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Abstract: Cloud computing provides elastic on-demand resource allocation, enabling big data systems to 
process large amounts of streaming data in real time. However, a shared cloud infrastructure (multitenant at 
the hypervisor level) may reduce system performance or even resource availability, particularly when big data 
processing demands significantly increase through concurrent task allocations on the same physical hardware. 
Such situations are not easily detectable from the tenant’s perspective, because the tenant may suffer from poor 
performance without knowing why, as the infrastructure is not under the tenant’s control. Moreover, as task 
processing demand changes over time, the available infrastructure may be insufficient owing to increased 
processing load or multitenant interference. This paper presents a multitenant-aware resource provisioning 
mechanism that is independent of any hypervisor and can perform task scheduling and dynamic ongoing task 
rescheduling for big data streaming while considering the state of each virtual machine (VM). Moreover, the 
proposed mechanism ensures load balancing through several cloud-based clusters of VMs using a software-
defined network (SDN). The prototype was implemented using Apache Storm (big data), Helion Eucalyptus 
(cloud computing), and Floodlight (SDN). The evaluation shows that when the resources are under multitenant 
interference, our proposal results in an improvement of 50.1% for CPU-bound tasks, 62.3% for disk-bound 
tasks, and 43.8% for network-bound tasks. In addition, the load balancer forwarded 72.04% of the load to a 
fully available cluster, meaning that our mechanism can realize a 22.04% improvement in effectiveness over 
traditional approaches. 
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1 INTRODUCTION 
In general, big data techniques are used when it is infeasible to handle the amount of data through conventional 
processing and storage resources [1]. The processing of such data requires the development of a distributed 
infrastructure, traditionally composed of distributed filesystems, task schedulers, programming models, and 
batch or real-time (data streaming) processing. Batch frameworks for big data processing (e.g., Hadoop [2]) are 
characterized by the storage of all data in a distributed filesystem prior to processing. In contrast, streaming 
frameworks for big data processing (e.g., Storm [3, 4]) continuously process data arriving in the steam. 

Big data streaming frameworks require adequate infrastructure for high-performance computing (HPC). 
Cloud computing is one alternative that supports HPC, as it offers massive storage capacity, scalability, 
resilience, and high availability [5]. 

Multitenant scenarios, which are common in cloud computing infrastructure, occur when several virtual 
machines (VMs) from different cloud tenants share the same physical hardware [6] controlled by a hypervisor. 
However, the benefits of physical hardware (resource) sharing contradict the time-multiplexing of the physical 
infrastructure. This conflict can cause undesirable performance variations in cloud client applications because of 
concurrent access requests for the same resources. Moreover, cloud providers can overbook resources by 
accepting more VMs than its infrastructure can support, causing further impacting VM performance [7]. 

When a customer contracts a cloud service, a service-level agreement (SLA) is established to ensure a 
specific quality of service. The customer believes that the service provider will honor the contracted SLA [8]. 
However, the provider may overbook its resources by allocating more VMs than the available physical 
infrastructure can support, thus affecting system performance [9]. The main problem is that the customer's view 
of the provided resources is virtual, given that the service provider exclusively performs the contracted SLA 
metrics monitoring. Thus, if a customer does not have an additional mechanism to monitor available resources, a 
customer can suffer from performance variability without being notified. 

Performance variability in cloud computing becomes critical in big data streaming, as there are often 
strict real-time requirements. For instance, if performance declines, a data stream-based application may not 
work fast enough to adhere to real-time requirements. Ameliorating this performance degradation in a 
multitenant cloud infrastructure is a challenge because there is no control over the resources used by different 
tenants—they can only manage the virtualized resources, i.e., inside the VMs. 

Several studies have focused on improving physical resource management and resource utilization [10, 
11, 12] or evaluating and minimizing performance variability by choosing or creating homogeneous VMs [13, 



14, 15]. Other research has sought to improve performance by scheduling tasks for distributed applications by 
considering the availability of virtual resources [16, 17, 18]. However, physical resources and their allocation 
are under the control of cloud providers. Thus, the performance variability caused by concurrent resource 
utilization remains an unaddressed issue. 

Moreover, the processing load in big data streaming may change over time, thus demanding more 
processing resources. A common approach in such cases is increasing the number of VMs (nodes) available to 
the client of the cloud [19]. However, in general, this approach does not consider the state of physical resources 
in the cloud (host). Providing more available nodes to the client increases the infrastructure management 
complexity, and the application might still suffer from performance variability because of other cloud tenants. 
Nonetheless, the increase in the number of nodes requires the cloud resource provisioning framework to 
communicate with the big data processing framework [2, 4].  

A popular approach that reduces the complexity of infrastructure management during resource 
provisioning is to provide resources horizontally. This method duplicates the cluster (the set of nodes of a 
specific tenant) instead of adding more nodes to it. Thus, the resource-provisioning framework does not need to 
communicate with the currently executing application [20]. Despite reducing the complexity of the resource-
provisioning framework, this approach faces other challenges. The client application must be aware that 
different clusters (with different network addresses) can process the load and forward its request to the 
appropriate cluster. Nonetheless, identifying which cluster should process a request to ensure load balancing is 
an intensive task [21]. This task usually addresses network or system metrics to determine the target of a request 
or requires changes in the client application to obtain its advantages [20].  

Nowadays, the system and network status are considered together to perform load balancing through 
software-defined networks (SDNs) [23, 24, 25]. SDNs leverage the packet forwarding mechanism of 
switches/routers to a centralized entity named the Controller, which defines the virtual network topology at the 
software level [26]. The main advantage of the SDN model is its capacity to define the network topology in real 
time. This eliminates the usage of legacy hardware with static policies for network route configuration [26]. 
Normally, when performing load balancing through an SDN, we simply compute which node is the current 
target of a request by considering the current network load [23, 24]. Although this approach can deliver network 
load to less-used nodes or through less-busy paths, it lacks the capacity to communicate with the cloud 
computing infrastructure. Thus, it cannot take advantage of the cloud node elasticity and does not consider 
multitenant features and is thereby unable to establish whether a node can execute a processing load with respect 
to the current state of physical resources. Moreover, when the whole cluster is exhausted, the processing load 
can be forwarded to a target node regardless of the cluster’s capacity to process it.  

