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Abstract— Existing machine learning solutions for network-
based intrusion detection cannot maintain their reliability over 
time when facing high-speed networks and evolving attacks. In 
this paper, we propose BigFlow, an approach capable of 
processing evolving network traffic while being scalable to large 
packet rates. BigFlow employs a verification method that checks 
if the classifier outcome is valid in order to provide reliability. If 
a suspicious packet is found, an expert may help BigFlow to 
incrementally change the classification model. Experiments with 
BigFlow, over a network traffic dataset spanning a full year, 
demonstrate that it can maintain high accuracy over time. It 
requires as little as 4% of storage and between 0.05% and 4% 
of training time, compared with other approaches. BigFlow is 
scalable, coping with a 10-Gbps network bandwidth in a 40-core 
cluster commodity hardware. 

 
Keywords—Data Stream, Stream Learning, Classification 

Reliability, Anomaly-based Intrusion Detection 

I. INTRODUCTION  

According to the CISCO network forecast report, the 
worldwide network traffic in 2016 was 96 EB/month and is 
expected to reach 278 EB/month in 2021 [1]. Current network 
devices can reach a bandwidth of 100 Gbps, and there are 
plans to support a bandwidth of 400 Gbps in the near future 
[2]. Moreover, recent network-based cyber-attacks also take 
advantage of this scenario to hide themselves—given that they 
deceive detection engines—by taking advantage of the large 
amount of data that should be inspected in a very short time. 
For instance, in October 2016, a DDoS attack with 100 
thousand malicious endpoints surpassed a bandwidth of 1.2 
Tbps in a domain name server infrastructure. Attacks of this 
kind can potentially bring down several sites in US and 
Europe, including Twitter, Netflix, and CNN [3]. Nonetheless, 
reports of attacks reaching more than 100 Gbps of traffic are 
becoming surprisingly common nowadays [3, 4]. Therefore, 
operators need access to solutions for real-time analysis of 
such malicious content over those massive network attacks.  

Current approaches for network traffic measurement and 
analysis in the Big Data context often rely on Hadoop-based 
clusters [5, 6]. In general, they store packets as raw data (pcap) 
to a distributed filesystem (e.g., HDFS [7]) and process them 
later. Although such approaches offer significant 
improvements in scalability [5], they lack applicability to real-
world environments because in such settings, the network 
traffic must be analyzed at line speed for a delay-free intrusion 
detection. 

Current methods for discovering new network attacks 
mostly use unsupervised machine learning (ML) techniques, 
which typically require storing the network traffic over a 
certain time for identifying unknown anomalies [8]. However, 
owing to the massive amount of network packets, their storage 
for further analysis is not feasible in most scenarios [9]. 
Thereby, to enable the near real-time (as close as possible to 

the network throughput) detection of threats, supervised ML 
techniques should be considered [10]. When using these 
methods, the traffic behavior is in general represented as a 
model, resulting from a computationally expensive process 
(the training stage). Afterward, the classifier uses the obtained 
model, to categorize the input events as either normal or 
attacks.  

However, as the behavior of traffic changes, either due to 
new types of malicious actions or alterations in the transmitted 
content (e.g., due to the offering of new services [9, 11]), the 
attack models require constant revision. Consequently, the 
model’s accuracy observed on the training dataset might not 
be evidenced on unseen data. In such a case, the intrusion 
detection engine will no longer be trusted by the operator 
given that the alarms are not generated as expected [9]. In this 
paper, we assess this accuracy loss experimentally, using a 
real network traffic dataset spanning a year and four ML 
classifiers. Our experiments show that the accuracy of 
classifiers trained in the beginning of the year can decrease by 
up to 23% during the year.  

The identification of changes in the network behavior is a 
challenging task, which often requires human intervention for 
the reevaluation of the current model’s error rate. Thus, to 
achieve reliability, the model must be periodically tested and 
updated (e.g., every month). This requires human intervention 
not only for rebuilding the model (which takes time and 
storage) but also for ensuring that the production model is 
operational, with acceptable error rates.  

 This paper proposes BigFlow, a system for reliable real-
time network traffic classification in high-speed networks. 
Our proposal is based on two main insights. First, BigFlow 
determines whether the classification outcome should be 
accepted or not, in contrast to traditional approaches, which 
always classify events as normal or attack. The purpose is to 
make the administrator aware that a possible change has 
occurred in the network traffic behavior. In this sense, when 
an event is rejected, there is a high probability that a new 
network traffic behavior is taking place. Although 
classification rejection has been used in other areas (e.g., for 
optical character recognition (OCR) [12] or medical diagnosis 
[13]), in these areas contextual information can help to 
identify pattern deviations; however, in the high-speed 
network traffic field, such a task is challenging. The main 
challenge that is not present in other areas [12, 13] relates to 
rejections based on the classifier confidence. This is because 
a classifier may become unreliable when facing unseen 
network traffic behavior, thereby committing classification 
mistakes with high confidence [52]. The second insight relates 
to the fact that BigFlow employs stream learning techniques 
[20] to analyze traffic in near real time. Such techniques 
support incremental model updates based on the rejected 
instances. The expectation is that after a period (e.g., within 



 

 

one week), the rejected event is properly classified by an 
expert or a tool (e.g. signature-based network-based intrusion 
detection system - NIDS) based on public information (e.g., 
new indicators of compromise). A major advantage of this 
approach is that the incremental model updates, that 
incorporates new knowledge into the model, is based only on 
correctly classified events. This decreases the risk of 
inaccurate detections, which may lead to a high rate of false 
positives when processing further packets. Moreover, 
incremental model updates significantly decrease training 
time because the current model is not discarded, which is 
advantageous for high-speed networks. 

 Rejecting low-confidence classifications in an NIDS – the 
key idea of this work – leads to two important benefits: better 
detection accuracy (i.e., fewer misclassifications) and the 
identification of new characteristics of the evolving traffic, 
which are then used to incrementally update the classifier 
model. These benefits improve BigFlow reliability over time, 
even if the network’s traffic behavior changes, at the same 
time significantly decreasing the amount of computational and 
storage resources needed to operate the system. 

 In combination, these techniques make BigFlow scalable 
with the number of nodes employed in the system (with a 
network traffic processing capacity of up to 10 Gbps in our 
experiments), without losing accuracy over time. 

 In summary, the paper includes four contributions:  

1. We provide the first publicly available dataset for 
benchmarking intrusion detection engines over a long 
period, called MAWIFlow. This dataset contains real and 
labeled network traffic records with 158 features each, 
extracted from 15-min-long daily traces spread over a 
year of real network traffic. MAWIFlow is composed of 
over 6 billion network flows with almost 8 TB of data;  

2. We analyze the behavior of several traditional ML 
classifiers using MAWIFlow. Our findings show that 
current approaches are unable to cope with traffic 
changes observed in real networks, and their accuracy 
decreases significantly in a few months after the training 
period;  

3. We present BigFlow, a reliable stream learning intrusion 
detection engine that can maintain its accuracy over long 
periods of time. Our solution evaluates the classification 
reliability, while it allows to incrementally update the 
intrusion detection engine. BigFlow requires as little as 
4% of storage and from 0.05% to 4% of training time, 
compared with current intrusion detection approaches in 
the literature;  

4. We address the problem of network traffic classification 
using big data streaming processing, without data 
persistence, aiming to scale up to relevant data rates on 
commodity hardware. Our experiments show that 
BigFlow can cope with a 10 Gbps traffic rate in a 40-core 
cluster of commodity hardware.  

