

BigFlow: Real-time and Reliable Anomaly-based
Intrusion Detection for High-Speed Networks

 Eduardo Viegas¹,², Altair Santin¹, Alysson Bessani², Nuno Neves²
¹Graduate Program in Computer Science / Pontifical Catholic University of Parana, Curitiba, Parana, Brazil

²LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
{eduardo.viegas, santin, vilmar.abreu}@ppgia.pucpr.br, { anbessani, nfneves}@ciencias.ulisboa.pt

Abstract— Existing machine learning solutions for network-
based intrusion detection cannot maintain their reliability over
time when facing high-speed networks and evolving attacks. In
this paper, we propose BigFlow, an approach capable of
processing evolving network traffic while being scalable to large
packet rates. BigFlow employs a verification method that checks
if the classifier outcome is valid in order to provide reliability. If
a suspicious packet is found, an expert may help BigFlow to
incrementally change the classification model. Experiments with
BigFlow, over a network traffic dataset spanning a full year,
demonstrate that it can maintain high accuracy over time. It
requires as little as 4% of storage and between 0.05% and 4%
of training time, compared with other approaches. BigFlow is
scalable, coping with a 10-Gbps network bandwidth in a 40-core
cluster commodity hardware.

Keywords—Data Stream, Stream Learning, Classification

Reliability, Anomaly-based Intrusion Detection

I. INTRODUCTION

According to the CISCO network forecast report, the
worldwide network traffic in 2016 was 96 EB/month and is
expected to reach 278 EB/month in 2021 [1]. Current network
devices can reach a bandwidth of 100 Gbps, and there are
plans to support a bandwidth of 400 Gbps in the near future
[2]. Moreover, recent network-based cyber-attacks also take
advantage of this scenario to hide themselves—given that they
deceive detection engines—by taking advantage of the large
amount of data that should be inspected in a very short time.
For instance, in October 2016, a DDoS attack with 100
thousand malicious endpoints surpassed a bandwidth of 1.2
Tbps in a domain name server infrastructure. Attacks of this
kind can potentially bring down several sites in US and
Europe, including Twitter, Netflix, and CNN [3]. Nonetheless,
reports of attacks reaching more than 100 Gbps of traffic are
becoming surprisingly common nowadays [3, 4]. Therefore,
operators need access to solutions for real-time analysis of
such malicious content over those massive network attacks.

Current approaches for network traffic measurement and
analysis in the Big Data context often rely on Hadoop-based
clusters [5, 6]. In general, they store packets as raw data (pcap)
to a distributed filesystem (e.g., HDFS [7]) and process them
later. Although such approaches offer significant
improvements in scalability [5], they lack applicability to real-
world environments because in such settings, the network
traffic must be analyzed at line speed for a delay-free intrusion
detection.

Current methods for discovering new network attacks
mostly use unsupervised machine learning (ML) techniques,
which typically require storing the network traffic over a
certain time for identifying unknown anomalies [8]. However,
owing to the massive amount of network packets, their storage
for further analysis is not feasible in most scenarios [9].
Thereby, to enable the near real-time (as close as possible to

the network throughput) detection of threats, supervised ML
techniques should be considered [10]. When using these
methods, the traffic behavior is in general represented as a
model, resulting from a computationally expensive process
(the training stage). Afterward, the classifier uses the obtained
model, to categorize the input events as either normal or
attacks.

However, as the behavior of traffic changes, either due to
new types of malicious actions or alterations in the transmitted
content (e.g., due to the offering of new services [9, 11]), the
attack models require constant revision. Consequently, the
model’s accuracy observed on the training dataset might not
be evidenced on unseen data. In such a case, the intrusion
detection engine will no longer be trusted by the operator
given that the alarms are not generated as expected [9]. In this
paper, we assess this accuracy loss experimentally, using a
real network traffic dataset spanning a year and four ML
classifiers. Our experiments show that the accuracy of
classifiers trained in the beginning of the year can decrease by
up to 23% during the year.

The identification of changes in the network behavior is a
challenging task, which often requires human intervention for
the reevaluation of the current model’s error rate. Thus, to
achieve reliability, the model must be periodically tested and
updated (e.g., every month). This requires human intervention
not only for rebuilding the model (which takes time and
storage) but also for ensuring that the production model is
operational, with acceptable error rates.

 This paper proposes BigFlow, a system for reliable real-
time network traffic classification in high-speed networks.
Our proposal is based on two main insights. First, BigFlow
determines whether the classification outcome should be
accepted or not, in contrast to traditional approaches, which
always classify events as normal or attack. The purpose is to
make the administrator aware that a possible change has
occurred in the network traffic behavior. In this sense, when
an event is rejected, there is a high probability that a new
network traffic behavior is taking place. Although
classification rejection has been used in other areas (e.g., for
optical character recognition (OCR) [12] or medical diagnosis
[13]), in these areas contextual information can help to
identify pattern deviations; however, in the high-speed
network traffic field, such a task is challenging. The main
challenge that is not present in other areas [12, 13] relates to
rejections based on the classifier confidence. This is because
a classifier may become unreliable when facing unseen
network traffic behavior, thereby committing classification
mistakes with high confidence [52]. The second insight relates
to the fact that BigFlow employs stream learning techniques
[20] to analyze traffic in near real time. Such techniques
support incremental model updates based on the rejected
instances. The expectation is that after a period (e.g., within

one week), the rejected event is properly classified by an
expert or a tool (e.g. signature-based network-based intrusion
detection system - NIDS) based on public information (e.g.,
new indicators of compromise). A major advantage of this
approach is that the incremental model updates, that
incorporates new knowledge into the model, is based only on
correctly classified events. This decreases the risk of
inaccurate detections, which may lead to a high rate of false
positives when processing further packets. Moreover,
incremental model updates significantly decrease training
time because the current model is not discarded, which is
advantageous for high-speed networks.

 Rejecting low-confidence classifications in an NIDS – the
key idea of this work – leads to two important benefits: better
detection accuracy (i.e., fewer misclassifications) and the
identification of new characteristics of the evolving traffic,
which are then used to incrementally update the classifier
model. These benefits improve BigFlow reliability over time,
even if the network’s traffic behavior changes, at the same
time significantly decreasing the amount of computational and
storage resources needed to operate the system.

 In combination, these techniques make BigFlow scalable
with the number of nodes employed in the system (with a
network traffic processing capacity of up to 10 Gbps in our
experiments), without losing accuracy over time.

 In summary, the paper includes four contributions:

1. We provide the first publicly available dataset for
benchmarking intrusion detection engines over a long
period, called MAWIFlow. This dataset contains real and
labeled network traffic records with 158 features each,
extracted from 15-min-long daily traces spread over a
year of real network traffic. MAWIFlow is composed of
over 6 billion network flows with almost 8 TB of data;

2. We analyze the behavior of several traditional ML
classifiers using MAWIFlow. Our findings show that
current approaches are unable to cope with traffic
changes observed in real networks, and their accuracy
decreases significantly in a few months after the training
period;

3. We present BigFlow, a reliable stream learning intrusion
detection engine that can maintain its accuracy over long
periods of time. Our solution evaluates the classification
reliability, while it allows to incrementally update the
intrusion detection engine. BigFlow requires as little as
4% of storage and from 0.05% to 4% of training time,
compared with current intrusion detection approaches in
the literature;

4. We address the problem of network traffic classification
using big data streaming processing, without data
persistence, aiming to scale up to relevant data rates on
commodity hardware. Our experiments show that
BigFlow can cope with a 10 Gbps traffic rate in a 40-core
cluster of commodity hardware.

 The remainder of this paper is organized as follows:
Section II presents the background for BigFlow; Section III
presents the MAWIFlow dataset and evaluation using several
traditional ML schemes; Section IV describes the BigFlow
proposal, while Section V describes the prototype architecture
and implementation; Section 6 VI presents the evaluation of
our solution; Section VII describes the related works; and
Section VIII concludes our work.