This paper proposes a novel approach to provide cloud-based elasticity to big data streaming while 
considering the availability of physical resources in cloud-based environments. The main contributions of this 
paper are as follows: 

 A dynamic scheduler and rescheduler for big data streaming processing frameworks that schedules and 
periodically reschedules processing tasks to less overloaded nodes according to their physical and 
virtual resource states. 

 Elastic resource provisioning through network functions virtualization (NFV, an SDN facility to 
aggregate software applications). By using the cloud computing elasticity, the resource provisioning is 
conducted transparently, enabling the creation or termination of a cluster. However, in our proposal, it 
is done considering the general state of the infrastructure, which involves the state of each VM in a 
physical and virtual cluster. In other words, processing resources are transparently delivered according 
to the impact of multi-tenancy on the cluster and the required processing over time. 

 Load balancing through NFV using the SDN controller data, which enables load balancing across 
several clusters according to the current state of each cluster while considering the physical and virtual 
current state of each cluster node (VM). 

The remainder of this paper is organized as follows. Section 2 addresses the fundamentals of multitenant 
cloud infrastructure, SDNs, and Apache Storm. Section 3 presents related works. Section 4 introduces a case 
study that shows the impact of multitenant infrastructure usage on big data streaming applications. Section 5 
describes the proposed transparent and multitenant-aware resource provisioning model. Section 6 discusses the 
prototype, and Section 7 presents the results of its evaluation. Finally, Section 8 draws together our conclusions. 

2 BACKGROUND 
2.1 Multitenancy in Cloud Computing 
A cloud computing environment can be briefly characterized as a hardware infrastructure that provides on-
demand computational services, such as processing, storage, and networking [5]. This is achieved through the 
virtualization concept [27], which abstracts the physical hardware layer and shares it among several hosts, 



known as VMs. The mechanism responsible for physical resource abstraction and controlling its access is 
known as the Hypervisor [28]. 

In general, cloud computing can be classified as private, public, hybrid, or community [5]. In private 
cloud computing, the VM administrator has access to the Hypervisor, thus allowing the administrator to handle 
the VMs disposition and control the access to physical resources. In public, hybrid, or community cloud 
computing, the VM administrator does not normally have access to the Hypervisor. Thus, the administrator 
cannot determine the status of VM physical resource, as the hardware is shared among several other tenants. 
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Fig. 1. Typical cloud computing shared environment scenario. 

Figure 1 shows a typical hardware virtualization concept performed by a Hypervisor. The Hardware 
resources (CPU, disk, network, and other components) are abstracted and accessed through the Hypervisor. 
When a VM requests access to the hardware (physical resource), it must communicate with the Hypervisor. The 
sharing of physical resources among several other VMs is known as a multitenant scenario. 

The way in which the VM accesses its host physical resource depends on the Hypervisor being used. For 
instance, the VMWare hypervisor [29], by default, shares the physical CPU among its VMs through the fair 
share algorithm, which aims to provide CPU access for VMs according to their historical usage. In contrast, the 
Xen [30] hypervisor provides equal CPU time regardless of historical usage [31]. The VM processing capacity 
is related to the way physical resources are currently used [32]. Resources such as network access and disk read 
and write are affected by the concurrent access occurring in multitenant environments.  

A cloud computing manager must be used to enable a cloud computing environment. A well-known 
cloud manager is the HPE (Hewlett-Packard Enterprise) Helion Eucalyptus [33], which is an open-source 
solution for building private clouds that are compatible with Amazon Web Services (AWS).  

2.2 Software-Defined Networks and Network Function Virtualization  
The SDN model decouples the control and data planes [26]. The control plane operates network device 
management, whereas the data plane is the hardware layer responsible for forwarding network packets 
according to the policies defined in the control plane. This decoupling turns the network switches/routers into 
simple forwarding devices, while logic control is implemented in the controller that operates as a centralized 
network operating system. Thus, the SDN is composed of two entities: the Controller and the Forwarding 
Devices (SDN switch or router). 

The Forwarding Devices have a set of flow rules that are applied in the network packets. A flow rule 
can be defined by combining different matching fields (e.g., IP and Port).  As each network packet arrives, the 
Forwarding Device analyzes its characteristics and compares them to the current flow rules. In general, there is a 
default flow rule in which the unmatched network packets are forwarded to the Controller, which in turn 
establishes the network packet flow rule and updates the flow rule set in the forwarding device.  

The Controller establishes the set of flow rules in each forwarding device, defining the communication 
policy between forwarding devices through a software-level function. The Controller demands a communication 
protocol (control/data plane) that installs the flow rules in the network devices. The emerging solution is the 
OpenFlow protocol, proposed by [34] and standardized by the Open Network Foundation [35], which allows 
Controllers to access and modify the flow rules set remotely in forwarding devices. 

SDN characteristics such as agile network programmability, centralized controller, and open-standard 
usage (OpenFlow) have led to increased interest in the development of solutions that combine the cloud 
platform with the SDN architecture [36, 37, 38] to optimize services and provide new technological approaches.  

The concept of NFV [39, 40] is generally used as a complement to SDN. The main motivation of NFV 
[39] is to migrate the network functions implemented by dedicated hardware that executes specific functions, 
such as routers, firewalls, gateways, load balancers, and other devices, to generic devices operating on common 
x86 architecture. This characteristic allows virtualized network functions to be installed at any network point, 



making the scenario dynamic and adaptable to consumer needs while also expanding the service provider 
possibilities. In this manner, it becomes possible to implement several NFVs, each having its own objective, and 
integrate them with the SDN that updates flow rules according to NFV needs. 