 The remainder of this paper is organized as follows: 
Section II presents the background for BigFlow; Section III 
presents the MAWIFlow dataset and evaluation using several 
traditional ML schemes; Section IV describes the BigFlow 
proposal, while Section V describes the prototype architecture 
and implementation; Section 6 VI presents the evaluation of 
our solution; Section VII describes the related works; and 
Section VIII concludes our work.  

II. BACKGROUND 

A. Stream Processing 

BigFlow is built on top of a stream processing platform for 
dealing with large volumes of network traffic in near real-
time. Stream processing platforms (e.g., Apache Storm [18] 
and Apache Flink [19]) receive data from registered sources 
and compute over such data through a set of processing 
elements (PE). Each PE is responsible for a specific operation 
on the arriving data and for sending the result to another PE, 
until the computation completes. In general, the messages 
transmitted through the PEs can be forwarded according to 
three approaches: shuffle, keyed, or broadcast. In the shuffle 
approach, the PE messages are sent to another PE in a 
uniformly distributed manner. The keyed approach groups 
messages according to a key (e.g., IP address) and sends them 
to the PE associated with it. Finally, the broadcast approach 
transmits the messages to every PE of the same type. The near 
real-time processing using such platforms is achieved by 
keeping the computation in each PE type as small as possible, 
and by distributing the message load uniformly through many 
PE in parallel. 

B. ML for Intrusion Detection 

In general, network attacks are detected using either 
signature-based or anomaly-based techniques [30]. In the 
former approach, the attack patterns must be known and 
implemented in the system because the detection of attacks is 
achieved by scanning the packets for well-known attack 
patterns. The main drawback of this approach is the high 
number of patterns that need to be stored/analyzed as every 
attack has a unique signature [31]. Nonetheless, attackers 
often make changes to already known attacks to evade this 
detection technique. For instance, only in the first quarter of 
2017, more than 55 thousand attack variations for only 15 
attack families were discovered [32]. 

Recently, anomaly detection has been done using ML 
techniques, which can be broadly divided into unsupervised 
and supervised categories. Unsupervised ML techniques are 
simpler to use but usually result in many false positives [8]. 
Therefore, they are seldom used in practice. Supervised ML 
methods require a model of the network’s behavior, which is 
built in a computationally expensive process – the training 
stage – using a training dataset [10]. Afterward, the built 
model can be used in production (real-world environment) by 
a classifier algorithm, to classify input events as either normal 
or attacks. Thus, as long as the network traffic behavior 
follows the same pattern captured in the training stage, the 
constructed classifier model can be used for the real-time 
detection of threats [10]. 

When using ML for intrusion detection, the network traffic 
behavior is represented by a set of features. In general, when 
network-level attacks are considered, the features are usually 
extracted according to the network flow. Table 1 lists a subset 
of the features that were used throughout the experiments in 
this paper. The features in Table 1 are divided into two groups: 
Host-based and Flow-based. The former refers to the features 
extracted from all the data sent from a specific host during a 
period. In contrast, the latter refers to the communication 
between two entities over the network, which can be from 
source to destination, destination to source, or both. 

Unfortunately, general-purpose networks rarely exhibit 
stable traffic patterns [9, 11]. On the contrary, the set of target 
concepts (e.g., network traffic classes) learned during the 



 

 

training stage often evolves over time [20]. For instance, the 
behavior of a network may change because new services are 
added [9] or owing to modifications of the attacks’ execution. 

The identification of changes in production networks 
typically involves a computationally demanding task of model 
rebuilding, which can only be performed if there is access 
(storage) of recently observed traffic and prior (manual) 
classification of events. Furthermore, model rebuilding cannot 
be postponed, because while a new model is being 
constructed, the model currently in use should maintain 
acceptable error rates, ideally as low as the ones observed 
during the training stage [9]. This makes the process 
unfeasible for most high-speed networks. 

In other fields, a typical approach to deal with evolving 
environments is to resort to stream learning algorithms [20]. 
These techniques allow the update of the detection mechanism 
to be performed at the arrival of each new event, 
incrementally, without discarding the current model. Thus, the 
time needed for building an updated classifier model can be 
shortened [9]. However, these techniques typically rely on 
supervised learning, in which events need to be previously 
classified [8]. Moreover, it is necessary to devise a method for 
event selection that would be suitable for incrementally 
updating the model [20]. This renders the current approaches 
not applicable to networked environments [10]. 

Another solution that has been explored for improving the 
reliability of ML classifiers – but not for intrusion detection – 
is to reject classifications [12]. Therefore, the classification 
outcome may be rejected according to the given event class 
(Normal or Attack) probability (confidence). For example, 
events classified as attacks could only be accepted when their 
associated confidence measure is above 90%. This approach 
has been employed in areas where errors have a high 
associated cost, such as OCR [12] and medical diagnostics 
[13]. However, in the field of network detection, the reliability 
of detection is often neglected [9], leading to an unreliable 
intrusion detection system.   

III.   MAWIFLOW DATASET AND ANALYSIS 

In this section, we describe a novel dataset based on real 
network traffic [22], and experiments in which we evaluated 
the accuracy of traditional intrusion detection methods over 
time. 

A. MAWIFlow 

To benchmark ML-based NIDS, we present the 
MAWIFlow dataset (i.e., a collection of records labeled as 
either Normal or Attack), assembled based on real network 
flows collected over a year. A dataset for the tasks that we 
study should fulfill a number of requirements, including 
realism and high variability, having labeled data with correctly 
classified events, being reproducible, and being publicly 

available [17]. Ideally, the data should be obtained from real 
network activity, as it provides all the expected properties 
from an evaluation testbed [8]. However, collecting such data 
is difficult and, when obtained, its sharing is unlikely owing 
to privacy concerns [9]. Furthermore, establishing proper 
event labels for network activity is a challenging task, which 
often requires human intervention [10].  

MAWIFlow is based on real and publicly available 
network traffic. More specifically, it is based on the network 
flows that were extracted from the MAWI network packets 
traces [22] (Samplepoint-F in MAWI archive), collected daily 
for a 15-min-long interval, from a transit link between Japan 
and USA. During the period of recording, the Samplepoint 
was made of a 1Gbps network traffic link. In addition, the 
network traces are anonymized, i.e. network packet payloads 
are removed, and sensitive network packet header fields are 
anonymized. The labeling of records was performed using 
MAWILab [8], which labels the daily anomalous events 
(network flows) from MAWI through a combination of 
several unsupervised anomaly detectors. For the purpose of 
this work, we consider all of the network traffic available for 
the year 2016. Network anomalies are classified according to 
their attack types as labeled by MAWILab. Therefore, 
network anomalies can be made of several types of portscan, 
network scan, denial-of-service, distributed denial-of-service, 
amongst others network-level attacks [22].  