II. BACKGROUND

A. Stream Processing

BigFlow is built on top of a stream processing platform for
dealing with large volumes of network traffic in near real-
time. Stream processing platforms (e.g., Apache Storm [18]
and Apache Flink [19]) receive data from registered sources
and compute over such data through a set of processing
elements (PE). Each PE is responsible for a specific operation
on the arriving data and for sending the result to another PE,
until the computation completes. In general, the messages
transmitted through the PEs can be forwarded according to
three approaches: shuffle, keyed, or broadcast. In the shuffle
approach, the PE messages are sent to another PE in a
uniformly distributed manner. The keyed approach groups
messages according to a key (e.g., IP address) and sends them
to the PE associated with it. Finally, the broadcast approach
transmits the messages to every PE of the same type. The near
real-time processing using such platforms is achieved by
keeping the computation in each PE type as small as possible,
and by distributing the message load uniformly through many
PE in parallel.

B. ML for Intrusion Detection

In general, network attacks are detected using either
signature-based or anomaly-based techniques [30]. In the
former approach, the attack patterns must be known and
implemented in the system because the detection of attacks is
achieved by scanning the packets for well-known attack
patterns. The main drawback of this approach is the high
number of patterns that need to be stored/analyzed as every
attack has a unique signature [31]. Nonetheless, attackers
often make changes to already known attacks to evade this
detection technique. For instance, only in the first quarter of
2017, more than 55 thousand attack variations for only 15
attack families were discovered [32].

Recently, anomaly detection has been done using ML
techniques, which can be broadly divided into unsupervised
and supervised categories. Unsupervised ML techniques are
simpler to use but usually result in many false positives [8].
Therefore, they are seldom used in practice. Supervised ML
methods require a model of the network’s behavior, which is
built in a computationally expensive process – the training
stage – using a training dataset [10]. Afterward, the built
model can be used in production (real-world environment) by
a classifier algorithm, to classify input events as either normal
or attacks. Thus, as long as the network traffic behavior
follows the same pattern captured in the training stage, the
constructed classifier model can be used for the real-time
detection of threats [10].

When using ML for intrusion detection, the network traffic
behavior is represented by a set of features. In general, when
network-level attacks are considered, the features are usually
extracted according to the network flow. Table 1 lists a subset
of the features that were used throughout the experiments in
this paper. The features in Table 1 are divided into two groups:
Host-based and Flow-based. The former refers to the features
extracted from all the data sent from a specific host during a
period. In contrast, the latter refers to the communication
between two entities over the network, which can be from
source to destination, destination to source, or both.

Unfortunately, general-purpose networks rarely exhibit
stable traffic patterns [9, 11]. On the contrary, the set of target
concepts (e.g., network traffic classes) learned during the

training stage often evolves over time [20]. For instance, the
behavior of a network may change because new services are
added [9] or owing to modifications of the attacks’ execution.

The identification of changes in production networks
typically involves a computationally demanding task of model
rebuilding, which can only be performed if there is access
(storage) of recently observed traffic and prior (manual)
classification of events. Furthermore, model rebuilding cannot
be postponed, because while a new model is being
constructed, the model currently in use should maintain
acceptable error rates, ideally as low as the ones observed
during the training stage [9]. This makes the process
unfeasible for most high-speed networks.

In other fields, a typical approach to deal with evolving
environments is to resort to stream learning algorithms [20].
These techniques allow the update of the detection mechanism
to be performed at the arrival of each new event,
incrementally, without discarding the current model. Thus, the
time needed for building an updated classifier model can be
shortened [9]. However, these techniques typically rely on
supervised learning, in which events need to be previously
classified [8]. Moreover, it is necessary to devise a method for
event selection that would be suitable for incrementally
updating the model [20]. This renders the current approaches
not applicable to networked environments [10].

Another solution that has been explored for improving the
reliability of ML classifiers – but not for intrusion detection –
is to reject classifications [12]. Therefore, the classification
outcome may be rejected according to the given event class
(Normal or Attack) probability (confidence). For example,
events classified as attacks could only be accepted when their
associated confidence measure is above 90%. This approach
has been employed in areas where errors have a high
associated cost, such as OCR [12] and medical diagnostics
[13]. However, in the field of network detection, the reliability
of detection is often neglected [9], leading to an unreliable
intrusion detection system.

III. MAWIFLOW DATASET AND ANALYSIS

In this section, we describe a novel dataset based on real
network traffic [22], and experiments in which we evaluated
the accuracy of traditional intrusion detection methods over
time.

A. MAWIFlow

To benchmark ML-based NIDS, we present the
MAWIFlow dataset (i.e., a collection of records labeled as
either Normal or Attack), assembled based on real network
flows collected over a year. A dataset for the tasks that we
study should fulfill a number of requirements, including
realism and high variability, having labeled data with correctly
classified events, being reproducible, and being publicly

available [17]. Ideally, the data should be obtained from real
network activity, as it provides all the expected properties
from an evaluation testbed [8]. However, collecting such data
is difficult and, when obtained, its sharing is unlikely owing
to privacy concerns [9]. Furthermore, establishing proper
event labels for network activity is a challenging task, which
often requires human intervention [10].

MAWIFlow is based on real and publicly available
network traffic. More specifically, it is based on the network
flows that were extracted from the MAWI network packets
traces [22] (Samplepoint-F in MAWI archive), collected daily
for a 15-min-long interval, from a transit link between Japan
and USA. During the period of recording, the Samplepoint
was made of a 1Gbps network traffic link. In addition, the
network traces are anonymized, i.e. network packet payloads
are removed, and sensitive network packet header fields are
anonymized. The labeling of records was performed using
MAWILab [8], which labels the daily anomalous events
(network flows) from MAWI through a combination of
several unsupervised anomaly detectors. For the purpose of
this work, we consider all of the network traffic available for
the year 2016. Network anomalies are classified according to
their attack types as labeled by MAWILab. Therefore,
network anomalies can be made of several types of portscan,
network scan, denial-of-service, distributed denial-of-service,
amongst others network-level attacks [22].

The MAWIFlow dataset was built using the BigFlow
feature extraction module (discussed in Section IV.A), which
extracted 158 host-based and flow-based features, some of
which have been employed in previous works (15 features in
[14], 21 features in [15], 60 features in [16], and 62 features in
[17]). Table 1 provides a partial list of those features. For the
label assignment process, MAWIFlow assigns labels that are
associated with the flows from which the features were
extracted. Table 2 summarizes the MAWIFlow dataset. As can
be seen, this dataset contains over six billion network flows,
extracted by analyzing more than 30 billion network packets
(real traffic) for the year 2016.

The original MAWIFlow dataset contains over 7.9 TB of
data. A stratification process was needed to reduce its size,
enabling its sharing and facilitating its use for the NIDS
evaluation. Thereby, the proportional random stratified

TABLE II. MAWIFLOW STATISTICS

Field Value
Average Daily Network Packets ~110 Millions
Average Daily Network Flows ~22 Millions
Average Daily Throughput ~570 Mbps
Average Daily Anomalous Flows ~1.7 Millions
Average Daily Dataset Size ~21.7 GB
Total Network Packets ~30.36 Billions
Total Network Flows ~6.07 Billions
Total Dataset Size ~7.9 TB

TABLE I. NETWORK-LEVEL FEATURE SET USED IN THE EXPERIMENTS THROUGHOUT THIS WORK [17]

Type Grouping Features

H
os

t-
ba

se
d

Host to All

Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets (SYN and
FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK Flag), Percentage
of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP Redirect Flag), Percentage
of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag), Percentage of Packets (ICMP Other
Types Flag), Average Packet Size, Throughput in Bytes, Protocol

F
lo

w

-b
as

ed

Source to
Destination

Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets (SYN and
FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK Flag), Percentage
of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP Redirect Flag), Percentage
of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag), Percentage of Packets (ICMP Other
Types Flag), Throughput in Bytes

Destination
to Source
Both

sampling without replacement method [24] was employed to
generate the stratified MAWIFlow dataset. The resulting
dataset comprised just one percent of the original dataset,
while it maintained the original proportions of the network
traffic classes (Normal and Attack), which were randomly
chosen.1

Besides being the first publicly available dataset of this
kind, MAWIFlow overcomes the main challenges associated
with building realistic datasets for benchmarking intrusion-
detection engines. More specifically, it has all of the desired
characteristics described in [38], summarized as follows.