Several SDN controllers [56, 57] that support OpenFlow protocols have been developed. Currently, the 
most popular is the open-source Floodlight [41]. Floodlight provides full integration with OpenFlow protocols 
and Representational State Transfer (REST) application programming interfaces (APIs), which enable the 
development of NFV applications, allowing forwarding device flows to be defined through a REST function.  

2.3 Apache Storm 
To evaluate the proposed architecture (Section 5), it is necessary to use a framework that typically operates in a 
multitenant cloud environment, performs distributed big data processing, and demands real-time (data 
streaming) decision making. This subsection describes Apache Storm, a well-known robust architecture for real-
time stream data processing. 

2.3.1 Storm Overview 

In the Storm platform [3], data processing is performed through the definition of topologies. A topology defines 
the necessary infrastructure format to perform the processing over data sources. Two main components perform 
topology processing: (i) Spouts and (ii) Bolts. The Spouts are responsible for reading the data source (internal or 
external) and generating data streaming for the platform. The Bolts are responsible for consuming the data 
generated by the Spouts and performing related processing. Note that the Bolts may also consume the data 
generated by other Bolts. Each processing unit generated by the Spouts and Bolts is called a tuple (message 
exchanged between Spout–Bolt or Bolt–Bolt). A topology is composed of several executors (threads) that 
perform the predetermined processing of a Spout or Bolt. During execution, a topology formed by the Spouts 
and Bolts is known as a logic abstraction of the Storm environment. 

Master Node

Zookeeper

Nimbus

Even Scheduler

(i) 
Executors 
assignment

Worker Node 02

Supervisor 02

S
L
O
T

Worker

Executors

S
L
O
T

Worker

Executors

Worker Node 01

Supervisor 01

S
L
O
T

Worker

Executors

S
L
O
T

Worker

Executors

Spout (5)
Bolt (12)

Bolt (8)

 
Fig. 2. Storm architecture overview with topology scheduling 

The Storm architecture, called a Storm Cluster (Figure 2), is composed of a server named the Master 
Node and one or more Worker Nodes1. The Master Node executes the Nimbus process (daemon), which is 
responsible for submitting the topologies to be executed by the Worker Nodes. Each Worker Node has a daemon 
named as Supervisor, which is responsible for managing the tasks (based on the topologies) submitted to 
Nimbus. Besides the Supervisor, the Worker Nodes have Slots, which are the available communication ports. 
Normally, the number of available Slots for each Worker Node is related to the number of CPU cores on the 
node. To process the tasks in each Slot, it is necessary to associate a Worker (process) with one or more 
executors (threads). The communication between the Master Node and Worker Nodes is performed through the 
Zookeeper [42], an Apache tool that provides a service for the configuration, coordination, and discovery of 
services in distributed applications. 

2.3.2 Scheduler 
The Storm scheduling process defines how topologies are disposed of in the available infrastructure. Each 
newly- submitted topology must be scheduled to allow the Worker Nodes to execute their processing. Thus, the 
Nimbus uses EvenScheduler (ES) by default. The ES relies on a round-robin policy to uniformly distribute the 
executors among the workers allocated to the topology. To show such policy execution, the Word Count (WC) 
topology [43] is used, which is composed of the following: 

 Sentence: Spout formed by five executors, operating as a topology data source, through periodic 
phrase generation. 

                                                 
1 Note the distinction between (i) worker and (ii) worker node: a worker is a process, composed by the topology 
executors, whereas the worker node is a machine that belongs to the Storm cluster. 



 Split: Bolt formed by eight executors. Responsible for reading the phrase generated by the Spout and 
splitting the phrase into words to send to the next component. 

 Count: Bolt formed by twelve executors. Responsible for counting the words generated by the Split. 
Figure 2 shows an overview of the Storm Cluster with topology scheduling. The WC topology is formed 

by 25 executors, which are distributed across the Workers through the ES policy. The Nimbus has a topology 
waiting to be scheduled according to the scheduler policy. In this case, the first topology to be submitted is the 
WC (Figure 2, event i). To illustrate such a scenario, the Spout is shown as yellow triangles and the Bolts are 
illustrated as green triangles. The executors are shown as orange triangles. 

In Figure 2, it is possible to identify the ES behavior as it schedules the executors among the available 
Workers. The 25 executors are distributed such that all available topology Slots are occupied, regardless of their 
computational state. Briefly, the ES selects the first executor and allocates it to the first available Slot, then 
selects the second executor and allocates it to the next Slot. This process is repeated for all remaining topology 
executors. Although the ES relies on a strategy that uniformly distributes the executors to the Workers, this 
approach is not always efficient. In multitenant environments, applying the scheduling policy without 
considering the physical machine state may negatively affect performance during the topology execution. 