The MAWIFlow dataset was built using the BigFlow 
feature extraction module (discussed in Section IV.A), which 
extracted 158 host-based and flow-based features, some of 
which have been employed in previous works (15 features in 
[14], 21 features in [15], 60 features in [16], and 62 features in 
[17]). Table 1 provides a partial list of those features. For the 
label assignment process, MAWIFlow assigns labels that are 
associated with the flows from which the features were 
extracted. Table 2 summarizes the MAWIFlow dataset. As can 
be seen, this dataset contains over six billion network flows, 
extracted by analyzing more than 30 billion network packets 
(real traffic) for the year 2016.  

The original MAWIFlow dataset contains over 7.9 TB of 
data. A stratification process was needed to reduce its size, 
enabling its sharing and facilitating its use for the NIDS 
evaluation. Thereby, the proportional random stratified 

TABLE II. MAWIFLOW STATISTICS

Field Value 
Average Daily Network Packets ~110 Millions
Average Daily Network Flows ~22 Millions
Average Daily Throughput ~570 Mbps
Average Daily Anomalous Flows ~1.7 Millions
Average Daily Dataset Size ~21.7 GB
Total Network Packets ~30.36 Billions
Total Network Flows ~6.07 Billions
Total Dataset Size ~7.9 TB

TABLE I. NETWORK-LEVEL FEATURE SET USED IN THE EXPERIMENTS THROUGHOUT THIS WORK [17] 

Type Grouping Features 
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Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets (SYN and 
FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK Flag), Percentage 
of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP Redirect Flag), Percentage 
of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag), Percentage of Packets (ICMP Other 
Types Flag), Average Packet Size, Throughput in Bytes, Protocol
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Source to 
Destination 

Number of Packets, Number of Bytes, Average Packet Size, Percentage of Packets (PSH Flag), Percentage of Packets (SYN and 
FIN Flags), Percentage of Packets (FIN Flag), Percentage of Packets (SYN Flag), Percentage of Packets (ACK Flag), Percentage 
of Packets (RST Flag), Percentage of Packets (ICMP Redirect Flag), Percentage of Packets (ICMP Redirect Flag), Percentage 
of Packets (ICMP Time Exceeded Flag), Percentage of Packets (ICMP Unreachable Flag), Percentage of Packets (ICMP Other 
Types Flag), Throughput in Bytes 
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sampling without replacement method [24] was employed to 
generate the stratified MAWIFlow dataset. The resulting 
dataset comprised just one percent of the original dataset, 
while it maintained the original proportions of the network 
traffic classes (Normal and Attack), which were randomly 
chosen.1  

Besides being the first publicly available dataset of this 
kind, MAWIFlow overcomes the main challenges associated 
with building realistic datasets for benchmarking intrusion-
detection engines. More specifically, it has all of the desired 
characteristics described in [38], summarized as follows. 

Realism: The network traffic used for building the dataset was 
obtained from real network traces. Moreover, MAWIFlow was 
built from over a year-long observation data of real network 
traces, enabling not only evaluation of the detection system 
during a specific period of time, but also the evaluation of its 
behavior over time, when facing new network traffic behavior; 

Validity: The network traces used for building the MAWIFlow 
dataset were collected from real network traces. Although 
MAWI (network traces used in MAWIFlow) is provided in a 
sanitized manner, i.e., payload is removed and sensitive data 
from network packet headers are encrypted, the network flow 
reconstruction is still possible. In this manner, the sanitization 
process used by MAWI does not affect the features’ values; 

Prior labeling: The event labels were identified by state-of-
the-art unsupervised ML techniques (assessed by MAWILab). 
In this manner, supervised ML techniques can be evaluated 
regarding their performance as compared to unsupervised 
techniques; 

High Variability: MAWIFlow is highly variable not only 
owing to the used network traces but also owing to its long 
period of recording. The used network traces are real, valid, 
and collected from real network infrastructure, thereby it 
presents the expected variability from production 
environments. Nonetheless, owing to its long period of 

recording (the entire year 2016), the detection system can be 
evaluated considering the environment variability during an 
entire year.   

Reproducibility and Public Availability: The used network 
traces were collected from publicly available sources 
(MAWI). Moreover, BigFlow (Section IV) source code is also 
publicly available. 

B. Accuracy Degradation of ML Classifiers  

The purpose of the analysis is to determine if ML-based 
approaches can maintain accuracy over time while processing 
traffic from real networks. In our evaluation, we considered 
three individual and different classifiers that are usually 
employed for intrusion detection: decision tree (DT) [42], 
random forest (RF) [43], gradient boosting (GB) [44], and an 
ensemble [45] classifier composed from DT, RF, and GB that 
decides based on majority voting across each classifier’s 
decisions.  

For each of the evaluated classifiers two update schemes 
were tested: no-update and weekly-update. The no-update 
scheme used a single training step using the data of 
MAWIFlow from the first seven days of January, and then 
employed the built model for the remainder of the year. In the 
weekly-update scheme, the model lasted for only seven days, 
and then a new model was built using the previous seven days 
of data as training, thus retraining (rebuilding) the classifier 52 
times during the year (once every week). 

Apache Spark MLib [23] version 2.1.1 was used for the 
implementation and evaluation of the aforementioned 
classifiers. The DT information gain criterion relies in gini 
impurity measure. The RF was composed of 50 decision trees, 
with a feature subset selection strategy as the square root of 
the number of decision trees. Finally, for the GB, 50 iterations 
were used with decision trees as weak learners. Owing to the 
imbalanced nature of network traffic (in MAWIFlow only 
1.52% of flows were labeled as anomalies), the random 
undersampling without replacement method [24] was applied 
during the training stage, to balance the classes (Normal and 
Attack). The true negative (Normal accuracy) and true 

(a) No-update decision tree classifier (b) No-update random forest 
classifier 

(c) No-update gradient boosting 
classifier  

(d) No-update ensemble classifier 

(e) Weekly-update decision tree 
classifier 

(f) Weekly-update random forest 
classifier  

(g) Weekly-update gradient boosting 
classifier 

(h) Weekly-update ensemble 
classifier 

Figure 1 – Average month accuracy behavior for different classifiers with and without periodic model updates during 2016 in the MAWIFlow dataset. 

 1 In order to validate the stratification procedure, all classifiers (Section
III.B) were also evaluated using the original MAWIFlow dataset through
Apache Spark MLib, the same accuracy behavior was evidenced.  