Realism: The network traffic used for building the dataset was
obtained from real network traces. Moreover, MAWIFlow was
built from over a year-long observation data of real network
traces, enabling not only evaluation of the detection system
during a specific period of time, but also the evaluation of its
behavior over time, when facing new network traffic behavior;

Validity: The network traces used for building the MAWIFlow
dataset were collected from real network traces. Although
MAWI (network traces used in MAWIFlow) is provided in a
sanitized manner, i.e., payload is removed and sensitive data
from network packet headers are encrypted, the network flow
reconstruction is still possible. In this manner, the sanitization
process used by MAWI does not affect the features’ values;

Prior labeling: The event labels were identified by state-of-
the-art unsupervised ML techniques (assessed by MAWILab).
In this manner, supervised ML techniques can be evaluated
regarding their performance as compared to unsupervised
techniques;

High Variability: MAWIFlow is highly variable not only
owing to the used network traces but also owing to its long
period of recording. The used network traces are real, valid,
and collected from real network infrastructure, thereby it
presents the expected variability from production
environments. Nonetheless, owing to its long period of

recording (the entire year 2016), the detection system can be
evaluated considering the environment variability during an
entire year.

Reproducibility and Public Availability: The used network
traces were collected from publicly available sources
(MAWI). Moreover, BigFlow (Section IV) source code is also
publicly available.

B. Accuracy Degradation of ML Classifiers

The purpose of the analysis is to determine if ML-based
approaches can maintain accuracy over time while processing
traffic from real networks. In our evaluation, we considered
three individual and different classifiers that are usually
employed for intrusion detection: decision tree (DT) [42],
random forest (RF) [43], gradient boosting (GB) [44], and an
ensemble [45] classifier composed from DT, RF, and GB that
decides based on majority voting across each classifier’s
decisions.

For each of the evaluated classifiers two update schemes
were tested: no-update and weekly-update. The no-update
scheme used a single training step using the data of
MAWIFlow from the first seven days of January, and then
employed the built model for the remainder of the year. In the
weekly-update scheme, the model lasted for only seven days,
and then a new model was built using the previous seven days
of data as training, thus retraining (rebuilding) the classifier 52
times during the year (once every week).

Apache Spark MLib [23] version 2.1.1 was used for the
implementation and evaluation of the aforementioned
classifiers. The DT information gain criterion relies in gini
impurity measure. The RF was composed of 50 decision trees,
with a feature subset selection strategy as the square root of
the number of decision trees. Finally, for the GB, 50 iterations
were used with decision trees as weak learners. Owing to the
imbalanced nature of network traffic (in MAWIFlow only
1.52% of flows were labeled as anomalies), the random
undersampling without replacement method [24] was applied
during the training stage, to balance the classes (Normal and
Attack). The true negative (Normal accuracy) and true

(a) No-update decision tree classifier (b) No-update random forest
classifier

(c) No-update gradient boosting
classifier

(d) No-update ensemble classifier

(e) Weekly-update decision tree
classifier

(f) Weekly-update random forest
classifier

(g) Weekly-update gradient boosting
classifier

(h) Weekly-update ensemble
classifier

Figure 1 – Average month accuracy behavior for different classifiers with and without periodic model updates during 2016 in the MAWIFlow dataset.

 1 In order to validate the stratification procedure, all classifiers (Section
III.B) were also evaluated using the original MAWIFlow dataset through
Apache Spark MLib, the same accuracy behavior was evidenced.

positive (Attack accuracy) rates are shown in Figure 1. The
figure shows the monthly average accuracy of the classifiers
in the no-update and the weekly-update schemes, with the 62
features listed in Table I.2

 All evaluated classifiers have shown an accuracy impact
during the year 2016. Considering the no-update scheme
(Figures 1-a, 1-b, 1-c, and 1-d), the classifiers were able to
maintain accuracy for Attack for the first two months (January
and February), while exhibiting a reduction during the
remainder of the year. Comparing the average Attack
accuracy in January with the rest of the year, we observed a
reduction of 6%, 10%, 6.8%, and 7% for the DT, RF, GB, and
ensemble classifiers, respectively. The worst case was
evidenced in October, with the Attack accuracy drops of
16.8%, 23%, 17.2%, and 17.5% for the DT, RF, GB, and
ensemble classifiers, respectively. On the contrary, the
accuracy of Normal packets did not significantly change, and
in the best case, it increased by 1.2% (ensemble classifier).

 With regard to the weekly-update classifiers (Figures 1-e,
1-f, 1-g and 1-h), the results demonstrate that the periodic
updates helped the classifiers to remain reliable. Their
accuracy did not significantly change during the year, and in
some cases, even improving compared with their initial
accuracy in January. The highest increase in the accuracy was
by 2.6% for Attack detection.

 In summary, this experiment provides evidence that in
production high-speed networks, anomaly detection
classifiers must be updated periodically; otherwise, their
outputs become unreliable over time. However, regularly
updating the classifiers is challenging in high-speed networks,
because the networks’ activity must be stored for further
analysis and should be labeled accordingly.

IV. BIGFLOW

 To address the aforementioned evolving behavior of high-
speed open networks, we present BigFlow, a reliable stream
learning intrusion detection system. The goal is to maintain
reliability in the outputs of the classifier and high accuracy
over time, while substantially reducing the extent of human
expert intervention and the amount of data that needs to be
stored. The operation of BigFlow proceeds in two main stages:
feature extraction and reliable stream learning.

Feature extraction is performed using a traditional stream
processing framework. Its purpose is to compute the flow
statistics, which are represented as a feature vector (an event
or instance, in ML terminology). The flow statistics
computation is performed in real time, summarizing the
information about the traffic between two hosts in a time
interval. Since only the statistical analysis results need to be
stored in the memory, during the specified time interval, there
is no requirement for the storage of the observed network
packets.

The reliable stream learning stage receives as input the
feature vector (composed from the flow statistics) and
classifies it as either Normal or Attack. To operate in near real
time, BigFlow employs a stream learning classifier with a
verifier module. This module decides whether the
classification outcome is reliable and should be accepted;
otherwise, it is rejected. When an event is rejected, it is stored
until it can be labeled. The rejected event is labeled by a
human expert, normally by collecting more information about
a new behavior, e.g., by consulting a public repository of
vulnerabilities/threats such as the common vulnerabilities and
exposures (CVE), or by finding that a new type of service is
being used in the network. Then, the rejected instance is used
to incrementally update the stream learning classifier.

 The next subsections describe in detail these two stages,
including the architecture of the modules that implement the
stages and description of the main components.

A. Feature Extraction

To measure and classify the network activity, it is
necessary to compute statistics about the network traffic
exchanged between relevant entities over a period of time.
There are several works that focus on extracting features for
flow classification [14, 15, 16]. However, contrary to
BigFlow, none of them is capable of monitoring high-speed
evolving networks. In such a context, to avoid the storage of
network data, the feature extraction process should be
performed in near real-time. Thereby, we have established a
feature set according to the processing demanded for its
extraction, which is, in general, responsible for the most
significant part of the overall demanded processing [17]
(Section VI.B).

 BigFlow can extract up to 158 features. The feature set
considers both host (host statistics) and flow (host to host
statistics) granularity. Host statistics are features that are
extracted based solely on the data sent/received from a

 2 It is important to note that the same behavior was evidenced with the
other features sets for all experiments; however, for space purposes only the
results obtained using the set of 62 features [17] are shown.

Figure 2 – BigFlow real-time feature extraction module architecture for high-speed networks.

specific host, e.g., percentage of SYN packets sent in a time
period. On the other hand, flow statistics features comprise
information about the communication between two hosts, e.g.,
average size of the packets exchanged between the hosts.