3 RELATED WORKS 

Performance variability in public and private clouds has been addressed by a number of studies. Schad et al. 
[13] reported a large variation in performance on Amazon EC2, mainly caused by different cloud loads at 
different times of the day and physical hardware variations. The authors were able to identify performance 
variability using microbenchmarks within the cloud client infrastructure.  
 On the other hand, to address performance variations in private clouds Rego et al. [14] and Galante et 
al. [15] proposed the creation of homogeneous VMs according to the physical hardware used. Although their 
work minimized performance variability, it is not applicable to public cloud infrastructures, as the client does 
not have control over physical resources. Shen et al. [10] presented a system to automate the elastic resource 
scaling for multitenant cloud computing infrastructures, performing resource provisioning according to a 
processing forecasting mechanism. Despite presenting significant improvements over traditional approaches, 
their work required access to the cloud physical infrastructure, while also did not consider the multitenancy 
impact. The evaluation of resources other than the CPU was proposed by He et al. [11] by using a probabilistic 
model to select physical hosts for VM allocation. Their results showed that not only the CPU must be 
considered but also other physical resources. However, they only considered the cloud provider perspective 
during resource provisioning. Finally, Tomas and Tordsson [12] showed that when a multitenancy scenario is 
considered, the performance must be continuously evaluated, as resource utilization changes overtime. In this 
context, our work leverages the approach from [13] to identify multitenancy issues through microbenchmarks 
while also considering several physical resources as in [11] during load distribution in an ongoing manner as in 
[12]. Finally, to the best of our knowledge, ours is the first approach that takes into account the cloud client 
perspective.  
 When the application level is considered, approaches in the Apache Storm scheduler try to choose the 
better distribution and redistribution of application tasks by considering virtualized resource availability. 
Aniello, Baldoni, and Querzoni [17] presented two scheduler approaches: a topology-based and network traffic-
based approach. The topology-based scheduler works offline and considers only the components (spouts and 
bolts) and their connections in the topologies. The network traffic-based scheduler works online and considers 
network traffic among worker nodes in order to distribute and redistribute tasks. However, neither approach is 
transparent to applications, demanding the topology source code instrumentation and prior knowledge of the 
demanded topology processing. Xu et al. [16] presented T-Storm, an online Storm scheduler that distributes and 
redistributes tasks according to CPU load and inter-executor traffic among worker nodes. T-Storm is transparent 
to Storm applications and uses the virtual CPU status and number of tuples sent between executors (not the 
network traffic) to schedule tasks. Their approach, however, is not applicable in the multitenant context, where 
the virtual resource may not represent the actual physical resource state. A more comprehensive approach that 
considers several resources state is the R-Storm proposed by Peng et al. [53], which considers a homogeneous 
cluster and the processing, network, and memory resources. However, similar to [16] the resources are 
considered virtually, as only the internal stats of the operating system (OS) are used.   
 In other big data frameworks, the scheduling process also considers only the virtual resource 
availability. For instance, Grandl et al. [18] presented Tetris, a Hadoop multiresource scheduler that takes into 
account the CPU, memory, disk, and network status. Tasks are grouped by multiresource requirements, 
supporting complementary objectives and minimizing job completion time. Their approach requires source code 
instrumentation and prior knowledge of the demanded resources. Finally, Yan et al. [54] addressed scheduling 
tasks by considering heterogeneous multicore processors. Virtual resource pools were used to classify and 
distribute resources (based on core types) and tasks (based on requirements). However, physical resources and 



allocation are under the control of cloud providers, and the performance variability caused by concurrent 
resource utilization remains an open issue. In contrast to [53], our proposed scheduler takes into account the 
physical status of several resources. Moreover, we do not require the source code instrumentation as in [17, 18] 
by computing the physical node state over several resources.  

Finally, according to Kreutz et al. [26] load balancing was one of the first applications developed in SDN. 
The Plug-n-Server [24] and Aster*x[25] presented by Handigol et al. were proposed by the SDN development 
team at Stanford University, with the aim of minimizing server response time by evaluating the communication 
link (congestion) and server virtual CPU load. Their approach enabled load balancing at the network-level 
without relying in application-level schemes. The approach proposed by Zhong, Fang, and Cui [55] 
implemented an SDN-based load balancer that distributes new requests according to the server response time, 
thus avoiding any reliance on traditional methods such as ping response times. Our proposed approach leverages 
the approach by [25, 26] to perform load balancing at the network level without relying in application-level 
approaches. Moreover, we consider the cluster state (computed through the current physical resource state) 
during the load balancing. This is a more comprehensive approach than [55], which only considers the response 
time. To the best of our knowledge, this study is the first to address multitenant clouds in SDN-based load 
balancing by employing the NFV approach. 

4 Preliminary Study  
This section evaluates the impact on the Apache Storm framework of operating in a multitenant environment 
and presents some factors that motivated this work. 

4.1 Scenario Configuration 
A series of tests were conducted to diagnose existing problems and motivate the proposed solution. To this end, 
a controlled cloud computing environment was built using HPE Helion Eucalyptus (version 4.3.0). The cloud 
computing environment consisted of four physical computers, each equipped with an 8-core Intel i7 CPU and 16 
GB RAM, connected through a gigabit network interface (NIC). The host runs a minimal CentOS 7, the VMs on 
an Ubuntu server 16.04, through the Kernel-based VM hypervisor. The cloud computing was divided into two 
zones, each composed of two physical machines. The client’s cloud infrastructure was composed of five VMs 
(one Master Node and four Worker Nodes), which were created and assigned to the physical machines according 
to the Eucalyptus cloud policy (round-robin VM disposal policy).  

Apache Storm version 1.0.2 was used in the client’s cloud infrastructure. A tool was developed to 
perform the information reading related to the generation and processing of data stream tuples. The Storm UI 
REST provided this information [44] and enabled interaction with the Storm cluster. This in turn enabled the 
management of its operations, such as starting or ending a topology, and provided information about the state of 
the currently executing topologies. The developed tool requests that the number of tuples be processed at 10 s 
intervals, which is the Storm update periodicity for this value. 

To generate the workload, the WC topology was used, which is publicly available and commonly used in 
the literature. Additionally, the default topology was modified to allow words to be written and read in the hard 
disk attached to the physical machine. Three topologies were used, each focusing on the usage of a specific 
computational resource. To generate the CPU load, the WC topology [43] was used. To evaluate the network 
usage impact, the Throughput Test (TT) [45] topology was utilized to generate random strings of a fixed size of 
10 KB. Finally, to evaluate the impact on hard disk throughput, we performed the same approach used by [16], 
changing the default WC topology to generate each tuple by reading a text file [46] from the hard disk while 
writing the same words back to the hard disk. This modified topology is named the Word Count File (WCF) 
topology. 

With regard to the topologies and their parameters, tests were performed to evaluate their behavior in two 
distinct scenarios, which illustrated in Figure 3. 

