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Abstract—Anomaly-based intrusion detection by the means of 
machine learning techniques is extensively studied in the literature 
mainly due to its promise to detect new attacks. However, despite 
the promising reported results, it is hardly deployed to real world 
environments. The main challenge in its adoption is the 
discrepancy between the accuracy rates obtained during the 
classifier development process and the rates obtained during its 
use in production environments. Such a discrepancy is mainly 
caused by non-representative training databases and non-
generalizable (scenario-specific) classifier’s model. This paper 
presents a method to create intrusion databases, which aims at 
mimicking the production environments characteristics by using 
well-known tools. Moreover, we present and evaluate a new 
validation technique, which aims at ensuring the generalization 
capacity of the obtained models, reached using cross-validating 
with different intrusion databases. The evaluation tests showed the 
feasibility of the proposed method. The feature selection technique 
ensured the model generalization capacity, improving its accuracy 
rate by 13%, while testing in different intrusion databases. Finally, 
the proposed anomaly-based approach was compared with Snort, 
reaching an accuracy rate of 99% against 27% of Snort for 
detecting DoS attacks. 

Keywords—Anomaly-based Intrusion Detection; Model 
Generalization; Machine Learning; Genetic Algorithm 

I.  INTRODUCTION 

Intrusion Detection System (IDS) allows the detection of 
attacks, malicious or inadequate usage of a computational 
system or a network of computers [7]. Anomaly-based intrusion 
detection can help at detecting a growing number of new 
vulnerabilities [11] on IDSs is mostly framed as a pattern 
recognition problem, by the means of machine learning 
techniques.  

Machine learning for IDS relies on an inference engine 
(classifier) and a model to classify new attacks. The process 
consists of inferring a behavior from a dataset, obtaining then 
an attack model. The attack model is used for intrusion 
detection on production (real-world) environments. The 
behavior is learned from an input dataset – a set of events (e.g. 
network packets, represented by a preset of features). In this 
case, the features are derived from the network packets fields 
(attributes). 

Events from different classes (e.g. normal or attack) which 
presents similar behaviors, previous modeled, can be wrongly 
classified by an IDS. Thus, the classifier accuracy rate should 

be tested using a testing dataset, in order to reduce such possible 
errors (false positive or false negative). 

When the IDS is used to detect network attacks, the machine 
learning expert believe that the classifier accuracy obtained 
during the model testing process will be observed during its 
usage in production environments. Thus, the dataset used 
during the IDS test process must precisely represent the 
network packets observed in production environments. 
However, according to Mahbod Tavallaee [15] more than 50% 
of works in literature used DARPA1998 [10] or similar 
datasets. The DARPA dataset was created in 1998 and updated 
in 2000. However, despite its extensive usage, the results 
obtained using DARPA1998 can be considered unreliable, 
because the network traffic constantly changes due to new 
network services offering and new attacks reported every day. 

Different IDS evaluation datasets were proposed in the 
literature [4] since DARPA1998 [10]. However, the majority of 
the approaches have failed, either by its non-reproducibility, 
non-representative events or by not being publicly available 
[17]. Thus, hindering their usage to benchmark intrusion 
detection approaches.  

Sommer and Paxson [19] noted the lack of applicability of 
the results reported in the literature. The authors mentioned the 
lack of coherent validation methods and the lack of usage of the 
anomaly-based approach in production environments. A reason 
pointed by them consists of unreliable classifier accuracy. 
Additionally, when an IDS is used on production, generated 
alerts are not necessarily attacks, in this case, called false-
positives. A reason pointed to the detection methods failing is 
the lack of model generalization ability. In other words, the 
model is unable to detect attacks independently of the 
environment and conditions where it was obtained, thus being 
scenario-specific. 

In the light of this, this work proposes a new method to 
create datasets for network-based intrusion detection 
evaluation, without the main problems reported in the literature. 
Furthermore, we propose and evaluate a new method that 
evaluates the generalization capacity of the used classifiers. 
Finally, the anomaly-based approach using our proposed 
method is compared with the commonly used tools to detect 
such attacks. In summary, the main contributions of this paper 
are (i) a method to create datasets for IDS evaluation, (ii) a 
method to obtain the generalization capacity of the attack model 
and (iii) a comparison of the detection approach used on 
production environments against our anomaly-based approach. 



