the C++ language. Two classifiers were used, the NB
and the DT [13]. The NB due to its simplicity during the model
obtainment and low processing cost during the classification.
The DT, using the C4.5 algorithm, was used due to its low
processing demanded during the packets classification. For the
feature selection process, the wrapper-based (classifier
dependent) GA was used, with 100 generations and 100
populations in each generation, the same parameters used in [6].
During the selection, the fitness function objective was the
lowest possible error rate with the lowest possible number of
used features. To obtain the same proportion of the classes a
stratification procedure was used. Thus, it became possible to
use the error rate as the objective during the feature selection.
Figure 2 and 3 shows the GA evolution for the created intrusion
dataset, considering the error rate and the number of used
features for the DT and the NB classifiers respectively.

For the DT algorithm, the lowest error occurred in
generation 3, with 0.01% error and the lowest number of used
features was reached in generation 34 (Figure 2). The NB
Algorithm reached lowest error rate in generation 55,
considering 0.01% of network packets wrongly classified.
However, the lowest number of features was reached in
generation 71 (Figure 3).

TABLE III. NETWORK TRAFFIC DISTRIBUTION ON THE DARPA1998
DATABASE

Type Number of
Packets

Database
ratio

Attack ratio

Ping of Death 9,600 0.03% 0.57%
Synflood -
Neptune

1,301,516 4.45% 76.99%

Smurf 379,477 1.29% 22.44%
Normal 27,600,297 94.23% -
Total 29,290,890 - -

TABLE II. NETWORK TRAFFIC DISTRIBUTION ON THE CREATED
DATABASE

Type Number of
Packets

Database
ratio

Attack ratio

Application-
level attacks

39,107 0.40% 28.10%

Network-level
attacks

100,072 1.02% 71.90%

Normal 9,640,289 98.58% -
Total 9,779,468 - -

TABLE IV. ACCURACY RATE OBTAINED BY THE USED CLASSIFIERS

Model No. of
features

Accuracy False-
Positive

False-
Negative

Naive
Bayes

14 (using
GA)

99.99% zero zero

Naive
Bayes

All
features

96.63% 3.47% 0.02%

Decision
Tree

12 (using
GA)

99.99% zero zero

Decision
Tree

All
features

99.98% 0.01% zero

Table IV shows the accuracy improvement obtained
through the usage of the feature selection technique, using the
evaluation dataset (different from that one was used to obtain
the model and test it) produced in the scenario. The feature
selection technique provided an accuracy improvement of
3.36% for the NB and 0.01% for the DT for the created dataset,
besides the reduction of false-positive and false-negative rates.
The reduction in the number of used features reduces also the
processing demanded for its extraction.

D. Generalization Capacity Evaluation

Table V shows the results using the proposed attack model
on the dataset DARPA1998. The feature selection technique
obtained expressive results during the cross-validation. The
feature selection for the DT classifier obtained an accuracy
improvement of 4.20% when compared to the usage of all
features. The false-negative rate reduced from 71.30% to 0.89%
while the false-positive rate reduced from 5.82% to 3.22%. The
NB showed the impact of the feature selection process. The NB
attack model using all features obtained only 72.56% accuracy,
while the model obtained using the feature selection approach
reached 94.95% accuracy. The false-positive rate dropped from
28.08% to 5.02%, while the false-negative rate increase from
0.89% to 5.97%. Despite the increase in the false-negative rate,
the NB accuracy improvement was 25.39%. It is possible to
note a reduction of 9.91% on accuracy while using the attack
model on another dataset. The feature selection method using
the GA allowed improving the model generalization for the
tested classifiers. The model generalization capacity was
improved in 4.2% for the DT and 22.39% for the NB while
using a feature selection method.

As shown, the attack model accuracy, regardless of the used
classifier, drops when used in another environment. Thereby,
when anomaly-based IDS is used in production environments,

such property must be considered, the classification engine
must be able to cope with the changes in the environment while
also providing a reasonably high detection rate. Our evaluation
tests have shown that the resource selection process helps
maintain the expected accuracy of the attack model while the
system is used in another environment.