The architecture of the feature extraction module of
BigFlow is shown in Figure 2. Monitored agents (e.g., hosts,
network switches or routers) transmit the events through a
message middleware. An event corresponds to a unit of
analysis, e.g., a network packet or a netflow record. The
message middleware acts as a broker of events, being
responsible for providing a single interface for the monitored
agents.

The Message Consumer module acts as the data producer
for the feature extraction module. Its only purpose is to receive
the available events from the message middleware, regardless
of their content or source agent. Each collected event is
forwarded to the Message Parser module in a PE of stream
processing, using the shuffle approach (Section II.A). The
Message Parser module in turn determines the event’s source,
fields, and type (e.g., network packet or netflow record).

As an example, consider two distinct monitored agents: a
switch and a router. The switch exports network packet
headers, while the router exports expired netflow records. The
Message Consumer module reads both types of events from
the message queue, and simply distributes them through the
available Message Parser module, keeping the computing
load even. The Message Parser module, in turn, processes the
packet headers and netflow records according to each event
type, collecting the relevant fields.

The Host Aggregator and Flow Aggregator modules
perform the actual network flow statistics computation
(feature extraction). To do that in near real-time and in a
distributed manner, both aggregators receive messages
through a keyed stream. The key for the Host Aggregator
module is calculated by hashing the event source addresses
(source IP address), while the key for the Flow Aggregator
module relies on the XOR operation on both source and
destination addresses (source and destination IP addresses).
To divide the load, each module is responsible for a range of
hash values. Thus, through XOR’ing, it is possible to forward

messages from two specific hosts to the same flow aggregator
PE, regardless of the direction taken by a packet.

To compute feature values from the grouped events,
BigFlow discretizes them in time intervals, referred to as the
Tumbling Window modules. Each Tumbling Window module
stores and updates the features’ values for a specific period,
according to each received event. When a Tumbling Window
expires (i.e., the period is over), the values of the flow features
are exported in a host or flow statistics format, and the
computation of the features’ values starts over for a new
window.

Figure 3 illustrates the BigFlow computation through
Tumbling Windows. The figure considers two hosts
exchanging messages over the network for 60 s, and a
Tumbling Window period of 15 s. To compute the flow
statistics, the Message Parser module forwards all arriving
events exchanged between these two hosts to the same Host
and Flow Aggregators. Each aggregator computes the flow
features’ values during 15 s (“T.Window 1” in the figure).
When a Tumbling Window expires, it exports the host and flow
statistics to the next module. As a new event arrives after the
initial 15 s, the Host and Flow Aggregators create another
Tumbling Window (“T.Window 2” in the figure) and start the
flow features’ computation again.

The usage of Tumbling Windows for computing flow
features brings two important benefits. First, it ensures that all
active flows will expire, without periodic checks, supporting
a simple garbage collection mechanism. Second, it ensures
that the amount of resources required for the computation of
long-lived flow features values remains limited, thus allowing
scalable processing.

Finally, the Flow Joiner modules are responsible for
receiving all host and flow statistics values and for joining
them in a single stream. The module receives the exported
events through the hash of the source address of either host or
flow statistics. Thus, a Flow Joiner is responsible for a range
of hash values, causing all values from a given subset of hosts
to be given to the same module. For each received flow
statistic, the Flow Joiner aggregates it with the respective host
statistics and exports the result to the next module.

Notice that a single host may have several exported flow
features, while having a single host feature, e.g., a single host
accessing services in several other hosts. Thereby, the Flow
Joiner module must also store the host flow, to join it with
several exported flow features in a single Tumbling Window.
To this end, the Flow Joiner module also relies on the
Tumbling Window module.

Figure 3 – BigFlow flow computation through the Tumbling Window
approach.

Figure 4 – BigFlow reliable stream learning module.

B. Reliable Stream Learning

After the network flow computation, it becomes possible
to classify the feature vectors as either Normal or Attack
(anomalous). As shown in Section III.B, the network
content/traffic changes over time, rendering the classifier
unreliable. Thereby, the employed classification mechanism
must be able to reliably cope with such changes. In practice in
production networks, the model must be updated regularly
(e.g., every week), owing to evolving traffic patterns [9];
eventually, if a new vulnerability is critical, an update should
be made immediately after rejection.

To deal with the intrinsic evolving nature of the network
traffic, BigFlow relies on the stream learning intrusion
detection. When a classification outcome is rejected, BigFlow
stores that event until an administrator labels it. The rejected
events are used later for incremental updates, thereby
minimizing the costs of the model update, while still having
an updated classifier model. Figure 4 shows an overview of
the BigFlow reliable stream-based classification module.

1) Setup
At the startup, BigFlow trains the stream learning classifier

using a training dataset. A classifier model is obtained and
replicated, among several classification processors, to ensure
that the classification throughput scales with the number of
PEs. During the testing stage, the classification thresholds for
each class (Normal or Attack) are defined. The class
classification thresholds are used to define whether the
classification outcome should be accepted or not.

2) Real-time Learning
The BigFlow stream learning module aims to provide

reliable classifications, employing a Verification module; at
the same time, to provide updated ML models, it executes
incremental classifier updates using the rejected instances.

The verification module receives (from the classifier), the
instance, the assigned class, and the classifier confidence
measure on the assigned class. Using the classification
thresholds established during the setup stage, the verifier
module decides whether the classification outcome should be
accepted or not. For instance, consider a confidence threshold
of 70% for the Attack class; then, the verifier module accepts
an instance labeled as Attack only if its confidence level is
above 70%; otherwise, the event is rejected.

The rejected instances are stored (Figure 4). Periodically,
these instances are retrieved, and their labels are requested by
an administrator. This administrator can be a human that
verifies the event label using publicly available label sources,
such as the CVE, Twitter or security newsfeed, or the one that
is able to understand new legitimate applications or traffic
behaviors on the network. It can also be an auxiliary system
composed of signature-based NIDSs that are periodically and
automatically updated with a new indicator of compromises
(e.g., Snort [49], and Bro [50]), which hopefully capture novel
attack behaviors.

If an event is labeled, the instance and its correct label are
used for the incremental model update; otherwise, the event
remains stored until its class (normal or attack) becomes
publicly known, or a certain threshold time is reached. In the
latter case, the instance can be either discarded or assumed to
be Normal. For example, a rejected event is stored for a
month, and after this time, if it still had not been associated

with an Attack using any of the public sources for labeling, it
is deemed as a Normal event.

BigFlow assumes that when an unknown event (attack or
not) is classified, the classification confidence level is not
reached; thereby, the event is rejected rather than being
misclassified. The core idea is simple: high-confidence
accepted results represent patterns which the classifier model
is still able to identify, while low-confidence results require
more attention on the administrator’s side as they potentially
represent new traffic behaviors that must be learned by the
system.

A possible drawback of such an assumption is regarding
uncertain classifier output over time [52]. In such a case, the
classifier outputs can no longer be used, owing to changes in
the network traffic behavior (as already evidenced in other
fields [52]). This happens, for instance, when the classification
model is not updated in a long period of time. Thereby, a
classifier may wrongly classify unseen network traffic with
high confidence, making the model no longer reliable. To
address such a scenario, our proposal employs an ensemble of
stream learning algorithms. The key idea is that a
classification can only be accepted when the confidence level
is met in all employed stream learning algorithms, i.e., the
classification remains reliable as long as there is at least one
reliable stream learning algorithm that outputs correct
classification.

As a result, BigFlow provides an updated stream learning
classification in near real-time with selective human
assistance. This is because only instances that passed through
the classifiers and were rejected require action from experts.
Thereby, this approach requires minimal human intervention
and, most importantly, mitigates the false positives/negatives
alarms.

As the models are incrementally updated only with
instances that were previously rejected, the proposal also
minimizes the cost of model updates.

V. IMPLEMENTATION

A BigFlow prototype was implemented and deployed in a
distributed environment, as shown in Figure 5. The prototype
takes as input network packet headers from MAWI [22], and
for each network packet, its header is exported to the message
middleware. The message middleware was deployed through
the well-known open-source Apache Kafka, version 0.10.2.0.