The paper is organized as follows. Section II presents 
related works. Section III describes the proposal. Section IV 
shows scenario and evaluation, and Section V draws 
conclusions. 

II. RELATED WORK 

The main problem during the IDS development is the lack of 
public and updated intrusion datasets to testing the proposals. 
Currently, the most used IDS evaluation database is the 
DARPA1998 [10]. Which was obtained in a controlled 
environment, reproducing a real air-force network traffic 
behavior. The DARPA1998 was used to create the well-known 
dataset KDD99 [16], whose main problem is its creation date 
(1998). The reason was new services are provided and new 
attacks are discovered daily, therefore DARPA1998 traffic 
became outdated. Since then, several works have proposed the 
creation of new intrusion datasets.  

Shiravi [1] proposed the use of profiles, which describes the 
client and attacker behavior in an environment. Each profile is 
statistically modeled by the analysis of the user behavior during 
a certain period of time. However, the statistical modeling of 
the user behavior is strictly for a given period of time and 
application. In addition, the user profile frequently changes on 
production environment [5]. Thus, approaches that aim at 
modeling the user behavior presents difficult to deal with 
updates and becomes scenario dependent. The usage of real 
network traces is also proposed in the literature [2, 12, 18]. 
However, those approaches prevent the dataset sharing among 
the researchers, requiring a sanitization process in order to 
remove sensitive data. Thus, the approach we propose in our 
work aim at providing a publicly available intrusion database 
by the means of well-known tools in a controlled environment, 
providing the expected properties from an intrusion 
database/dataset. 

On the other hands, the attack model evaluation technique 
is hardly considered in the literature. The authors mostly 
assume a static environment by using the traditional machine 
learning testing schemes [3, 19], assuming that the training 
environment will be the same as the production environment. 
An extensive criticism is made by Sommer and Paxson [19], 
which relates the lack of anomaly-based usage in production 
environments. In our point of view, such situation happens due 
to the differences between the rates obtained during the IDS 
development (accuracy estimation) and its use in production. 
Thus, providing a wrong assumption that anomaly-based is less 
effective, in processing and accuracy terms than the signature-
based approach. In fact, the signature-based approach does not 
have an accuracy estimation, because this kind of evaluation is 
not applied during the IDS development. 

Siqi Ma et al. [21] used the GA (Genetic Algorithm) in order 
to optimize the classifier inputs in a HIDS (Host-based 
Intrusion Detection System) environment. On the other side, 
Gary Stein et al. [6] evaluate the GA (Genetic algorithm) impact 
while using it as a feature selection technique for the DT 
(Decision Tree) classifier. The authors used the KDD99 [16] 
dataset during the tests and the GA to reduce the classifier error 
rate. V. Bolón-Canedo et al. [22] evaluate the impact of feature 

selection for the NB (Naïve Bayes) and DT. The authors 
obtained accuracy gains and an average of 80% reduction in the 
number of used features, when GA is considered. It was not 
found any work that evaluate the feature selection impact on the 
model generalization capacity, neither how the attack model 
performs in a different environment than it was obtained. 

III. PROPOSAL 

Our proposal is to establish metrics that define the 
generalization capacity of the attack model. Thus, providing 
accuracy rates regarding the way the system would perform, if 
used in another environment. This is reached by performing 
cross validation over distinct intrusion datasets during the 
evaluation process, considering the same attack type. Thereby, 
it becomes possible to establish the model capacity to operate 
independently of the environment it was created.  

The proposal is divided into three steps (Figure 1). Section 
III.A describes the creation method and intrusion database 
evaluation, which was used in our work in order to obtain a 
publicly available intrusion dataset, without the main problems 
reported in the literature [1]. Section III.B shows the extracted 
features set in order to obtain the dataset, allowing the cross 
validation with a distinct database. Finally, section III.C 
describes the feature selection method adopted in our work, in 
order to obtain the attack models.  

A. Database Creation Method 

To create intrusion evaluation databases, in our case, two 
classes are considered: normal (legitimate content) and 
intrusion (attack). The normal traffic is generated using the 
client-server model. For the server-side traffic generation, the 
honeypot technique is used. The honeypot is a technique used 
to obtain information about possible attackers as appearing as a 
vulnerable host in the network. In this way, all traffic generated 
by the server (honeypot) is real (containing traffic that can be 
observed in a production environment) and valid (well-formed 
packets, part of request and response messages). To generate 
the client-side traffic, workload tools are used. Thus, the 
generated traffic is real and valid for both client and server. The 
attacks are generated using well-known system auditing tools.  