E. Commercial Tool Comparison

In order to compare our proposal with a commercial
product, we chose Snort (www.snort.org). During the tests, two
signature parameters were varied (i) The Number of
Occurrences and (ii) the Interval. Any connection attempt that
exceeds the Number of Occurrences threshold during a defined
Interval is identified as an intrusion attempt. A total of 10,000
tests were performed using the created intrusion database. Both
parameters were tested with values ranging between 1 and
1,000. The Snort accuracy rate was established according to the
number of connection attempts performed by the attacker
machines correctly alerted by the tool. The best values found
for the parameters variations had 3 connections (Number of
Occurrences) in a 2 seconds’ time window Interval, yielding
27.32% of accuracy. Comparing the results, it becomes possible
to observe, in this case, that our proposal (anomaly-based
intrusion detection) presents (about 3x) better detection rates
than the signature-based approach while detecting DoS attacks.

Finally, we have compared the processing time demanded
from each detection approach, signature-based using Snort and
anomaly-based using our proposed approach. The
measurements were performed on Ubuntu 14.04 with an Intel
Core I7 and 16GB of RAM.

For the Snort tool, two signature sets were used. The first
signature set uses only the signature with the best parameters
(with Number of Occurrences = 3 and Interval = 2). This
signature set is named as Snort DoS and aim at detecting only
DoS attacks. The second signature-based set is named as Snort
Default and uses the standard signature set (for the experiments
Snort rules snapshot 2.9.62) from Snort website. In this way,
we are able to establish the processing time demanded from
Snort, when system administrator wants to detect only DoS
attacks and when he uses the default signature set. For the
anomaly-based approach, we have used the classifiers (Table
IV) using all 50 features.

Table VI presents the average processing time demanded by
each module, the Data Acquisition, PreProcessing for Snort and
Feature Extraction for our approach and the Detection module.
The demanded processing time while using the NB classifier
used only 18.39% and 3.45% of the processing time demanded

TABLE V. ACCURACY RATE OBTAINED DURING THE CROSS-VALIDATION
(GENERALIZATION CAPACITY)

Model No. of
Features

Accuracy
False-

Positive
False-

Negative
Naive
Bayes

14 (using
GA)

94.95% 5.02% 5.97%

Naive
Bayes

All
features

72.56% 28.08% 0.89%

Decision
Tree

12 (using
GA)

96.82% 3.22% 0.89%

Decision
Tree

All
features

92.62% 5.82% 71.30%

Figure 2 – Genetic Algorithm evolution for the DT classifier

0

10

20

30

40

0,000%

0,002%

0,004%

0,006%

0,008%

0 10 20 30 40 50 60 70 80 90 100 N
u
m
b
e
r
o
f
U
se
d
 F
e
at
u
re
s

Lo
w
e
st
 E
rr
o
r

Generation

Lowest Error Number of Used Features

Figure 3 – Genetic Algorithm evolution for the NB classifier.

0

10

20

30

0,000%

0,050%

0,100%

0,150%

0,200%

0,250%

0 10 20 30 40 50 60 70 80 90 100

N
u
m
b
e
r
o
f
U
se
d
 F
e
at
u
re
s

Lo
w
e
st
 E
rr
o
r

Generation

Lowest Error Number of Used Features

by the Snort DoS and Snort Default respectively, while the DT
demanded only 20.53% and 3.85% respectively.

V. CONCLUSION

This work presented an approach to test the generalization
capacity of an intrusion detection engine that uses anomaly-
based classifiers. The proposed intrusion detection evaluation
dataset method allowed to solve the main problems reported in
the literature. During the generalization tests, the feature
selection for DT cross-validation reduced the false-negative
rate from 71.30% to 0.89% while the false-positive rate reduced
from 5.82% to 3.22%. For NB, the attack model accuracy
increased from 72.56% to 94.95% using the feature selection.
The false-positive rate dropped from 28.08% to 5.02%, but the
false-negative rate increased from 0.89% to 5.97%. Despite the
increase in the false-negative rate, the NB accuracy
improvement was 25.39%. The proposed method, using GA,
shown an improvement, on average, of 1.68% for the overall
IDS accuracy and 13.29% for the model generalization (the
obtained accuracy while using the attack model on another
environment). Finally, it was showed that the anomaly-based
approach for DoS attacks detection presents a better accuracy
rate when compared to the well-known signature-based IDS to
detect similar attacks.

REFERENCES

[1] A. Shiravi, H. Shiravi, M. Tavallaee, and A. a. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection,” Comput. Secur., vol. 31, no. 3, pp. 357–374, 2012.