 Baseline Cluster: Each physical machine hosts a VM, with one machine operating as the Master 
Node and the others operating as Worker Nodes that comprise the main cluster. The Baseline Cluster 
VMs are distributed in all Eucalyptus zones. This scenario aims to evaluate the behavior of topologies 
without external interference to the VM by other cloud clients. 

 Multitenant Cluster: This scenario aims to evaluate the behavior of topologies while experiencing 
multitenant interference. Similar to the Baseline Cluster, each physical machine hosts one VM to 
comprise the main cluster. However, the four physical machines add hosts to a secondary Storm 
cluster (Figure 3, Multitenant Cluster). Thus, this scenario holds two clusters: the main cluster, which 
is composed of five VMs (distributed in all zones), and a secondary cluster composed of five VMs 
(distributed solely in Eucalyptus Zone B). This scenario aims to evaluate the main cluster topology 
performance under multitenant interference in half of the physical machines. 

Figure 3 shows the cluster distribution in the Baseline Cluster and Multitenant Cluster. The performance 
evaluation metrics were measured over the main cluster. The secondary cluster is responsible for the parallel 
real processing load generation, which occurred through the execution of topologies using the same parameters 



as the Main Cluster. In this manner, our scenarios mimic the real-world environment, in which a physical 
machine may run several VMs with different priorities and services. 
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4.2 Performance Evaluation 

This subsection presents the results of evaluating the multitenant impact of real-time cloud processing 
frameworks. The execution time for each test was 300 s. The topology parameters are presented in Table 1. 

TABLE 1. Main and Secondary topologies configuration (Figure 3) 
Topologies Number of Workers Spout 

(Sentence) 
Bolt 

(Split) 
Bolt 

(Count) 
Baseline Cluster 4 4 8 12 
Multitenant Cluster 4 4 8 12 

The results are listed in Table 2, where the average (big data) tuples processed per second in both scenarios are 
given for each tested topology. The Baseline Cluster column represents the number of tuples generated per 
second in an environment without multitenant interference. The Multitenant Cluster column lists the percentage 
of tuples per second under multitenant interference when compared to the Baseline Cluster. Considering the 
former as the baseline proposal, it is possible to note that the Multitenant Cluster performance was degraded in 
all cases, mainly when the Secondary Topology executed the same topology (mirror) as the Main Topology.  

Comparison of the results generated by the Baseline Cluster and Multitenant Cluster shows that the 
performance was degraded in all cases where the topology used the same type of resource. In the WC topology 
(CPU-bound), only 42.7% of tuples were processed when executed in a multitenant environment. For the WCF 
topology (IO-bound), only 33.5% of tuples were processed. Finally, for the TT topology (network-bound), only 
53.1% of tuples were processed when compared to the Baseline Cluster.  

TABLE 2. Scenario A and B comparison using ES 
Topologies Baseline Cluster 

(tuples/s) 
Multitenant Cluster (baseline related percentage) 

WC 
(CPU-bound)

WCF 
(IO-Bound)

TT 
(Network-bound) 

WC (CPU-bound) 803,622 42.7% 35.8% 82.5% 
WCF (IO-bound) 5,757 80.9% 33.5% 89.4% 
TT (Network-bound) 1,333 80.4% 36.9% 53.1% 

These results reveal the importance of scheduling methods that consider the state of physical nodes to 
prevent performance impacts in big data applications. Multitenant environments are a realistic proposition, 
especially in business-driven cloud computing (e.g., AWS, Salesforce, etc.), and drastically influence the 
performance of big data stream processing systems such as Apache Storm. The situation is complicated by cloud 
computing providers that sell Infrastructure as a Service (IaaS), but do not provide any kind of information 
about the status of the physical hardware running the VM in the IaaS.  

Thus, during task scheduling, the scheduling algorithm must consider the physical state of the node to 
avoid performance degradation. Additionally, big data stream processing systems must also consider the 
periodic task rescheduling, as the performance of VMs may change dramatically over time because of 
concurrent hardware access by other cloud tenants (see Table 2, the worst case is 66.5% performance 
degradation in the WCF). Moreover, the resource provisioning and load balancing algorithms must also consider 
the multitenant property because the related increase in the number of big data processing clusters might not 



provide the expected increase in processing capacity, or the processing load might be forwarded to an already 
overloaded cluster because of multitenant interference. 

5 Multitenant-Aware Mechanism 
This paper proposes (i) a task scheduler for big data stream processing in cloud-based multitenant environments 
named Dynamic Scheduler (DySc); (ii) an SDN-based resource provisioning mechanism named Elastic 
Resource Provisioning (ERPr); and (iii) a load balancer for several multitenant environments named SDN-based 
Load Balancer (DyLB). DySc is responsible for scheduling and periodically rescheduling big data streaming 
tasks among nodes with available physical resources within a specific cluster.  

Client Infrastructure Cloud Provider Infrastructure

Cloud Provider Interface

Cloud‐Based Cluster N

Cloud‐Based Cluster 02

Cloud‐Based Cluster 01
(a) Table‐miss

Virtual Forwarding Device

Flow Table

SDN Controller

Flow Policies

(b) Update Flow

(c) Notify
(d) Update 
Flow Policies

NFV

SDN‐based Load Balancer

Elastic Resource Provisioning

Slave Node (VM)

Slave Agent

Microbenchmark

Slave

Executors

Virtual Forwarding Device
Flow Table

Master Node (VM)

Coordinator

Dynamic Scheduler Master Agent

NFV

Intra‐Cloud State

(e) Create Cluster

(f) Cluster Created

(g) Get State

SDN Controller

Flow Policies

Data
Stream

Stream Units

 
Fig. 4. Overview of the proposed architecture 

ERPr is responsible for transparently detecting overloaded clusters, and then instantiating and terminating 
cloud-based clusters according to the processing load. Finally, DyLB is responsible for balancing the load 
between clusters, considering the processing and networking flow status. An overview of our proposal is shown 
in Figure 4, and further details are given in the following subsections. 