The method used for the normal traffic generation must 
ensure that the client-server interaction correctly occurs. Thus, 
ensuring that the client behavior evidenced on the IDS 
evaluation database is similar to the behavior evidenced on 
production environments. To this end, normal network traffic 
must be generated according to two perspectives, the client and 
the server. The client is responsible to generate requests to the 
available services on the server. The server is responsible to 

 
Figure 1 – Proposal overview 



properly reply the client requests. It is expected that the 
provided services, as well as its contents requested by the 
clients, present a considerable variability in order to ensure 
network traffic diversity. The goal is to avoid repeated traffic, 
which is not desirable during an IDS evaluation and neither 
represents the production environment characteristics. 

To mimic the client behavior, a set of services are provided, 
while each service provides a set of possible contents to be 
requested. Each client performs a real and valid request by the 
means of a workload tool to a predetermined service and 
content. The workload tool in our proposal is used only to 
generate a real, valid and easy to update traffic on the client-
side. The tool becomes responsible to perform the valid 
communication between the client-server, being specific to the 
requested service. After the end of the client-server interaction, 
the client waits a pseudo-random time and performs a new 
content request.  

The usage of a real server difficult the database update. In 
this way, our proposal uses a technique that mimics the server 
behavior, allowing the easy update and the generation of a real 
and valid traffic. A set of predetermined services are provided 
by the honeypot. In this way, every request regardless of the 
requested service is properly interpreted and a valid response is 
provided. Thus, the proposed method generates a real, valid and 
easy to update normal traffic.  

On the network attack traffic creation side, the lack of a tool 
implementation standardization is the main issue. In general, in 
the literature, the authors implement a known attack according 
to its discretion. Which difficult the attacks reproducibility, as 
it is not possible to ensure that the attack implementation 
follows the attack modus operandi. Therefore, it is not possible 
to establish a common baseline for benchmark and 
generalization purposes. After a new attack becomes known 
and reported, initiatives such as the Common Vulnerabilities 
Exposure (CVE, cve.mitre.org) details the modus operandi of a 
vulnerabilities/attack and affected services. Implementations 
that are CVE compatible, ensure that attack behavior is, in fact, 
acting as reported. Thus, tools that uses a de facto standard (e.g. 
CVE compatible) are auditable and allows reproducibility. 

In this proposal, we adopt well-known and de facto standard 
tools for the attacks generation. Thus, we are able to ensure that 
all the available attacks on the database are correctly 
implemented and will generate the proper kind of attack traffic, 
allowing the reproducibility and correct detected in production 
environment. 

B. Feature Extraction 

For each network packet read from NIC (Network Interface 
Card), a set of predetermined features are extracted and 
forwarded to a classifier engine for classification. The set of 
features used in this work was adapted from [8, 9]; a total of 50 
features are extracted for each network packet. 

The defined set of extracted features considers a NIDS 
scenario (further explained in section IV.A).  

C. Feature Selection 

The set of extracted features are generic enough to cover a 
broad kind of a NIDS (Network-based Intrusion Detection 

Systems). However, for a specific purpose, the IDS demands a 
features selection process, which allows selecting only the 
features that best characterize the target attacks. In the 
literature, the feature selection is mostly used to improve the 
attack model accuracy and to improve the IDS performance. 

In this work, the feature selection is twofold. First, it aims 
at verifying the accuracy impact on the IDS. It is expected that 
the attack model obtained through the feature selection method 
will present a better accuracy when compared to the use of all 
features – without the feature selection. Second, the attack 
model generalization capacity will be measured. It is reported 
in the literature that the features reduction allows the 
improvement on the IDS accuracy. However, none of the 
literature proposals have studied the generalization impact 
when using a feature selection method. 

This work considers the Genetic Algorithm (GA) for feature 
selection. 

IV. SCENARIO AND EVALUATION 

This section describes the scenario developed to evaluate the 
proposed method and also introduces the intrusion evaluation 
database that has been created (section III.A). The attack model 
generalization capacity was measured using a well-known 
intrusion database. Finally, a comparison against a well-known 
and broadly used signature-based tool was made, considering a 
production environment for intrusion detection. 