 

 

positive (Attack accuracy) rates are shown in Figure 1. The 
figure shows the monthly average accuracy of the classifiers 
in the no-update and the weekly-update schemes, with the 62 
features listed in Table I.2  

 All evaluated classifiers have shown an accuracy impact 
during the year 2016. Considering the no-update scheme 
(Figures 1-a, 1-b, 1-c, and 1-d), the classifiers were able to 
maintain accuracy for Attack for the first two months (January 
and February), while exhibiting a reduction during the 
remainder of the year. Comparing the average Attack 
accuracy in January with the rest of the year, we observed a 
reduction of 6%, 10%, 6.8%, and 7% for the DT, RF, GB, and 
ensemble classifiers, respectively. The worst case was 
evidenced in October, with the Attack accuracy drops of 
16.8%, 23%, 17.2%, and 17.5% for the DT, RF, GB, and 
ensemble classifiers, respectively. On the contrary, the 
accuracy of Normal packets did not significantly change, and 
in the best case, it increased by 1.2% (ensemble classifier).  

 With regard to the weekly-update classifiers (Figures 1-e, 
1-f, 1-g and 1-h), the results demonstrate that the periodic 
updates helped the classifiers to remain reliable. Their 
accuracy did not significantly change during the year, and in 
some cases, even improving compared with their initial 
accuracy in January. The highest increase in the accuracy was 
by 2.6% for Attack detection.  

 In summary, this experiment provides evidence that in 
production high-speed networks, anomaly detection 
classifiers must be updated periodically; otherwise, their 
outputs become unreliable over time. However, regularly 
updating the classifiers is challenging in high-speed networks, 
because the networks’ activity must be stored for further 
analysis and should be labeled accordingly. 

IV. BIGFLOW  

 To address the aforementioned evolving behavior of high-
speed open networks, we present BigFlow, a reliable stream 
learning intrusion detection system. The goal is to maintain 
reliability in the outputs of the classifier and high accuracy 
over time, while substantially reducing the extent of human 
expert intervention and the amount of data that needs to be 
stored. The operation of BigFlow proceeds in two main stages: 
feature extraction and reliable stream learning.  

Feature extraction is performed using a traditional stream 
processing framework. Its purpose is to compute the flow 
statistics, which are represented as a feature vector (an event 
or instance, in ML terminology). The flow statistics 
computation is performed in real time, summarizing the 
information about the traffic between two hosts in a time 
interval. Since only the statistical analysis results need to be 
stored in the memory, during the specified time interval, there 
is no requirement for the storage of the observed network 
packets.  

The reliable stream learning stage receives as input the 
feature vector (composed from the flow statistics) and 
classifies it as either Normal or Attack. To operate in near real 
time, BigFlow employs a stream learning classifier with a 
verifier module. This module decides whether the 
classification outcome is reliable and should be accepted; 
otherwise, it is rejected. When an event is rejected, it is stored 
until it can be labeled. The rejected event is labeled by a 
human expert, normally by collecting more information about 
a new behavior, e.g., by consulting a public repository of 
vulnerabilities/threats such as the common vulnerabilities and 
exposures (CVE), or by finding that a new type of service is 
being used in the network. Then, the rejected instance is used 
to incrementally update the stream learning classifier.  

 The next subsections describe in detail these two stages, 
including the architecture of the modules that implement the 
stages and description of the main components. 

A. Feature Extraction 

To measure and classify the network activity, it is 
necessary to compute statistics about the network traffic 
exchanged between relevant entities over a period of time. 
There are several works that focus on extracting features for 
flow classification [14, 15, 16]. However, contrary to 
BigFlow, none of them is capable of monitoring high-speed 
evolving networks. In such a context, to avoid the storage of 
network data, the feature extraction process should be 
performed in near real-time. Thereby, we have established a 
feature set according to the processing demanded for its 
extraction, which is, in general, responsible for the most 
significant part of the overall demanded processing [17] 
(Section VI.B). 

 BigFlow can extract up to 158 features. The feature set 
considers both host (host statistics) and flow (host to host 
statistics) granularity. Host statistics are features that are 
extracted based solely on the data sent/received from a 

 2 It is important to note that the same behavior was evidenced with the
other features sets for all experiments; however, for space purposes only the
results obtained using the set of 62 features [17] are shown. 

Figure 2 – BigFlow real-time feature extraction module architecture for high-speed networks. 



 

 

specific host, e.g., percentage of SYN packets sent in a time 
period. On the other hand, flow statistics features comprise 
information about the communication between two hosts, e.g., 
average size of the packets exchanged between the hosts. 

The architecture of the feature extraction module of 
BigFlow is shown in Figure 2. Monitored agents (e.g., hosts, 
network switches or routers) transmit the events through a 
message middleware. An event corresponds to a unit of 
analysis, e.g., a network packet or a netflow record. The 
message middleware acts as a broker of events, being 
responsible for providing a single interface for the monitored 
agents.   

The Message Consumer module acts as the data producer 
for the feature extraction module. Its only purpose is to receive 
the available events from the message middleware, regardless 
of their content or source agent. Each collected event is 
forwarded to the Message Parser module in a PE of stream 
processing, using the shuffle approach (Section II.A). The 
Message Parser module in turn determines the event’s source, 
fields, and type (e.g., network packet or netflow record).  

As an example, consider two distinct monitored agents: a 
switch and a router. The switch exports network packet 
headers, while the router exports expired netflow records. The 
Message Consumer module reads both types of events from 
the message queue, and simply distributes them through the 
available Message Parser module, keeping the computing 
load even. The Message Parser module, in turn, processes the 
packet headers and netflow records according to each event 
type, collecting the relevant fields.  

The Host Aggregator and Flow Aggregator modules 
perform the actual network flow statistics computation 
(feature extraction). To do that in near real-time and in a 
distributed manner, both aggregators receive messages 
through a keyed stream. The key for the Host Aggregator 
module is calculated by hashing the event source addresses 
(source IP address), while the key for the Flow Aggregator 
module relies on the XOR operation on both source and 
destination addresses (source and destination IP addresses). 
To divide the load, each module is responsible for a range of 
hash values. Thus, through XOR’ing, it is possible to forward 

messages from two specific hosts to the same flow aggregator 
PE, regardless of the direction taken by a packet.  

To compute feature values from the grouped events, 
BigFlow discretizes them in time intervals, referred to as the 
Tumbling Window modules. Each Tumbling Window module 
stores and updates the features’ values for a specific period, 
according to each received event. When a Tumbling Window 
expires (i.e., the period is over), the values of the flow features 
are exported in a host or flow statistics format, and the 
computation of the features’ values starts over for a new 
window.  

Figure 3 illustrates the BigFlow computation through 
Tumbling Windows. The figure considers two hosts 
exchanging messages over the network for 60 s, and a 
Tumbling Window period of 15 s. To compute the flow 
statistics, the Message Parser module forwards all arriving 
events exchanged between these two hosts to the same Host 
and Flow Aggregators. Each aggregator computes the flow 
features’ values during 15 s (“T.Window 1” in the figure). 
When a Tumbling Window expires, it exports the host and flow 
statistics to the next module. As a new event arrives after the 
initial 15 s, the Host and Flow Aggregators create another 
Tumbling Window (“T.Window 2” in the figure) and start the 
flow features’ computation again.  

The usage of Tumbling Windows for computing flow 
features brings two important benefits. First, it ensures that all 
active flows will expire, without periodic checks, supporting 
a simple garbage collection mechanism. Second, it ensures 
that the amount of resources required for the computation of 
long-lived flow features values remains limited, thus allowing 
scalable processing.  