5.1 Dynamic Scheduler  

DySc relies on four main components (Figure 5) to schedule and reschedule tasks in a multitenant environment. 
The Dynamic Scheduler and Master Agent (MA) are responsible for monitoring the node states and scheduling 
and rescheduling tasks (x) accordingly in real time. The Slave Agent (SA) obtains the Slave Node state (using 
microbenchmarks) and reports it to the MA when requested. Finally, the Intra-Cloud State provides fine-grained 
control over the network flows. The following subsections detail each of the DySc elements. 
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Fig. 5. Overview of dynamic scheduler architecture 

5.1.1 Slave Agent  
The proposed system considers a multitenant environment with shared physical resources. The SA 

reports the state of each node (𝑛𝑜𝑑𝑒௦௧௔௧௘) by collecting information about the resources (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘). For 
each resource, the SA reports two sets of states: the physical state and virtual state. The physical state refers to 
the current condition of the shared resource, e.g., the hard disk write capacity. The virtual state refers to the 
current condition of an internal VM resource (virtual resource), e.g., the CPU consumption, provided by the 
guest OS. 

A first proposal relies on microbenchmarking tools to collect information about the physical state of each 
resource. It is important to provide a hypervisor-independent solution and mitigate the conflicts of interest 
between the customer and service provider (SP), as the SP may report inconsistent states to obtain unfair 
advantages [47]. 

The process of determining the nodes’ physical states is divided into two stages. Initially, the maximum 
throughput of each physical resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫) is obtained, establishing how a resource behaves 
without interferences from external entities to the VM. The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫ value can be obtained through 
values provided by the resource manufacturer, or through a benchmark tool without interference, in a controlled 
environment. Several metrics of VM utilization should be measured to ensure realistic values for each 
benchmark. 

It is then possible to use microbenchmarks (specific benchmarks) to define, in real time, the current state 
of the physical resource of each node (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧). Through 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫ and 
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧, the current state of each shared physical resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘) can be 
established using Eq. (1). 

 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
௥௘௦௢௨௥௖௘೛೓೤ೞ೔೎ೌ೗_೎ೠೝೝ೐೙೟

௥௘௦௢௨௥௖௘೛೓೤ೞ೔೎ೌ೗_೘ೌೣ
 (1) 

Note that 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ can be affected by internal VM usage. For instance, the hard disk 
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧ value may have a lower read/write rate because of the VM usage itself. To consider 
such interference, our approach uses the internal (virtual) state of a resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘) as a 
smoothing state attribute. The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘ is obtained through the VM OS and defines the usage rate 
of a specific VM virtual resource. Finally, Eq. (2) defines the state of a resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘). 

 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘ ൌ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൅ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘     (2) 

The product of all 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘ values establishes the 𝑛𝑜𝑑𝑒௦௧௔௧௘, as indicated in Eq. (3), where n 
denotes the number of resources. 

𝑛𝑜𝑑𝑒௦௧௔௧௘ ൌ ෑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘
௜

௡

௜ୀଵ

ሺ3ሻ 

5.1.2 Master Agent 

The MA is responsible for managing the SAs and computational demands. The MA requests that the Slave 
Node states are updated (Figure 5, event a). When the SA receives an update state request, it computes and 
stores its state value (nodeୱ୲ୟ୲ୣ). The MA periodically requests the update node state for each cluster node 
(Figure 5, event b). During the scheduling and rescheduling process (Sections 5.1.3-A and 5.1.3-B), the MA 
requests the node states to be computed (Figure 5, event a), thus improving its response time. 

5.1.3 Dynamic Scheduler Scheduling/Rescheduling Policies 

DySc is responsible for scheduling and rescheduling tasks inside a cluster. The following subsections describe 
the scheduling and rescheduling task policies. 

A) Scheduling Policy  
The Scheduler algorithm considers a task to have a set of processing units () that must be distributed to the 
available Slave processing units (). 

Algorithm 1 details the DySc scheduling policy for a set of required processing units (β). DySc 
requests the SAs to compute the 𝑛𝑜𝑑𝑒௦௧௔௧௘ for all cluster (C) slave nodes. Slave nodes that do not have available 
processing units () are not taken into account during the scheduling. DySc computes the weight of each 
processing unit (weightఉ) as the sum of all 𝑛𝑜𝑑𝑒௦௧௔௧௘ values divided by the number of tasks. The weightఉ 
defines the weight of each unit  in relation to 𝑛𝑜𝑑𝑒௦௧௔௧௘. DySc then assigns the current β to a slave node with 
the highest 𝑛𝑜𝑑𝑒௦௧௔௧௘ (𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒). Finally, the 𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ is subtracted according to the prior computed 
weightఉ and a parameterized spreadability value. The spreadability value defines the  distribution among the 
cluster slave nodes; a lower spreadability value is more likely to overload better slaves. In this manner, the node 



with the highest 𝑛𝑜𝑑𝑒௦௧௔௧௘ is not overloaded with all tasks  and the process is repeated until every unit  has 
been allocated to . The proposed task scheduling algorithm assumes that every β demands node resources. The 
spreadability value prevents the best nodes from being overloaded.  