A. Scenario 

To generate the normal traffic, the services provided in the 
scenario were HTTP (Hypertext Transfer Protocol), SSH 
(Secure Shell), SMTP (Simple Mail Transfer Protocol) and 
SNMP (Simple Network Management Protocol). Every name 
resolution (DNS, Domain Name System) was performed by the 
honeypot server. Each client requests a service through a 
workload tool specific to the requested service. The time 
between each request is pseudo-random, ranging from zero to 
four seconds, in order to mimic the client unpredictable 
behavior while requesting a service. In total, 10 distinct clients 
were used.  Table I describes the client behavior in each service 
request, in order to guarantee the traffic variability. To generate 
the attacker traffic, only DoS (Denial of Service) attacks were 
considered. The goal was to become possible the comparison 
between our proposal and the well-known intrusion evaluation 
databases, e.g. DARPA1998. It is worth noting that DoS attacks 
are common nowadays, including its usage in botnets.  

TABLE I. SERVICES DESCRIPTION 

Service Description 
HTTP Each client requests a random web page, from a repository 

mirrored from the 500 most visited worldwide websites 
(moz.com/top500), and stored in the honeypot server.

SMTP Each SMTP client sends an e-mail between 50 and 400 
bytes of subject and 100 to 4,000 bytes of content.

SSH Each SSH client login on the honeypot server and executes 
a random predetermined command from a list of 30 
possibilities.

SNMP Each SNMP client walks through a predetermined MIB on 
a list of possible MIBs. 

DNS Every name resolution is performed on the honeypot server.



B. Database Creation 

The attacker traffic was generated according to two 
perspectives, network-level and application-level. In the 
application-level, the DoS attacks were generated using the 
LOIC tool. The LOIC generates HTTP flood attacks at a 
specific URL. The network-level attack was generated using a 
synflood plugin available at the Metasploit tool. Every attack 
was generated using a well-known and de facto standardized 
tool, allowing the correct implementation and code availability 
publicly, therefore allowing an anytime database 
reproducibility.  

The client requests, as well as the generated attacks, were 
performed to the honeypot server. The honey tool was used to 
deploy the honeypot server.  

The scenario was executed for 30 minutes. The attacks 
began at the tenth minute and lasted 15 minutes. The generated 
traffic was captured and stored on the honeypot machine, using 
the tcpdump tool. A total of 2.1 gigabytes of traffic was 
generated. Table II presents the traffic distribution on the 
created database. The implemented scenario for intrusion 
databases creation allowed the solution of some of the main 
problems reported in the literature.  

The generated traffic is real and valid, as the honeypot 
generate valid replies to each of the received requests. The 
events classes were automatically established (labeled in 
feature vector) in order to avoid manual labeling and providing 
an error pruning approach, due to the number of packets to be 
evaluated. The automatic labeling was defined according to the 
source IP address for each network packet, which was possible, 
as the attacker machine generates only attack traffic. It is 
important to note that the IP address was not used as a feature 
value. Thus, the model is not biased by this knowledge. 
Additionally, the manual class labeling or clustering techniques 
[14] was avoided, reducing labeling error.  

In order to allow the reproducibility of the deployed 
scenario, every client and attacker behavior was logged. 
Finally, privacy problems did not occur because the database 
was obtained on a controlled environment and the generated 
traffic does not present any sensitive data.  

To elaborate the cross-validation, a well-known and public 
intrusion database is needed, making it possible to establish the 
generalization capacity from the used attack models. The public 
database DARPA1998 was used during the testing process, 
which is the network traces used to create the well-known 
intrusion dataset KDD99 [16].  

To perform the cross-validation, 35 network files provided 
by DARPA1998 were used. Each file has a class description for 
each connection. The feature extraction, developed in our work, 
was modified in order to establish the packets class according 
to each file description. Table III shows the network traffic 
distribution on DARPA1998. Only DoS attacks were used, as 
the goal is to establish the attack model generalization capacity 
for the same type of attacks.  