Finally, the Flow Joiner modules are responsible for 
receiving all host and flow statistics values and for joining 
them in a single stream. The module receives the exported 
events through the hash of the source address of either host or 
flow statistics. Thus, a Flow Joiner is responsible for a range 
of hash values, causing all values from a given subset of hosts 
to be given to the same module. For each received flow 
statistic, the Flow Joiner aggregates it with the respective host 
statistics and exports the result to the next module.  

Notice that a single host may have several exported flow 
features, while having a single host feature, e.g., a single host 
accessing services in several other hosts. Thereby, the Flow 
Joiner module must also store the host flow, to join it with 
several exported flow features in a single Tumbling Window. 
To this end, the Flow Joiner module also relies on the 
Tumbling Window module.  

Figure 3 – BigFlow flow computation through the Tumbling Window
approach. 

 
Figure 4 – BigFlow reliable stream learning module. 



 

 

B. Reliable Stream Learning  

After the network flow computation, it becomes possible 
to classify the feature vectors as either Normal or Attack 
(anomalous). As shown in Section III.B, the network 
content/traffic changes over time, rendering the classifier 
unreliable. Thereby, the employed classification mechanism 
must be able to reliably cope with such changes. In practice in 
production networks, the model must be updated regularly 
(e.g., every week), owing to evolving traffic patterns [9]; 
eventually, if a new vulnerability is critical, an update should 
be made immediately after rejection.  

To deal with the intrinsic evolving nature of the network 
traffic, BigFlow relies on the stream learning intrusion 
detection. When a classification outcome is rejected, BigFlow 
stores that event until an administrator labels it. The rejected 
events are used later for incremental updates, thereby 
minimizing the costs of the model update, while still having 
an updated classifier model. Figure 4 shows an overview of 
the BigFlow reliable stream-based classification module.  

1) Setup 
At the startup, BigFlow trains the stream learning classifier 

using a training dataset. A classifier model is obtained and 
replicated, among several classification processors, to ensure 
that the classification throughput scales with the number of 
PEs. During the testing stage, the classification thresholds for 
each class (Normal or Attack) are defined. The class 
classification thresholds are used to define whether the 
classification outcome should be accepted or not.  

2) Real-time Learning 
The BigFlow stream learning module aims to provide 

reliable classifications, employing a Verification module; at 
the same time, to provide updated ML models, it executes 
incremental classifier updates using the rejected instances.   

The verification module receives (from the classifier), the 
instance, the assigned class, and the classifier confidence 
measure on the assigned class. Using the classification 
thresholds established during the setup stage, the verifier 
module decides whether the classification outcome should be 
accepted or not. For instance, consider a confidence threshold 
of 70% for the Attack class; then, the verifier module accepts 
an instance labeled as Attack only if its confidence level is 
above 70%; otherwise, the event is rejected. 

The rejected instances are stored (Figure 4). Periodically, 
these instances are retrieved, and their labels are requested by 
an administrator. This administrator can be a human that 
verifies the event label using publicly available label sources, 
such as the CVE, Twitter or security newsfeed, or the one that 
is able to understand new legitimate applications or traffic 
behaviors on the network. It can also be an auxiliary system 
composed of signature-based NIDSs that are periodically and 
automatically updated with a new indicator of compromises 
(e.g., Snort [49], and Bro [50]), which hopefully capture novel 
attack behaviors. 

If an event is labeled, the instance and its correct label are 
used for the incremental model update; otherwise, the event 
remains stored until its class (normal or attack) becomes 
publicly known, or a certain threshold time is reached. In the 
latter case, the instance can be either discarded or assumed to 
be Normal. For example, a rejected event is stored for a 
month, and after this time, if it still had not been associated 

with an Attack using any of the public sources for labeling, it 
is deemed as a Normal event.  

BigFlow assumes that when an unknown event (attack or 
not) is classified, the classification confidence level is not 
reached; thereby, the event is rejected rather than being 
misclassified. The core idea is simple: high-confidence 
accepted results represent patterns which the classifier model 
is still able to identify, while low-confidence results require 
more attention on the administrator’s side as they potentially 
represent new traffic behaviors that must be learned by the 
system.  

A possible drawback of such an assumption is regarding 
uncertain classifier output over time [52]. In such a case, the 
classifier outputs can no longer be used, owing to changes in 
the network traffic behavior (as already evidenced in other 
fields [52]). This happens, for instance, when the classification 
model is not updated in a long period of time. Thereby, a 
classifier may wrongly classify unseen network traffic with 
high confidence, making the model no longer reliable. To 
address such a scenario, our proposal employs an ensemble of 
stream learning algorithms. The key idea is that a 
classification can only be accepted when the confidence level 
is met in all employed stream learning algorithms, i.e., the 
classification remains reliable as long as there is at least one 
reliable stream learning algorithm that outputs correct 
classification. 

As a result, BigFlow provides an updated stream learning 
classification in near real-time with selective human 
assistance. This is because only instances that passed through 
the classifiers and were rejected require action from experts. 
Thereby, this approach requires minimal human intervention 
and, most importantly, mitigates the false positives/negatives 
alarms.   

As the models are incrementally updated only with 
instances that were previously rejected, the proposal also 
minimizes the cost of model updates.  

V. IMPLEMENTATION 

A BigFlow prototype was implemented and deployed in a 
distributed environment, as shown in Figure 5. The prototype 
takes as input network packet headers from MAWI [22], and 
for each network packet, its header is exported to the message 
middleware. The message middleware was deployed through 
the well-known open-source Apache Kafka, version 0.10.2.0.  

Our prototype was implemented on top of Apache Flink 
stream processing framework [19], version 1.3.0. The 
proposed windowing mechanisms (Tumbling Windows) were 
also implemented using the native windowing mechanism 
provided by the Flink. A default value of 15 s for each 

  
Figure 5 – BigFlow architecture. 



 

 

Tumbling Window was used, as it provided the best results 
after some preliminary evaluation. The customized keyed 
messaging was implemented using the KeySelector Flink 
interface. The Apache Kafka messages were read through the 
Apache Flink connector API, version 0.10_2.10.   

The reliable stream learning classification module was 
implemented using the massive online analysis (MOA) library 
[25], release 16.04. At the startup, the Classification and 
Incremental Classifiers Update modules loaded the same 
classification model. The rejected instances were stored in 
memory by the Rejected Instances Retrieval (Figure 4), which 
retrieved the rejected instances through Kafka. The PE 
parallelism level was set according to the number of worker 
nodes used in our experimental evaluation (Section VI.C).   

VI. EVALUATION  

 The evaluation test was performed in two steps. First, our 
proposed reliable stream learning module was evaluated in 
terms of accuracy over time using the MAWIFlow dataset. 
Second, we evaluated the BigFlow performance and 
scalability as well as the cost of updating the stream learning 
module.  