Our prototype was implemented on top of Apache Flink
stream processing framework [19], version 1.3.0. The
proposed windowing mechanisms (Tumbling Windows) were
also implemented using the native windowing mechanism
provided by the Flink. A default value of 15 s for each

Figure 5 – BigFlow architecture.

Tumbling Window was used, as it provided the best results
after some preliminary evaluation. The customized keyed
messaging was implemented using the KeySelector Flink
interface. The Apache Kafka messages were read through the
Apache Flink connector API, version 0.10_2.10.

The reliable stream learning classification module was
implemented using the massive online analysis (MOA) library
[25], release 16.04. At the startup, the Classification and
Incremental Classifiers Update modules loaded the same
classification model. The rejected instances were stored in
memory by the Rejected Instances Retrieval (Figure 4), which
retrieved the rejected instances through Kafka. The PE
parallelism level was set according to the number of worker
nodes used in our experimental evaluation (Section VI.C).

VI. EVALUATION

 The evaluation test was performed in two steps. First, our
proposed reliable stream learning module was evaluated in
terms of accuracy over time using the MAWIFlow dataset.
Second, we evaluated the BigFlow performance and
scalability as well as the cost of updating the stream learning
module.

A. Accuracy

 For the evaluation of the Reliable Stream Classification
module, four stream learning classifiers were evaluated:
Hoeffding Tree [51], OzaBoosting [54], Leveraging Bag [55],
and an Ensemble of the prior three classifiers that performs
majority voting on the individual outcomes. Similarly, to the
tests conducted in Section III.A, the classifiers were trained
using the first seven days of January, and them employed in
the remainder of the year, without period updates. The
Hoeffding Tree was evaluated with a grace period of 200, a
Naïve Bayes leaf prediction strategy, information gain with
respect to distribution of class values split criterion, and a tie
threshold of 0.05. Both OzaBoosting and Leveraging Bag uses
50 Hoeffding Trees as their base learners, in which each base
learner also uses the same parameters as the individual
Hoeffding Tree.

Our evaluation was performed in three steps: without
BigFlow, with BigFlow without updates (i.e., rejecting results
but not updating the model), and BigFlow with the verifier
module and with weekly incremental model updates. A
weeklong delay for the incremental model updates for the
rejected instances was adopted to mimic the time until an
attack label becomes publicly available.

 Figure 6 shows how each stream learning classifier
performs in MAWIFlow dataset without BigFlow. The same
behavior evidenced in Section III.B can be seen in the absence
of period model updates. The accuracy degradation occurs in
the first months after training. In 2016, the attack error rate
(FP) percentage increases by up to 16%, 20%, 16%, and 18%,
for the Hoeffding Tree, OzaBoosting, Leveraging Bag, and
Ensemble respectively. In contrast, the normal error rate
remains similar in the remainder of the year. Thereby, these
results also show that to remain reliable for a long period, the
intrusion detection model must be updated.

 BigFlow updates its models by the means of the rejected
instances, which are considered to be unreliable (Section
IV.B). To this end, BigFlow, through the verifier module,
evaluates whether the classifier confidence met a specific
threshold, according to the given class (Class Related
Threshold, CRT [53]). Thereby, in order to evaluate the
verifier module, each class must have its threshold set.
However, even if a proper class threshold is selected, the event
confidence level can be biased, i.e., an unseen event (unknown
behavior) may have its confidence level high [52] (see Section
IV.B.2). In the light of this, BigFlow computes the class
confidence for the Ensemble classifier according to Equation
1.

𝐶𝑙𝑎𝑠𝑠 𝐶𝑙𝑎𝑠𝑠 1

 In which n denotes the number of used classifiers, and
𝐶𝑙𝑎𝑠𝑠 the ith class confidence outcome for a class
given by the Ensemble classifier. Thereby, only instances that

(a) No-update Hoeffding Tree (b) No-update OzaBoosting (c) No-update Leveraging Bag (d) No-update ensemble classifier

Figure 7 – Error-reject tradeoff during January 2016 in MAWIFlow dataset. Average error rate is given by the average of FP and FN rates, whilst Average
rejection rate is computed by averaging the rejection rate of both Normal and Attack classes. Thresholds for each class, Normal and Attack, was varied from
1.00 to 0.00 in a 0.01 interval, all operation points are shown.

(a) No-update Hoeffding Tree (b) No-update OzaBoosting (c) No-update Leveraging Bag (d) No-update ensemble classifier

Figure 6 – Average monthly accuracy behavior for different stream learning classifiers without periodic model updates during 2016 in the MAWIFlow dataset.

have a high confidence for all classifiers will have a high
𝐶𝑙𝑎𝑠𝑠 . The confidence values for each used
classifier was computed as a probability value ranging from 0
to 1. The Hoeffding Tree confidence value was computed as
the class probability as measured by the Naïve Bayes in a
given node. For the Leveraging Bag the class confidence was
computed as the normalized sum of each base learner. On the
other hand, the OzaBoosting confidence values was computed
as the weighted normalized sum of each base learner. For both
Leveraging Bag and OzaBoosting the base learners computes
their confidence values by the means of a Hoeffding Tree.

 Figure 7 shows the relation between the average error rate
and the average rejection rate for the evaluated classifiers in
the training month (January). The average error rate refers to
the average of the FP and FN rates, whilst the average
rejection rate refers to the average rejection of both normal
and attack events. It is possible to note that, for all evaluated
classifiers, one can further reduce the average BigFlow error
rate, when a certain rate of rejection can be tolerated. As
previously evaluated, the classifiers increase their FP rate over

time (Figures 1 and 6). In this sense, the classes confidence
thresholds were set according to the attack error rate
improvement. Figure 8 shows the non-dominated solutions
(best operation points), considering the relation between the
attack error rate (FP) and the average rejection rate. It is
possible to note that the Ensemble classifier presents the best
error-reject tradeoff. Moreover, a relation can be seen
regarding the attack error rate and the average rejection rate.
For instance, if a 20 percent of average rejection rate could be
tolerated, the attack error rate percentage can be decreased by
4, and 5, for the Hoeffding Tree, OzaBoosting, Leveraging
Bag, and Ensemble respectively.

 For the remainder of the evaluation tests, the classifiers
thresholds were chosen when the average rejection rate met 40
percent (Figure 8, Operation Points). The operation points
were established in order to enable the evaluation of BigFlow
without updates (i.e., rejecting results but not updating the
model), and BigFlow with the verifier module and with
weekly incremental model updates. In this sense, a lower
rejection rate would not enable the proper evaluation of the
model update impact.

 Figure 9 shows the average monthly accuracy and
rejection rate for the evaluated classifiers with the verifier
module set, however, without periodic model updates. Several
observations can be made regarding the verifier module. The
average rejection rate remains similar to the chosen operation
point over time (40 percent). The normal accuracy (TN)
significantly improves for all classifiers, reaching up to 99
percent, improving the TN by up to 8 percent. The attack
accuracy (TP) also significantly increases, however, in
general, it decreases over time, in the absence of incremental
model updates.

 It is important to note that, when compared to their initial
accuracy in January (Figure 6), without the verifier module,
all evaluated classifiers remained reliable until October. After
that period, the TP rate for the Hoeffding Tree, was lower than
the TP rate for the Hoeffding Tree in January, without the

Figure 8 – Non-dominated solutions for the evaluated Stream Learning
algorithms. Attack error refers to FN rates. Operation points were chosen at
40 percent of average events rejection rate.

(a) Hoeffding Tree with verifier

module

(b) OzaBoosting with verifier

module

(c) Leveraging Bag with verifier

module
(d) Ensemble classifier with verifier

module

Figure 9 – Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the
MAWIFlow dataset.