C. Attack Model obtainment 

A set of 50 features [8, 9] were adopted and a feature extractor 
algorithm was developed to obtain each feature from the 
network packets. The network packets are captured using the 
libpcap library and the feature extractor was implemented 
using the C++ language. Two classifiers were used, the NB 
and the DT [13]. The NB due to its simplicity during the model 
obtainment and low processing cost during the classification. 
The DT, using the C4.5 algorithm, was used due to its low 
processing demanded during the packets classification. For the 
feature selection process, the wrapper-based (classifier 
dependent) GA was used, with 100 generations and 100 
populations in each generation, the same parameters used in [6]. 
During the selection, the fitness function objective was the 
lowest possible error rate with the lowest possible number of 
used features. To obtain the same proportion of the classes a 
stratification procedure was used. Thus, it became possible to 
use the error rate as the objective during the feature selection. 
Figure 2 and 3 shows the GA evolution for the created intrusion 
dataset, considering the error rate and the number of used 
features for the DT and the NB classifiers respectively.  

For the DT algorithm, the lowest error occurred in 
generation 3, with 0.01% error and the lowest number of used 
features was reached in generation 34 (Figure 2). The NB 
Algorithm reached lowest error rate in generation 55, 
considering 0.01% of network packets wrongly classified. 
However, the lowest number of features was reached in 
generation 71 (Figure 3).  

TABLE III. NETWORK TRAFFIC DISTRIBUTION ON THE DARPA1998 
DATABASE 

Type Number of 
Packets

Database 
ratio 

Attack ratio 

Ping of Death 9,600 0.03% 0.57%
Synflood - 
Neptune

1,301,516 4.45% 76.99% 

Smurf 379,477 1.29% 22.44%
Normal 27,600,297 94.23% -
Total 29,290,890 - -

TABLE II. NETWORK TRAFFIC DISTRIBUTION ON THE CREATED 
DATABASE 

Type Number of 
Packets 

Database 
ratio 

Attack ratio 

Application-
level attacks 

39,107 0.40% 28.10% 

Network-level 
attacks 

100,072 1.02% 71.90% 

Normal 9,640,289 98.58% -
Total 9,779,468 - -

TABLE IV. ACCURACY RATE OBTAINED BY THE USED CLASSIFIERS

Model No. of 
features

Accuracy False-
Positive 

False-
Negative

Naive 
Bayes

14 (using 
GA)

99.99% zero zero 

Naive 
Bayes

All 
features

96.63% 3.47% 0.02% 

Decision 
Tree

12 (using 
GA)

99.99% zero zero 

Decision 
Tree

All 
features

99.98% 0.01% zero 



Table IV shows the accuracy improvement obtained 
through the usage of the feature selection technique, using the 
evaluation dataset (different from that one was used to obtain 
the model and test it) produced in the scenario. The feature 
selection technique provided an accuracy improvement of 
3.36% for the NB and 0.01% for the DT for the created dataset, 
besides the reduction of false-positive and false-negative rates. 
The reduction in the number of used features reduces also the 
processing demanded for its extraction.  

D. Generalization Capacity Evaluation 

Table V shows the results using the proposed attack model 
on the dataset DARPA1998. The feature selection technique 
obtained expressive results during the cross-validation. The 
feature selection for the DT classifier obtained an accuracy 
improvement of 4.20% when compared to the usage of all 
features. The false-negative rate reduced from 71.30% to 0.89% 
while the false-positive rate reduced from 5.82% to 3.22%. The 
NB showed the impact of the feature selection process. The NB 
attack model using all features obtained only 72.56% accuracy, 
while the model obtained using the feature selection approach 
reached 94.95% accuracy. The false-positive rate dropped from 
28.08% to 5.02%, while the false-negative rate increase from 
0.89% to 5.97%. Despite the increase in the false-negative rate, 
the NB accuracy improvement was 25.39%. It is possible to 
note a reduction of 9.91% on accuracy while using the attack 
model on another dataset. The feature selection method using 
the GA allowed improving the model generalization for the 
tested classifiers. The model generalization capacity was 
improved in 4.2% for the DT and 22.39% for the NB while 
using a feature selection method.  

As shown, the attack model accuracy, regardless of the used 
classifier, drops when used in another environment. Thereby, 
when anomaly-based IDS is used in production environments, 

such property must be considered, the classification engine 
must be able to cope with the changes in the environment while 
also providing a reasonably high detection rate. Our evaluation 
tests have shown that the resource selection process helps 
maintain the expected accuracy of the attack model while the 
system is used in another environment. 