[2] CAIDA. The cooperative association for internet data analysis [online]
available: http://www.caida.org/. Accessed Apr./2018.

[3] C. Gates and C. Taylor, “Challenging the Anomaly Detection Paradigm:
A Provocative Discussion,” Proc. 2006 Work. New Secur. Paradig., pp.
21–29, 2007.

[4] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Syst. Appl., vol. 36, no. 10, pp.
11994–12000, 2009.

[5] H. Ringberg, M. Roughan, and J. Rexford, “The need for simulation in
evaluating anomaly detectors,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 1, p. 55, 2008.

[6] G. Stein, B. Chen, A. S. Wu, and K. a. Hua, “Decision tree classifier for
network intrusion detection with GA-based feature selection,” Proc. 43rd
Annu. southeast Reg. Conf. - ACM-SE 43, vol. 2, p. 136, 2005.

[7] I. Corona, G. Giacinto, and F. Roli, “Adversarial attacks against intrusion
detection systems: Taxonomy, solutions and open issues,” Inf. Sci. (Ny).,
vol. 239, pp. 201–225, Aug. 2013.

[8] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Comput.
Networks, vol. 127, pp. 200-216, 2017.

[9] E. Viegas, A. Santin, A. França, R. Jasinski, V. Pedroni, and L. Oliveira,
“Towards an Energy-Efficient Anomaly-Based Intrusion Detection
Engine for Embedded Systems,” IEEE Trans. On Computers, vol. 66, pp.
163–177, 2017.

[10] K. Kendall "A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems", 1999

[11] Labs. Kaspersky. 2014. Security Bulletin 2014. 2014.

[12] Lawrence Berkeley Nationatiol Laboratory, The internet traffic archive
[online] available: http://ita.ee.lbl.gov/index.html. Accessed April./2018.

[13] E. Viegas, A. Santin, V. Abreu, and L. S. Oliveira, “Stream learning and
anomaly-based intrusion detection in the adversarial settings,” in
Proceedings - IEEE Symposium on Computers and Communications,
2017.

[14] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled
data using clustering,” Proc. ACM CSS Work. Data Min. Appl. to Secur.
Philadelphia PA, pp. 1–25, 2001.

[15] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible
evaluation of anomaly-based intrusion-detection methods,” IEEE Trans.
Syst. Man Cybern. Part C Appl. Rev., vol. 40, no. 5, pp. 516–524, 2010.

[16] M. V Mahoney and P. K. Chan, “An Analysis of the 1999
DARPA/Lincoln Laboratory Evaluation Data for Network Anomaly
Detection,” Proc. Sixth Int. Symp. Recent Adv. Intrusion Detect., vol.
2820, no. Ll, pp. 220–237, 2003.

[17] Meli, P., Hu, V., Lipmann, R., Haines, J., Zissman, M.: An Overview of
Issues in Testing Intrusion Detection Systems. Technical Report NIST IR
7007, NIST, 2006.

[18] RTI International. PREDICT: Protected repository for the defense of
infrastructure against cyber threats [online] available:
http://www.predict.org. Accessed Apr./2018.

[19] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” IEEE Symp. Secur.
Priv., vol. 0, no. May, pp. 305–316, 2010.

[20] Symantec Corporation. 2013. Internet Security Threat Report. 18,
Apr.2013.

[21] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, “Active Semi-supervised
Approach for Checking App Behavior against Its Description,” 2015
IEEE 39th Annu. Comput. Softw. Appl. Conf., pp. 179–184, 2015.

[22] V. Bolón-Canedo, N. Sánchez-Maroño, and a. Alonso-Betanzos, “Feature
selection and classification in multiple class datasets: An application to
KDD Cup 99 dataset,” Expert Syst. Appl., vol. 38, no. 5, pp. 5947–5957,
2011

TABLE VI. PROCESSING TIME COMPARISON

Module
Processing Time (Seconds)

Snort
DoS

Snort
Default

Our
Approach NB

Our Approach
DT

Data
Acquisition

125.0 138.0 19.3 19.4

Preprocessing/
Feature

Extraction
113.6 979.8 31.3 31.3

Detection 46.4 400.2 7.9 1.7
Total 285.0 1518.0 58.5 52.4