A. Accuracy  

 For the evaluation of the Reliable Stream Classification 
module, four stream learning classifiers were evaluated: 
Hoeffding Tree [51], OzaBoosting [54], Leveraging Bag [55], 
and an Ensemble of the prior three classifiers that performs 
majority voting on the individual outcomes. Similarly, to the 
tests conducted in Section III.A, the classifiers were trained 
using the first seven days of January, and them employed in 
the remainder of the year, without period updates. The 
Hoeffding Tree was evaluated with a grace period of 200, a 
Naïve Bayes leaf prediction strategy, information gain with 
respect to distribution of class values split criterion, and a tie 
threshold of 0.05. Both OzaBoosting and Leveraging Bag uses 
50 Hoeffding Trees as their base learners, in which each base 
learner also uses the same parameters as the individual 
Hoeffding Tree. 

Our evaluation was performed in three steps: without 
BigFlow, with BigFlow without updates (i.e., rejecting results 
but not updating the model), and BigFlow with the verifier 
module and with weekly incremental model updates. A 
weeklong delay for the incremental model updates for the 
rejected instances was adopted to mimic the time until an 
attack label becomes publicly available.  

 Figure 6 shows how each stream learning classifier 
performs in MAWIFlow dataset without BigFlow. The same 
behavior evidenced in Section III.B can be seen in the absence 
of period model updates. The accuracy degradation occurs in 
the first months after training. In 2016, the attack error rate 
(FP) percentage increases by up to 16%, 20%, 16%, and 18%, 
for the Hoeffding Tree, OzaBoosting, Leveraging Bag, and 
Ensemble respectively. In contrast, the normal error rate 
remains similar in the remainder of the year. Thereby, these 
results also show that to remain reliable for a long period, the 
intrusion detection model must be updated. 

 BigFlow updates its models by the means of the rejected 
instances, which are considered to be unreliable (Section 
IV.B). To this end, BigFlow, through the verifier module, 
evaluates whether the classifier confidence met a specific 
threshold, according to the given class (Class Related 
Threshold, CRT [53]). Thereby, in order to evaluate the 
verifier module, each class must have its threshold set. 
However, even if a proper class threshold is selected, the event 
confidence level can be biased, i.e., an unseen event (unknown 
behavior) may have its confidence level high [52] (see Section 
IV.B.2). In the light of this, BigFlow computes the class 
confidence for the Ensemble classifier according to Equation 
1.  

𝐶𝑙𝑎𝑠𝑠 𝐶𝑙𝑎𝑠𝑠        1  

 In which n denotes the number of used classifiers, and 
𝐶𝑙𝑎𝑠𝑠  the ith class confidence outcome for a class 
given by the Ensemble classifier. Thereby, only instances that 

(a) No-update Hoeffding Tree (b) No-update OzaBoosting (c) No-update Leveraging Bag (d) No-update ensemble classifier  

Figure 7 – Error-reject tradeoff during January 2016 in MAWIFlow dataset. Average error rate is given by the average of FP and FN rates, whilst Average 
rejection rate is computed by averaging the rejection rate of both Normal and Attack classes. Thresholds for each class, Normal and Attack, was varied from 
1.00 to 0.00 in a 0.01 interval, all operation points are shown. 

(a) No-update Hoeffding Tree (b) No-update OzaBoosting (c) No-update Leveraging Bag (d) No-update ensemble classifier 

Figure 6 – Average monthly accuracy behavior for different stream learning classifiers without periodic model updates during 2016 in the MAWIFlow dataset. 



 

 

have a high confidence for all classifiers will have a high 
𝐶𝑙𝑎𝑠𝑠 . The confidence values for each used 
classifier was computed as a probability value ranging from 0 
to 1. The Hoeffding Tree confidence value was computed as 
the class probability as measured by the Naïve Bayes in a 
given node. For the Leveraging Bag the class confidence was 
computed as the normalized sum of each base learner. On the 
other hand, the OzaBoosting confidence values was computed 
as the weighted normalized sum of each base learner. For both 
Leveraging Bag and OzaBoosting the base learners computes 
their confidence values by the means of a Hoeffding Tree.  

 Figure 7 shows the relation between the average error rate 
and the average rejection rate for the evaluated classifiers in 
the training month (January). The average error rate refers to 
the average of the FP and FN rates, whilst the average 
rejection rate refers to the average rejection of both normal 
and attack events. It is possible to note that, for all evaluated 
classifiers, one can further reduce the average BigFlow error 
rate, when a certain rate of rejection can be tolerated. As 
previously evaluated, the classifiers increase their FP rate over 

time (Figures 1 and 6). In this sense, the classes confidence 
thresholds were set according to the attack error rate 
improvement. Figure 8 shows the non-dominated solutions 
(best operation points), considering the relation between the 
attack error rate (FP) and the average rejection rate. It is 
possible to note that the Ensemble classifier presents the best 
error-reject tradeoff. Moreover, a relation can be seen 
regarding the attack error rate and the average rejection rate. 
For instance, if a 20 percent of average rejection rate could be 
tolerated, the attack error rate percentage can be decreased by  
4, and 5, for the Hoeffding Tree, OzaBoosting, Leveraging 
Bag, and Ensemble respectively.  

 For the remainder of the evaluation tests, the classifiers 
thresholds were chosen when the average rejection rate met 40 
percent (Figure 8, Operation Points). The operation points 
were established in order to enable the evaluation of BigFlow 
without updates (i.e., rejecting results but not updating the 
model), and BigFlow with the verifier module and with 
weekly incremental model updates. In this sense, a lower 
rejection rate would not enable the proper evaluation of the 
model update impact.  

 Figure 9 shows the average monthly accuracy and 
rejection rate for the evaluated classifiers with the verifier 
module set, however, without periodic model updates. Several 
observations can be made regarding the verifier module. The 
average rejection rate remains similar to the chosen operation 
point over time (40 percent). The normal accuracy (TN) 
significantly improves for all classifiers, reaching up to 99 
percent, improving the TN by up to 8 percent. The attack 
accuracy (TP) also significantly increases, however, in 
general, it decreases over time, in the absence of incremental 
model updates.  

 It is important to note that, when compared to their initial 
accuracy in January (Figure 6), without the verifier module, 
all evaluated classifiers remained reliable until October. After 
that period, the TP rate for the Hoeffding Tree, was lower than 
the TP rate for the Hoeffding Tree in January, without the 

Figure 8 – Non-dominated solutions for the evaluated Stream Learning
algorithms. Attack error refers to FN rates. Operation points were chosen at
40 percent of average events rejection rate. 

 
(a) Hoeffding Tree with verifier 

module 

 
(b) OzaBoosting with verifier 

module 

 
(c) Leveraging Bag with verifier 

module 
(d) Ensemble classifier with verifier 

module  

Figure 9 – Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the 
MAWIFlow dataset.  

 
(a) Hoeffding Tree with verifier 

module 

 
(b) OzaBoosting with verifier 

module 

 
(c) Leveraging Bag with verifier 

module 
(d) Ensemble classifier with verifier 

module  

Figure 10 – Average monthly accuracy and rejection rate behavior for different stream learning classifiers without incremental model updates during 2016 in the 
MAWIFlow dataset.  