 
B)  Rescheduling Policy  
DySc is also responsible for rescheduling big data tasks through cluster monitoring and real-time redistribution 
of previously scheduled processing units (β). After the scheduling stage, rescheduling occurs periodically to 
optimize task performance by moving β from nodes that have poor 𝑛𝑜𝑑𝑒௦௧௔௧௘ values to those with better ones. 
This task reallocation aims to minimize the multitenant interference effect in the processing of streaming data. 
Interference can occur after the scheduling a task when another VM is instantiated alongside an existing slave 
node and starts to use the shared resources excessively. 
 The rescheduling algorithm (Algorithm 2) considers tasks running in the cluster, meaning that all β are 
already assigned to an  in a slave node. Thus, DySc requests the SAs to compute the 𝑛𝑜𝑑𝑒௦௧௔௧௘ for the slave 
nodes in all clusters (C). DySc then recomputes weightఉ for a running task. All 𝑛𝑜𝑑𝑒௦௧௔௧௘ values are then 
updated according to the number of units β previously assigned to the node. DySc selects two nodes: the node 
(best_node) with available  and the best state (𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘), and the node (worst_node) with a β assigned 
and the worst state (𝑤𝑜𝑟𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘). If the 𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ is better than the 𝑤𝑜𝑟𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ , adjusted by a 
parameterized meaningfulness value, β is reallocated. The meaningfulness value prevents unnecessary 
rescheduling when the difference between the available resources in the nodes is not significant. Moreover, in 
the case of reallocation, the states of both nodes are updated. The rescheduling process is repeated until there are 
no available better nodes to reallocate β units. 



 

5.1.4 Intra-Cloud State NFV 

The Intra-Cloud State NFV acts as the cloud client’s infrastructure manager. Thus, the NFV is responsible for 
setting the intra-cloud (cloud client’s infrastructure domain) network flows to the startup level (Figure 5, event 
e) through the SDN controller. The NFV also acts as the intra-cloud state provider, allowing the SDN-based 
Load Balancer (Section 5.2) and Elastic Resource Provisioning (Section 5.2.1) to determine the cloud client’s 
infrastructure state. To this end, the NFV periodically requests the DySc to update the Slave Node states (Figure 
5, event c) and, through the SDN controller, the flow metrics among the Slave Nodes (Figure 5, event d).  

5.2 SDN-based Load Balancer  

DyLB transparently provides elasticity to cloud-based processing infrastructure to improve task processing. The 
proposed system considers that a specific task processing cluster may, temporally or not, become unable to 
process a designated load (Data Stream that generates several Stream Units, Figure 4). This may be due to an 
increase in the processing load, implying processing load spikes [19], or a significant loss of cluster processing 
power, e.g., caused by multitenant interference. 

DyLB relies on the Intra-Cloud State NFV to identify exhausted clusters (Figure 4, event g), and 
periodically requests the Intra-Cloud State NFV to determine the state of each cluster (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘). Eq. (4) 
defines the state of a cluster as the average of each 𝑛𝑜𝑑𝑒௦௧௔௧௘ within that cluster, where N denotes the number of 
nodes within a cloud-based cluster. 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ ൌ  
∑ 𝑛𝑜𝑑𝑒௦௧௔௧௘

௜௜
ே

𝑁
       ሺ4ሻ 

From the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ value of each cluster, DyLB provides elasticity for resource allocation and load 
balancing. The following subsections describe the elastic resource provisioning and load balancing methods. 

5.2.1 Elastic Resource Provisioning  

Our proposed system performs horizontal scaling, in which the cluster is replicated, rather than vertical scaling 
by adding more Slave Nodes (Figure 5, Slave Nodes) to the cluster. In this way, it provides elastic resources 



without any knowledge of the application demand. Thus, ERPr relies on the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ values to identify the 
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. Eq. (5) defines the state of the infrastructure as the average of each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ within 
the infrastructure, where N denotes the number of clusters in the infrastructure. 

𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ ൌ  
∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘

௜௜
ே

𝑁
       ሺ5ሻ 

ERPr creates or terminates clusters according to the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. Therefore, it uses two 
parameterized values, 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ and 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ. The former defines 
the minimum acceptable 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. When the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ is less than the 
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ, ERPr requests the cloud platform to create another cluster (Figure 4, event e). In 
contrast, when the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ is greater than the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ, ERPr requests the 
cloud platform to terminate the cluster with the lowest 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ (Figure 4, event e). 

ERPr is periodically executed according to the sum of two parameters: T and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘. T is a 
parameter that defines the frequency of cluster state updates, whereas 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘ is the time required by 
the cloud provider platform (Figure 4, event f) to create the cluster. Using both parameters, the elastic resource 
provisioning function waits for the cluster creation time (Figure 4, event f) before checking the 
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ again. 

Note that our proposal assumes that the present load is not a spike—a type of load in which the time 
required to provide more resources (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘) is greater than the time required to process the load 
[19]. 

5.2.2 SDN-based Load Balancing  

ERPr increases the infrastructure process capacity by creating several clusters to perform the processing and 
flow tasks. However, the data stream unit generator (Figure 4, Data Stream) cannot define which cluster the 
Stream Units should be sent to. To perform such load balancing transparently, our proposal relies on the SDN 
model. 

Our load balancing scheme establishes the cluster load capacity (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬) according to each 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘. Each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ is periodically established through Eq. (6), where N denotes the number 
of clusters in the infrastructure. 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ ൌ  
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘

∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘
௜௜

ே
       ሺ6ሻ 

The load balancing function performs its designated function at the granularity of the data stream units. 
During a period, each cluster receives a load rate per 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬. For instance, a Storm cluster with 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ ൌ 0.7 should receive 70% of the data stream units (i.e., Storm tuples). The 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ values are updated according to a predefined time window.  

An overview of the load balancing process is shown in Figure 4. The Data Stream periodically generates 
Stream Units and sends them to known-clusters. As no flow entry is specified for the Stream Unit according to 
its identifiers (e.g., source IP and Port), a table miss occurs. Thus, the SDN Switch transfers the first stream data 
unit packet to the SDN Controller (Figure 4, event a). The SDN Controller notifies the DyLB NFV (Figure 4, 
event c) to define the target cluster according to the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ of each cluster. Then, the DyLB NFV 
updates the SDN Controller flow policies accordingly (Figure 4, event d). Next, the SDN Controller creates a 
flow entry for the chosen cluster and Stream Unit identifiers (Figure 4, event b). In this manner, further packets 
from the same stream unit are forwarded to the chosen cluster. 

6 PROTOTYPE 
This section describes a prototype of the proposed system, which is split into (i) ERPr and DyLB, and (ii) 

DySc prototypes. All tools, source codes, and binaries are publicly available in [58]. 
 