(a) Hoeffding Tree with verifier

module

(b) OzaBoosting with verifier

module

(c) Leveraging Bag with verifier

module
(d) Ensemble classifier with verifier

module

Figure 10 – Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the
MAWIFlow dataset.

verifier module (Figure 6-a versus Figure 9-a). In this sense,
in the worst case, the classifiers can be considered reliable, for
at least 10 months, when the verifier module is applied,
despite the rejection rate. Finally, it is possible to note that the
Ensemble classifier, by the means of the proposed
𝐶𝑙𝑎𝑠𝑠 computation (Equation 1), is able to
significantly improve its accuracy when compared to the other
classifiers. This occurred because only instances with a high-
class confidence value for all classifiers were accepted.
Thereby, the event will be rejected even if the majority of the
classifiers confidence values are biased, because, if one
classifier output a low confidence value, the event will have a
low final confidence.

The reliability improvement shown by the verifier module
is a desired property for high-speed production networks. In
such environments, correct event labels may not be available
in a short period of time, e.g., the attack becomes publicly
known after three months of its rejection by the verifier
module. In such a case, the rejected events would be stored,
and their labels would be verified on a regular basis. However,
considering the incremental model update would only be
possible three months after the attack occurrence, the classifier
model would still be reliable during this time.

Finally, Figure 10 shows the classifiers accuracy and
rejection rates with the verifier module and a weeklong delay
for incremental updates. Several observations can be made
regarding the incremental update impact. First, all evaluated
classifiers remained reliable throughout the year, considering
both TP and TN rates. Moreover, both TP and TN rates
significantly increases when compared to only applying the
verifier module, without the incremental updates (Figure 9 and
10). The average rejection rate percentage significantly
decreases over time, presenting average rejection rates of
13%, 12%, 12%, and 5% in January, and decreasing up to 5%,
4%, 4%, 2% throughout the year, for the Hoeffding Tree,
OzaBoosting, Leveraging Bag, and Ensemble respectively –

in both cases. Nonetheless, it is possible to note that the
proposed Ensemble approach significantly decreases the
rejection rate when compared to the other classifiers, while
also presents higher TP and TN rates.

As the results show, BigFlow maintains or even improves
the model’s reliability even when facing new network traffic
behavior, regardless of the model being incrementally updated
or not. Figure 11 shows a comparison between our proposal,
the no-update and the weekly-updated classifiers shown in
Section III.B. The proposed approach greatly improves the
detection of attacks for all considered cases, outperforming
even the weekly-updated classifiers.

Discussion

 Although BigFlow was able to significantly decrease the
average rejection rate by the means of incremental model
updates (in the best case from 40 percent to up to 1 percent),
the rejection of events in high-speed networks can be
challenging. The main challenge refers to the number of
events that are going to be rejected, and then, how to process
them later.

 First, for evaluation purposes, the tests performed
previously have operated at 40 percent rejection rate point
(Figure 8). For production usage, one will most likely operate
at a lower rejection rate operation point, thereby rejecting less
instances. Nonetheless, it is important to note that BigFlow
was able to reject up to only 1 percent of instances, starting at
a 40 percent rejection rate. This indicates that, the average
rejection rate will significantly decrease over time when
compared to the initial chosen operation point. Finally, in
production usage, rejected instances will most likely be stored
for a period, until its label is publicly known.

 Second, the labeling task of such rejected instances can be
achieved either by the help of a human expert, normally by
collecting more information about a new behavior, e.g., by
consulting automatically a public repository of

(a) Normal accuracy for our
Ensemble approach versus no

periodic updates

(b) Attack accuracy for our Ensemble
approach versus no periodic updates

(c) Normal accuracy for our
Ensemble approach versus weekly

updates

(d) Attack accuracy for our Ensemble
approach versus Weeklyc updates

Figure 11 – Reliable Stream Learning (Ensemble) module performance comparison during 2016 in MAWIFlow dataset.

Figure 12 – BigFlow throughput performance according to the number of
worker nodes. Figure 13 – BigFlow throughput comparison with and without updates.

vulnerabilities/threats such as the common vulnerabilities and
exposures (CVE), or by finding that a new type of service is
being used in the network.

 In this sense, the BigFlow rejection rate can be even further
decreased. Nonetheless, the labeling process can be made
automatically, if a labeling delay can be tolerated for instance.

 The most important benefit of our proposal, compared to
literature, is to enable the detection that an event cannot be
classified accurately and immediately alert the administrator,
even if the classifier makes a classification mistake with a high
confidence. The action the administrator will perform is under
her/his discretion, we only list some in order to show the
proposal is feasible. One can be noticed that even a traditional
approach, which demands the model rebuilding, a method for
event labeling is still required, the main difference is that the
output of rejection mechanism is a selective way to do that,
facilitating the expert work.

B. Performance, Scalability, and Cost

 For evaluating the scalability of our prototype, we set up a
12-node cluster in a single rack, connected through a 10 GbE
interface. Each node has a 4-core CPU with 8 GB of memory.
In all considered experiments, we set up the BigFlow
prototype (Figure 5), with the Ensemble classifier in the
following way: 1 node ran Apache Kafka, 1 node ran the Flink
Job Manager and from 1 to 10 nodes ran Flink Task Managers.
For throughput evaluation purposes, a set of only 62 features
from Table I was considered. For the evaluation purposes, the
entire month of January in 2016, was used, and a weeklong
delay for the incremental model updates was considered.

Figure 12 shows the throughput and performance
breakdown. The throughput performance is divided into Read
and Parse (Message Consumer and Message Middleware, in
Figure 2), Feature Extraction (Host Aggregator, Flow
Aggregator and Flow Joiner, in Figure 2) and Classification
and Update (Feature Extraction Module, in Figure 4). The
proposed approach achieved 10.72 Gbps with 10 worker
nodes. Regarding its scalability, the proposed approach
increased the throughput by 1.02 Gbps for each additional
worker node. The Feature Extraction module required the
most significant part of the overall processing, representing
61% of the processing time on average, while Classification
and Update together required only 23% on average.

Figure 13 shows the impact of the model’s update on the
system’s throughput. In such a case, the system’s throughput
performance was divided into Classification Without Updates
(BigFlow without Rejected Instances Retrieval and
Incremental Classifier Update modules) and Classification
With Updates (BigFlow). On average, the model’s updates
incurred a throughput loss of little more than 1%. Considering
the throughput for the cluster of 10 worker nodes, the model’s
updates incurred a throughput reduction of only 0.25% (0.03
Gbps).

Finally, Table 3 shows the weekly training time and
required storage for all the evaluated classifiers shown in
Section III.B, considering they would be updated every week.
BigFlow required (on average) only 4.2% of the storage
required by other approaches. Regarding the weekly training
time, BigFlow required at most 4.2% out of the total time
when compared with the complete retraining of DT, RF, GB,
ensemble, and Hoeffding tree classifiers.

VII. RELATED WORK

Several existing works address intrusion detection using
ML techniques [46] [47] [48]. However, task of model
updates has not been, in general, considered in related works
[9] [10]. Thereby, the processing and storage costs required
for such a task have been discarded [9]. The next subsections
further describe related works that address the tasks of
building proper Benchmark Datasets for IDS, Flow
Measurement and Classification, and the Classification
Reliability.

A. Benchmark dataset for IDS

Over the last years, generation of proper datasets for
benchmarking intrusion detection systems has been the
subject of several studies [31, 33, 37]. However, despite
extensive efforts, currently the most used dataset is still the
DARPA1998 dataset [33], with several known issues [34, 35].
When a benchmark dataset is built for IDSs, normally some
strong assumptions about the training data are adopted [31].
For instance, Canali et al. [36] created their dataset by
collecting several website contents from the Internet; they
labeled each datum by using state-of-the-art tools and
manually inspected the data to ensure proper labeling. In this
case, the authors assumed that the most frequently visited
websites worldwide are benign, despite several known cases
of malicious websites [37]. On the other hand, Shiravi et al.
[38] created user profiles on the basis of the user behavior for
each application during an observed time interval, while
Kendall [39] created a dataset by statistically reproducing the
user behavior in an air force environment. In contrast, in
UNSW-NB15 [56], the authors rely in a traffic generator tool
to create their dataset in a controlled environment. In general,
these approaches lack upgradability, wrongly assuming that
network traffic is immutable and considering that the user
behavior can be modeled [40, 41]. MAWIFlow tackles the
problem of creating representative datasets by using real and
valid network traces, while labeling is achieved using state-of-
the-art signature-based detection techniques.