 

 

verifier module (Figure 6-a versus Figure 9-a). In this sense, 
in the worst case, the classifiers can be considered reliable, for 
at least 10 months, when the verifier module is applied, 
despite the rejection rate. Finally, it is possible to note that the 
Ensemble classifier, by the means of the proposed 
𝐶𝑙𝑎𝑠𝑠  computation (Equation 1), is able to 
significantly improve its accuracy when compared to the other 
classifiers. This occurred because only instances with a high-
class confidence value for all classifiers were accepted. 
Thereby, the event will be rejected even if the majority of the 
classifiers confidence values are biased, because, if one 
classifier output a low confidence value, the event will have a 
low final confidence.  

The reliability improvement shown by the verifier module 
is a desired property for high-speed production networks. In 
such environments, correct event labels may not be available 
in a short period of time, e.g., the attack becomes publicly 
known after three months of its rejection by the verifier 
module. In such a case, the rejected events would be stored, 
and their labels would be verified on a regular basis. However, 
considering the incremental model update would only be 
possible three months after the attack occurrence, the classifier 
model would still be reliable during this time.   

Finally, Figure 10 shows the classifiers accuracy and 
rejection rates with the verifier module and a weeklong delay 
for incremental updates. Several observations can be made 
regarding the incremental update impact. First, all evaluated 
classifiers remained reliable throughout the year, considering 
both TP and TN rates. Moreover, both TP and TN rates 
significantly increases when compared to only applying the 
verifier module, without the incremental updates (Figure 9 and 
10). The average rejection rate percentage significantly 
decreases over time, presenting average rejection rates of 
13%, 12%, 12%, and 5% in January, and decreasing up to 5%, 
4%, 4%, 2% throughout the year, for the Hoeffding Tree, 
OzaBoosting, Leveraging Bag, and Ensemble respectively – 

in both cases. Nonetheless, it is possible to note that the 
proposed Ensemble approach significantly decreases the 
rejection rate when compared to the other classifiers, while 
also presents higher TP and TN rates.  

As the results show, BigFlow maintains or even improves 
the model’s reliability even when facing new network traffic 
behavior, regardless of the model being incrementally updated 
or not. Figure 11 shows a comparison between our proposal, 
the no-update and the weekly-updated classifiers shown in 
Section III.B. The proposed approach greatly improves the 
detection of attacks for all considered cases, outperforming 
even the weekly-updated classifiers.  

Discussion 

 Although BigFlow was able to significantly decrease the 
average rejection rate by the means of incremental model 
updates (in the best case from 40 percent to up to 1 percent), 
the rejection of events in high-speed networks can be 
challenging. The main challenge refers to the number of 
events that are going to be rejected, and then, how to process 
them later.  

  First, for evaluation purposes, the tests performed 
previously have operated at 40 percent rejection rate point 
(Figure 8). For production usage, one will most likely operate 
at a lower rejection rate operation point, thereby rejecting less 
instances. Nonetheless, it is important to note that BigFlow 
was able to reject up to only 1 percent of instances, starting at 
a 40 percent rejection rate. This indicates that, the average 
rejection rate will significantly decrease over time when 
compared to the initial chosen operation point. Finally, in 
production usage, rejected instances will most likely be stored 
for a period, until its label is publicly known.  

 Second, the labeling task of such rejected instances can be 
achieved either by the help of a human expert, normally by 
collecting more information about a new behavior, e.g., by 
consulting automatically a public repository of 

(a) Normal accuracy for our 
Ensemble approach versus no 

periodic updates 

(b) Attack accuracy for our Ensemble 
approach versus no periodic updates 

(c) Normal accuracy for our 
Ensemble approach versus weekly 

updates 

(d) Attack accuracy for our Ensemble
approach versus Weeklyc updates 

Figure 11 – Reliable Stream Learning (Ensemble) module performance comparison during 2016 in MAWIFlow dataset. 

Figure 12 – BigFlow throughput performance according to the number of
worker nodes. Figure 13 – BigFlow throughput comparison with and without updates. 



 

 

vulnerabilities/threats such as the common vulnerabilities and 
exposures (CVE), or by finding that a new type of service is 
being used in the network.  

 In this sense, the BigFlow rejection rate can be even further 
decreased. Nonetheless, the labeling process can be made 
automatically, if a labeling delay can be tolerated for instance. 

 The most important benefit of our proposal, compared to 
literature, is to enable the detection that an event cannot be 
classified accurately and immediately alert the administrator, 
even if the classifier makes a classification mistake with a high 
confidence. The action the administrator will perform is under 
her/his discretion, we only list some in order to show the 
proposal is feasible.  One can be noticed that even a traditional 
approach, which demands the model rebuilding, a method for 
event labeling is still required, the main difference is that the 
output of rejection mechanism is a selective way to do that, 
facilitating the expert work.           

B. Performance, Scalability, and Cost 

 For evaluating the scalability of our prototype, we set up a 
12-node cluster in a single rack, connected through a 10 GbE 
interface. Each node has a 4-core CPU with 8 GB of memory. 
In all considered experiments, we set up the BigFlow 
prototype (Figure 5), with the Ensemble classifier in the 
following way: 1 node ran Apache Kafka, 1 node ran the Flink 
Job Manager and from 1 to 10 nodes ran Flink Task Managers. 
For throughput evaluation purposes, a set of only 62 features 
from Table I was considered. For the evaluation purposes, the 
entire month of January in 2016, was used, and a weeklong 
delay for the incremental model updates was considered.   

Figure 12 shows the throughput and performance 
breakdown. The throughput performance is divided into Read 
and Parse (Message Consumer and Message Middleware, in 
Figure 2), Feature Extraction (Host Aggregator, Flow 
Aggregator and Flow Joiner, in Figure 2) and Classification 
and Update (Feature Extraction Module, in Figure 4). The 
proposed approach achieved 10.72 Gbps with 10 worker 
nodes. Regarding its scalability, the proposed approach 
increased the throughput by 1.02 Gbps for each additional 
worker node. The Feature Extraction module required the 
most significant part of the overall processing, representing 
61% of the processing time on average, while Classification 
and Update together required only 23% on average.  

Figure 13 shows the impact of the model’s update on the 
system’s throughput. In such a case, the system’s throughput 
performance was divided into Classification Without Updates 
(BigFlow without Rejected Instances Retrieval and 
Incremental Classifier Update modules) and Classification 
With Updates (BigFlow). On average, the model’s updates 
incurred a throughput loss of little more than 1%. Considering 
the throughput for the cluster of 10 worker nodes, the model’s 
updates incurred a throughput reduction of only 0.25% (0.03 
Gbps).  

Finally, Table 3 shows the weekly training time and 
required storage for all the evaluated classifiers shown in 
Section III.B, considering they would be updated every week. 
BigFlow required (on average) only 4.2% of the storage 
required by other approaches. Regarding the weekly training 
time, BigFlow required at most 4.2% out of the total time 
when compared with the complete retraining of DT, RF, GB, 
ensemble, and Hoeffding tree classifiers.  