E. Commercial Tool Comparison 

In order to compare our proposal with a commercial 
product, we chose Snort (www.snort.org). During the tests, two 
signature parameters were varied (i) The Number of 
Occurrences and (ii) the Interval. Any connection attempt that 
exceeds the Number of Occurrences threshold during a defined 
Interval is identified as an intrusion attempt. A total of 10,000 
tests were performed using the created intrusion database. Both 
parameters were tested with values ranging between 1 and 
1,000. The Snort accuracy rate was established according to the 
number of connection attempts performed by the attacker 
machines correctly alerted by the tool. The best values found 
for the parameters variations had 3 connections (Number of 
Occurrences) in a 2 seconds’ time window Interval, yielding 
27.32% of accuracy. Comparing the results, it becomes possible 
to observe, in this case, that our proposal (anomaly-based 
intrusion detection) presents (about 3x) better detection rates 
than the signature-based approach while detecting DoS attacks.  

Finally, we have compared the processing time demanded 
from each detection approach, signature-based using Snort and 
anomaly-based using our proposed approach. The 
measurements were performed on Ubuntu 14.04 with an Intel 
Core I7 and 16GB of RAM.  

For the Snort tool, two signature sets were used. The first 
signature set uses only the signature with the best parameters 
(with Number of Occurrences = 3 and Interval = 2). This 
signature set is named as Snort DoS and aim at detecting only 
DoS attacks. The second signature-based set is named as Snort 
Default and uses the standard signature set (for the experiments 
Snort rules snapshot 2.9.62) from Snort website. In this way, 
we are able to establish the processing time demanded from 
Snort, when system administrator wants to detect only DoS 
attacks and when he uses the default signature set. For the 
anomaly-based approach, we have used the classifiers (Table 
IV) using all 50 features.  

Table VI presents the average processing time demanded by 
each module, the Data Acquisition, PreProcessing for Snort and 
Feature Extraction for our approach and the Detection module. 
The demanded processing time while using the NB classifier 
used only 18.39% and 3.45% of the processing time demanded 

TABLE V. ACCURACY RATE OBTAINED DURING THE CROSS-VALIDATION 
(GENERALIZATION CAPACITY) 

Model No. of 
Features 

Accuracy 
False-

Positive 
False-

Negative
Naive 
Bayes 

14 (using 
GA) 

94.95% 5.02% 5.97% 

Naive 
Bayes 

All 
features 

72.56% 28.08% 0.89% 

Decision 
Tree 

12 (using 
GA) 

96.82% 3.22% 0.89% 

Decision 
Tree 

All 
features 

92.62% 5.82% 71.30% 

 
Figure 2 – Genetic Algorithm evolution for the DT classifier 
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Figure 3 – Genetic Algorithm evolution for the NB classifier.
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by the Snort DoS and Snort Default respectively, while the DT 
demanded only 20.53% and 3.85% respectively.  

V. CONCLUSION 

This work presented an approach to test the generalization 
capacity of an intrusion detection engine that uses anomaly-
based classifiers. The proposed intrusion detection evaluation 
dataset method allowed to solve the main problems reported in 
the literature. During the generalization tests, the feature 
selection for DT cross-validation reduced the false-negative 
rate from 71.30% to 0.89% while the false-positive rate reduced 
from 5.82% to 3.22%. For NB, the attack model accuracy 
increased from 72.56% to 94.95% using the feature selection. 
The false-positive rate dropped from 28.08% to 5.02%, but the 
false-negative rate increased from 0.89% to 5.97%. Despite the 
increase in the false-negative rate, the NB accuracy 
improvement was 25.39%. The proposed method, using GA, 
shown an improvement, on average, of 1.68% for the overall 
IDS accuracy and 13.29% for the model generalization (the 
obtained accuracy while using the attack model on another 
environment). Finally, it was showed that the anomaly-based 
approach for DoS attacks detection presents a better accuracy 
rate when compared to the well-known signature-based IDS to 
detect similar attacks.  
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TABLE VI.  PROCESSING TIME COMPARISON 

Module 
Processing Time (Seconds) 

Snort 
DoS 

Snort 
Default 

Our 
Approach NB 

Our Approach 
DT

Data 
Acquisition 

125.0 138.0 19.3 19.4 

Preprocessing/
Feature 

Extraction 
113.6 979.8 31.3 31.3 

Detection 46.4 400.2 7.9 1.7
Total 285.0 1518.0 58.5 52.4 