B. Flow Measurement and Classification

Approaches for flow measurement and classification of
massive network activities in general rely on pre-stored data.
Lee and Lee [5] proposed a Hadoop-based network traffic
monitoring and analysis system. The authors performed flow
measurements by mapping raw network activity (PCAP) files
in HDFS. Their proposed approach achieved 14 Gbps in a
cluster of 200 nodes (2 CPU cores each), however, requiring
the prior storage of the PCAP files. The authors performed the
classification relying on a simple connection threshold
through Hive queries, which must be periodically updated in
evolving networks. Fortugne et al. [8] focused on integrating
several anomaly detectors in the Hadoop architecture for
network monitoring. The authors also adopted a similar hash

TABLE III. WEEKLY COMPUTATIONAL AND STORAGE
RESOURCES USED BY EACH APPROACH (EXCLUDING INITIAL SETUP)

Approach Demanded Storage
(Gb)

Training Time
(hours)

Avg. Min. Max. Avg. Min. Max.
Decision Tree

36.41 21.09 43.36

3.91 2.27 4.79
Random Forest 4.40 2.55 5.28
Gradient
Boosting

182.7 104.5 213.0

Ensemble 189.0 108.3 224.0
Hoeffding Tree 2.14 1.22 2.58
BigFlow 1.53 0.28 5.03 0.09 0.03 0.25

function approach to divide network traffic in splits. Each split
had an anomaly detection algorithm, which identified network
activities based on their anomality scores, according to a
specific threshold. However, their approach also required the
execution of computationally expensive periodic updates (i.e.,
full retraining). Moreover, their reported system throughput is
unfeasible for high-speed network monitoring.

Some works have applied stream processing techniques
for the measurement of massive network activities. Baer et al.
[26] proposed a data stream warehouse for network
monitoring. The authors also relied on time windows for
incremental and continuous execution of queries. Moreover,
they combined their proposal with an ML framework for the
classification of exported time windows. However, their
approach relied on a supervised dataset, without considering
the scalability of ML algorithms. They also did not address
scalability, reliability, or model updates. A similar approach
to BigFlow was also taken by Apache Metron [27]. Metron
relied on Apache Storm [18] to perform feature extraction in
time window intervals. The tool however required the storage
of activities in the HBase for post classification, thus requiring
also periodic updates. In a recent work, Viegas et al. [28] used
a subset of 20 features from [17] to address the resiliency to
adversarial attacks in a stream-based intrusion detection
system for high-speed networks. BigFlow improved their
reported throughput by a factor of 9, while extracting 138
additional features and addressing reliability over time
through the rejection approach. Finally, a similar labeling
process used in the MAWIFlow dataset was adopted by Mazel
et al. [29] for the evaluation of unsupervised ML algorithms.
The authors however extracted a small set of flow-based
features and did not evaluate supervised ML schemes. To the
best of our knowledge, BigFlow is the first approach that does
not require the storage of the network activities for neither the
feature extraction nor classification, while it is still able to deal
with the evolving behavior of networks in the case of high-
speed networks.

C. Classification Reliability

Regarding the reliability of classifications in the face of
unknown behavior, a verification approach is often applied in
other fields in which errors have a high cost, such as OCR
[12], medical diagnostics [13], and software fault detection
[21], to name a few. For instance, in the field of medical
diagnostics, Hanczar and Dougherty [13] employed a
verification strategy to reach a desired error rate, while in
software fault detection, Mesquita et al. [21] rejected
classification outcomes that did not meet a desired degree of
certainty. Both approaches rely on an expert to establish the
correct event labels. We did not find any work proposing the
use of verification strategy for intrusion detection. In contrast,
BigFlow employs a verification strategy to deal with the
evolving network behavior and to reach reliability; moreover,
differently from related works, it is able to incorporate the
expert assistance into the prior stream learning model,
significantly reducing the number of further rejected events.

VIII. CONCLUSION

Current approaches for network traffic classification are
unable to meet the desired throughput; they are also unable to
deal with the evolving behavior of network traffic. The
approach proposed in this paper, BigFlow, aimed at providing
high detection throughputs, reliability in face of new network

traffic behavior, and a computationally modest model update
mechanism.

A high detection throughput was reached by performing
feature extraction and classification through stream
processing frameworks. The approach used by BigFlow
groups the exchanged data over the network and summarizes
them in time intervals, significantly reducing the required
computational effort and storage requirements on the intrusion
detector.

To maintain reliability even with evolving network traffic,
BigFlow employs a verification mechanism, which checks
whether the classification outcome should be accepted in
order to avoid high confidence in classification mistakes.

Finally, to provide a lightweight update mechanism,
BigFlow exploits existing stream learning algorithms,
incorporating expert assistance for labeling rejected events
when they are better understood.

 Our experimental evaluation demonstrated that BigFlow is
feasible for use in production and high-speed networks: our
prototype reached up to a 10.72-Gbps throughput in a cluster
of 40 cores, being also capable of dealing with evolving
network behavior over a year of real network traffic, as
evaluated through our MAWIFlow dataset, by incrementally
updating its detection mechanism with expert assistance.

ACKNOWLEDGMENT

 This work was partially sponsored by Coordination for
the Improvement of Higher Education Personnel (CAPES),
grant 99999.008512/2014-0, by FCT through projects
LaSIGE (UID/CEC/00408/2013) and Resilient Supervision
and Control in Smart Grids, and by the European
Commission through the H2020 grant agreement 700692
(DiSIEM).

REFERENCES
[1] CISCO. Cisco Visual Networking Index : Global Mobile Data Traffic

Forecast Update, 2016 – 2021, 2017,
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.pdf

[2] P802.3cd - Standard for Ethernet Amendment,
https://standards.ieee.org/develop/project/802.3cd.html.

[3] DDoS attack that disrupted internet was largest of its kind in history,
experts say,
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-
dyn-mirai-botnet.

[4] Symantec, The continued rise of DDoS attacks,
http://www.symantec.com/content/en/us/enterprise/media/security_re
sponse/whitepapers/the-continued-rise-of-ddos-attacks.pdf.

[5] Y. Lee, Y. Lee, Toward Scalable Internet Traffic Measurement and
Analysis with Hadoop, ACM SIGCOMM Comput. Commun. Rev. 43
(2013) 6–13.

[6] R. Fontugne, J. Mazel, K. Fukuda, Hashdoop: A MapReduce
framework for network anomaly detection., INFOCOM Work. (2014)
494–499.

[7] HDFS Architecture Guide,
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.

[8] R. Fontugne, P. Borgnat, P. Abry, K. Fukuda, MAWILab: Combining
Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking, Proc. 6th Int. Conf. - Co-NEXT ’10.
(2010) 1–12. doi:10.1145/1921168.1921179.

[9] R. Sommer, V. Paxson, Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection, 2010 IEEE Symp. Secur.
Priv. 0 (2010) 305–316. doi:10.1109/SP.2010.25.

[10] C. Gates, C. Taylor, Challenging the Anomaly Detection Paradigm: A
Provocative Discussion, Proc. 2006 Work. New Secur. Paradig. (2007)
21–29. doi:10.1145/1278940.1278945.

[11] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, K. Cho, Seven years and
one day: Sketching the evolution of internet traffic, Proc. - IEEE
INFOCOM. (2009) 711–719. doi:10.1109/INFCOM.2009.5061979.

[12] J.R. Navarro-Cerdan, J. Arlandis, R. Llobet, J.C. Perez-Cortes, Batch-
adaptive rejection threshold estimation with application to OCR post-
processing, Expert Syst. Appl. 42 (2015) 8111–8122.
doi:10.1016/j.eswa.2015.06.022.

[13] B. Hanczar, E.R. Dougherty, Classification with reject option in gene
expression data, Bioinformatics. 24 (2008) 1889–1895.
doi:10.1093/bioinformatics/btn349.