VII. RELATED WORK  

Several existing works address intrusion detection using 
ML techniques [46] [47] [48]. However, task of model 
updates has not been, in general, considered in related works 
[9] [10]. Thereby, the processing and storage costs required 
for such a task have been discarded [9]. The next subsections 
further describe related works that address the tasks of 
building proper Benchmark Datasets for IDS, Flow 
Measurement and Classification, and the Classification 
Reliability.  

A. Benchmark dataset for IDS  

Over the last years, generation of proper datasets for 
benchmarking intrusion detection systems has been the 
subject of several studies [31, 33, 37]. However, despite 
extensive efforts, currently the most used dataset is still the 
DARPA1998 dataset [33], with several known issues [34, 35]. 
When a benchmark dataset is built for IDSs, normally some 
strong assumptions about the training data are adopted [31]. 
For instance, Canali et al. [36] created their dataset by 
collecting several website contents from the Internet; they 
labeled each datum by using state-of-the-art tools and 
manually inspected the data to ensure proper labeling. In this 
case, the authors assumed that the most frequently visited 
websites worldwide are benign, despite several known cases 
of malicious websites [37]. On the other hand, Shiravi et al. 
[38] created user profiles on the basis of the user behavior for 
each application during an observed time interval, while 
Kendall [39] created a dataset by statistically reproducing the 
user behavior in an air force environment. In contrast, in 
UNSW-NB15 [56], the authors rely in a traffic generator tool 
to create their dataset in a controlled environment. In general, 
these approaches lack upgradability, wrongly assuming that 
network traffic is immutable and considering that the user 
behavior can be modeled [40, 41]. MAWIFlow tackles the 
problem of creating representative datasets by using real and 
valid network traces, while labeling is achieved using state-of-
the-art signature-based detection techniques.  

B. Flow Measurement and Classification  

Approaches for flow measurement and classification of 
massive network activities in general rely on pre-stored data. 
Lee and Lee [5] proposed a Hadoop-based network traffic 
monitoring and analysis system. The authors performed flow 
measurements by mapping raw network activity (PCAP) files 
in HDFS. Their proposed approach achieved 14 Gbps in a 
cluster of 200 nodes (2 CPU cores each), however, requiring 
the prior storage of the PCAP files. The authors performed the 
classification relying on a simple connection threshold 
through Hive queries, which must be periodically updated in 
evolving networks. Fortugne et al. [8] focused on integrating 
several anomaly detectors in the Hadoop architecture for 
network monitoring. The authors also adopted a similar hash 

TABLE III.  WEEKLY COMPUTATIONAL AND STORAGE 
RESOURCES USED BY EACH APPROACH (EXCLUDING INITIAL SETUP) 

Approach Demanded Storage 
(Gb) 

Training Time 
(hours) 

Avg. Min. Max. Avg. Min. Max. 
Decision Tree

36.41 21.09 43.36 

3.91 2.27 4.79
Random Forest 4.40 2.55 5.28
Gradient 
Boosting

182.7 104.5 213.0 

Ensemble 189.0 108.3 224.0
Hoeffding Tree 2.14 1.22 2.58
BigFlow 1.53 0.28 5.03 0.09 0.03 0.25 



 

 

function approach to divide network traffic in splits. Each split 
had an anomaly detection algorithm, which identified network 
activities based on their anomality scores, according to a 
specific threshold. However, their approach also required the 
execution of computationally expensive periodic updates (i.e., 
full retraining). Moreover, their reported system throughput is 
unfeasible for high-speed network monitoring.  

Some works have applied stream processing techniques 
for the measurement of massive network activities. Baer et al. 
[26] proposed a data stream warehouse for network 
monitoring. The authors also relied on time windows for 
incremental and continuous execution of queries. Moreover, 
they combined their proposal with an ML framework for the 
classification of exported time windows. However, their 
approach relied on a supervised dataset, without considering 
the scalability of ML algorithms. They also did not address 
scalability, reliability, or model updates. A similar approach 
to BigFlow was also taken by Apache Metron [27]. Metron 
relied on Apache Storm [18] to perform feature extraction in 
time window intervals. The tool however required the storage 
of activities in the HBase for post classification, thus requiring 
also periodic updates. In a recent work, Viegas et al. [28] used 
a subset of 20 features from [17] to address the resiliency to 
adversarial attacks in a stream-based intrusion detection 
system for high-speed networks. BigFlow improved their 
reported throughput by a factor of 9, while extracting 138 
additional features and addressing reliability over time 
through the rejection approach. Finally, a similar labeling 
process used in the MAWIFlow dataset was adopted by Mazel 
et al. [29] for the evaluation of unsupervised ML algorithms. 
The authors however extracted a small set of flow-based 
features and did not evaluate supervised ML schemes. To the 
best of our knowledge, BigFlow is the first approach that does 
not require the storage of the network activities for neither the 
feature extraction nor classification, while it is still able to deal 
with the evolving behavior of networks in the case of high-
speed networks.  

C. Classification Reliability  

Regarding the reliability of classifications in the face of 
unknown behavior, a verification approach is often applied in 
other fields in which errors have a high cost, such as OCR 
[12], medical diagnostics [13], and software fault detection 
[21], to name a few. For instance, in the field of medical 
diagnostics, Hanczar and Dougherty [13] employed a 
verification strategy to reach a desired error rate, while in 
software fault detection, Mesquita et al. [21] rejected 
classification outcomes that did not meet a desired degree of 
certainty. Both approaches rely on an expert to establish the 
correct event labels. We did not find any work proposing the 
use of verification strategy for intrusion detection. In contrast, 
BigFlow employs a verification strategy to deal with the 
evolving network behavior and to reach reliability; moreover, 
differently from related works, it is able to incorporate the 
expert assistance into the prior stream learning model, 
significantly reducing the number of further rejected events.   

VIII. CONCLUSION   

Current approaches for network traffic classification are 
unable to meet the desired throughput; they are also unable to 
deal with the evolving behavior of network traffic. The 
approach proposed in this paper, BigFlow, aimed at providing 
high detection throughputs, reliability in face of new network 

traffic behavior, and a computationally modest model update 
mechanism.  

A high detection throughput was reached by performing 
feature extraction and classification through stream 
processing frameworks. The approach used by BigFlow 
groups the exchanged data over the network and summarizes 
them in time intervals, significantly reducing the required 
computational effort and storage requirements on the intrusion 
detector.  

To maintain reliability even with evolving network traffic, 
BigFlow employs a verification mechanism, which checks 
whether the classification outcome should be accepted in 
order to avoid high confidence in classification mistakes.  

Finally, to provide a lightweight update mechanism, 
BigFlow exploits existing stream learning algorithms, 
incorporating expert assistance for labeling rejected events 
when they are better understood.  

 Our experimental evaluation demonstrated that BigFlow is 
feasible for use in production and high-speed networks: our 
prototype reached up to a 10.72-Gbps throughput in a cluster 
of 40 cores, being also capable of dealing with evolving 
network behavior over a year of real network traffic, as 
evaluated through our MAWIFlow dataset, by incrementally 
updating its detection mechanism with expert assistance. 
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