[14] J. Dromard, G. Roudiere, P. Owezarski, Online and Scalable
Unsupervised Network Anomaly Detection Method, IEEE
Transactions on Network and Services Management 14 (2017) 34–47.
doi:10.1109/TNSM.2016.2627340.

[15] N. Williams, S. Zander, G. Armitage, A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification, ACM SIGCOMM Comput. Commun. Rev. 36
(2006) 5. doi:10.1145/1163593.1163596.

[16] A. Moore, D. Zuev, M. Crogan, Discriminators for use in flow-based
classification, Queen Mary Westf. Coll. Dep. Comput. Sci. (2005).
doi:10.1.1.101.7450.

[17] [1] E. Viegas, A.O. Santin, A. Franca, R. Jasinski, V.A. Pedroni, L.S.
Oliveira, Towards an energy-efficient anomaly-based intrusion
detection engine for embedded systems, IEEE Trans. Comput. 66
(2017). doi:10.1109/TC.2016.2560839.

[18] Apache Storm, http://storm.apache.org/.

[19] Apache Flink, https://flink.apache.org/.

[20] M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: A
Review, ACM Sigmod Rec. 34 (2005) 18–26.
doi:10.1145/1083784.1083789.

[21] D.P.P. Mesquita, L.S. Rocha, J.P.P. Gomes, A.R. Rocha Neto,
Classification with reject option for software defect prediction, Appl.
Soft Comput. J. 49 (2016) 1085–1093.
doi:10.1016/j.asoc.2016.06.023.

[22] MAWI Working Group Traffic Archive,
http://mawi.wide.ad.jp/mawi/samplepoint-F/.

[23] Apache Spark MLib, https://spark.apache.org/mllib/.

[24] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans.
Knowl. Data Eng. 21 (2009) 1263–1284.
doi:10.1109/TKDE.2008.239.

[25] MOA – Massive Online Analysis, https://moa.cms.waikato.ac.nz/.

[26] A. Bar, A. Finamore, P. Casas, L. Golab, M. Mellia, Large-scale
network traffic monitoring with DBStream, a system for rolling big
data analysis, 2014 IEEE Int. Conf. Big Data (Big Data). (2014) 165–
170. doi:10.1109/BigData.2014.7004227.

[27] Apache Metron, http://metron.apache.org/.

[28] E. Viegas, A. Santin, N. Neves, A. Bessani, V. Abreu, A Resilient
Stream Learning Intrusion Detection Mechanism for Real-time
Analysis of Network Traffic, IEEE Glob. Telecommun. Conf.
GLOBECOM 2017. (2017). doi:10.1109/GLOCOM.2017.8254495.

[29] J. Mazel, P. Casas, R. Fontugne, K. Fukuda and P. Owezarski. Hunting
attacks in the dark: clustering and correlation analysis for unsupervised
anomaly detection, Int. J. Netw. Manag. (2014) 17–31.
doi.org/10.1002/nem.1903

[30] A. Buczak, E. Guven, A survey of data mining and machine learning
methods for cyber security intrusion detection, IEEE Commun. Surv.
Tutorials. PP (2015) 1. doi:10.1109/COMST.2015.2494502.

[31] E.K. Viegas, A.O. Santin, L.S. Oliveira, Toward a reliable anomaly-
based intrusion detection in real-world environments, Comput.
Networks. 127 (2017). doi:10.1016/j.comnet.2017.08.013.

[32] SecureList. IT Threat Evolution Q1 2017 Statistics.
https://securelist.com/it-threat-evolution-q1-2017-statistics/78475/

[33] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines, K.R. Kendall, D.
McClung, D. Weber, S.E. Webster, D. Wyschogrod, R.K.
Cunningham, M. a. Zissman, Evaluating intrusion detection systems:
the 1998 DARPA off-line intrusion detection evaluation, Proc.

DARPA Inf. Surviv. Conf. Expo. DISCEX’00. 2 (2000).
doi:10.1109/DISCEX.2000.821506..

[34] S. Brugger, J. Chow, An assessment of the DARPA IDS Evaluation
Dataset using Snort, UCDAVIS Dep. Comput. Sci. (2007) 1–19.
doi:10.1.1.94.674..

[35] J. McHugh, Testing Intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln Laboratory, ACM Trans. Inf. Syst. Secur. 3 (2000) 262–
294. doi:10.1145/382912.382923.

[36] D. Canali, M. Cova, G. Vigna, C. Kruegel, Prophiler : A Fast Filter for
the Large-Scale Detection of Malicious Web Pages Categories and
Subject Descriptors, Proc. Int. World Wide Web Conf. (2011) 197–
206. doi:10.1145/1963405.1963436.

[37] Symantec. Internet Security Threat Report 2017.
https://www.symantec.com/content/dam/symantec/docs/reports/istr-
22-2017-en.pdf.

[38] A. Shiravi, H. Shiravi, M. Tavallaee, A. a. Ghorbani, Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection, Comput. Secur. 31 (2012) 357–374.
doi:10.1016/j.cose.2011.12.012.

[39] K. Kendall, A Database of Computer Attacks for the Evaluation of
Intrusion Detection Systems, Mater Thesis (1999).

[40] V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson
Modeling, IEEE/ACM Trans. Netw. 3 (1995) 226–244.
doi:10.1.1.31.61.

[41] S. Axelsson, The Base-Rate Fallacy and the Difficulty of Intrusion
Detection, ACM Trans. Inf. Syst. Secur. 3 (2000) 186–205.
doi:10.1145/357830.357849.

[42] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers (1993).

[43] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
doi:10.1023/A:1010933404324.

[44] J. H. Friedman, Greedy function approximation: A gradient boosting
machine, Ann. Statist (2001) 1189–1232.

[45] T.T.T. Nguyen, G. Armitage, A survey of techniques for internet traffic
classification using machine learning, Commun. Surv. Tutorials, IEEE.
10 (2008) 56–76. doi:10.1109/SURV.2008.080406.

[46] S. Lee, J. Kim, S. Shin, P. Porras, V. Yegneswaran, Athena: A
Framework for Scalable Anomaly Detection in Software-Defined
Networks, Proc. - 47th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Networks, DSN 2017. (2017) 249–260. doi:10.1109/DSN.2017.42.

[47] S.E. Gómez, B.C. Martínez, A.J. Sánchez-Esguevillas, L. Hernández
Callejo, Ensemble network traffic classification: Algorithm
comparison and novel ensemble scheme proposal, Comput. Networks.
127 (2017) 68–80. doi:10.1016/j.comnet.2017.07.018..

[48] C. Feng, T. Li, D. Chana, Multi-level Anomaly Detection in Industrial
Control Systems via Package Signatures and LSTM Networks, Proc. -
47th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Networks, DSN
2017. (2017) 261–272. doi:10.1109/DSN.2017.34.

[49] Snort – Network Intrusion Detection System. https://www.snort.org/.

[50] Bro – The Bro Network Security Monitor. https://www.bro.org/.

[51] G. Hulten, L. Spencer, P. Domingos, Mining Time-changing Data
Streams, Proc. 7th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (2001) 97–106. doi:10.1145/502512.502529.

[52] R. Jordaney, K. Sharad, S.K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
L. Cavallaro, Transcend: Detecting Concept Drift in Malware
Classification Models, 26th USENIX Secur. Symp. (USENIX Secur.
17). (2017) 625–642.

[53] G. Fumera, F. Roli, G. Giacinto, Reject option with multiple
thresholds, Pattern Recognit. 33 (2000) 2099–2101.
doi:10.1016/S0031-3203(00)00059-5.

[54] N. Oza and S. Russell, Online bagging and boosting, Proc. Artificial
Intelligence and Statistics (2001) 105-112.

[55] A. Bifet, G. Holmes, and B. Pfahringer, Leveraging bagging for
evolving data streams, Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics (2010) 135–150.

N. Moustafa, J. Slay, UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),
2015 Mil. Commun. Inf. Syst. Conf. (2015) 1–6.
doi:10.1109/MilCIS.2015.7348942.