6.1 ERPr and DyLB Prototype 
Figure 6 shows the ERPr and DyLB prototype. To make the prototype evaluation more realistic, a Data Stream 
generator (Figure 6, Data Stream) was developed that periodically generates tuple requests to a topology. In this 
manner, the load is generated outside the topology as it occurs in real-world applications. Floodlight [41] was 
used in the prototype as the SDN controller (version 1.2). A PACKET-IN module was implemented at the 
controller. This module receives PACKET-IN (when a packet has no matching flow policies) messages from the 
OpenVSwitch at each new tuple arrival (Figure 6, Data Stream Units), identified through the source IP and port 
addresses. The module requests the DyLB and waits for a response as to which cluster the tuple generation 
request should be forwarded to.  



HPE Helion Eucalyptus (version 4.3.0) was used as the cloud provider. Each Eucalyptus cloud 
computing environment is composed of four physical computers equipped with an 8-core Intel i7 CPU and 16 
GB RAM, connected through a gigabit NIC. The cloud client infrastructure (Figure 4, Cloud-Based Cluster) was 
created through a CloudFormation [33] template. The template creates five VMs (one Master Node and four 
Worker Nodes), and these dynamically execute the Apache Storm topology at startup through the cloud-init 
template field. The ERPr creates or terminates a cluster through the Eucalyptus CloudFormation template 
(Figure 6, event e). 
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Fig. 6. ERPr and DyLB prototype implementation architecture  

The DyLB periodically requests the Intra-Cloud State NFV for each CloudFormation instance at 60-s 
intervals. The ERPr also requests the DyLB to update the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ every 60 s. The DyLB receives the SDN 
Controller PACKET-IN notifications, which are called through a PACKET-IN module implemented in the 
Floodlight Controller. The DyLB load balancing scheme is defined at the tuple level according to the source IP 
and port addresses. The ERPr requests the Eucalyptus cloud for the creation or ending of clusters through the 
Eucalyptus client API. The cluster is defined through a Eucalyptus CloudFormation template.  

6.2 Dynamic Scheduler Prototype 
This section describes the DySc prototype executed within the CloudFormation template. The whole 
infrastructure is dynamically configured through the cloud-init field from the CloudFormation template, 
enabling the ERPr evaluation. Figure 7 shows the DySc prototype. A virtual OpenVSwitch is executed within 
each Worker Node VM, enabling fine-grained flow measurements (evaluated in Section 7.4) within the cloud. 
The flow setup is performed at CloudFormation template startup through the Floodlight Controller REST 
Interface. The flow counters are also obtained through the Floodlight Controller REST Interface. The counters 
are invoked every 60 s. 

As mentioned in Section 2.2, Apache Storm allows the scheduling policy to be customized, enabling 
the creation of new scheduling policies according to the needs of the user/environment. The API that provides 
such customization is called the IScheduler, which provides a scheduling method to implement a customized 
scheduler. 

The MA runs with the Storm Master Node. On the other side, the SAs run in each Storm Worker Node. 
The SAs were implemented as a RESTful web service through the JAX-RS API [48]. In this way, the SAs have 
two main methods: updateState (Figure 7, event a) responsible for starting the node state compute process, and 
getState (Figure 7, event b) which returns the last computed state. DySc starts or interrupts a task (a set of β 
processing units) through the functions assign and freeSlot [49]. 
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Fig. 7. DySc prototype implementation architecture  

The following relations were applied between the notation from DySc and Storm (Figure 7): 
 Cluster: set of Storm worker nodes 
 Node/Slave: Storm worker nodes 
 Task: Storm topology 
 Β: topology worker 
 : slot in a worker node 
We used microbenchmarks to compute the node states in terms of the CPU, hard disk, and network. 

These resources were shared in a multitenant environment, and thereby suffered degradation of 
processing/throughput capacity when overloaded by another cloud client, as discussed in Section 4. Table 3 
describes the tools and methods used to obtain the shared resource state (resource ୱ୦ୟ୰ୣୢ ୱ୲ୟ୲ୣ). 

To ensure that the physical resource state measurements are made in real time, the MA relies on a cyclic 
algorithm to update the 𝑛𝑜𝑑𝑒 ௦௧௔௧௘ (Figure 7, event a). MA waits for a predetermined time before requesting the 
next node update, preventing two Worker Nodes allocated in the same infrastructure from performing 
simultaneous microbenchmarks, and thus degrading their state wrongly or having the results influenced by data 
caching. 

The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘ of the CPU, hard disk, and network is obtained from the Linux OS using the 
proc filesystem [52]. 

 
 
 
 

TABLE 3. Resource state computation methods 
Resource 

 
Process to obtain 𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒔𝒕𝒂𝒕𝒆 

CPU 

Sysbench [50] performs a set of prime number computations. The average processing time with free resources 
was previously established (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௛௔௥௘ௗ_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed as 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௛௔௥௘ௗ ௦௧௔௧௘ ൌ 1 െ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧ െ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫
 

Hard Disk 

Sysbench [50] also performs reads and writes of a predetermined set of blocks. The average write time with 
free resources was established (resource௣௛௬௦௜௖௔௟_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed 
as 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧ 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫
 

Network 

The Master Node hosts an iPerf [51] server. This measures the maximum available throughput for each Slave 
Node, which in turn has an iPerf client. The average connection throughput was previously established 
(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed as 

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫
 

These tools allow the microbenchmark execution time to be parameterized. This concern justifies itself, 
as this study does not aim to measure the total physical resource computation time through long-duration 
benchmarks. What is intended is to perform microbenchmarking to obtain real-time results and adequately use 
the available resources in a multitenant environment. 



7 EVALUATION 
This section describes the DySc, DyLB, and ERPr evaluation tests.  

7.1 Dynamic Scheduler Evaluation 
The performance of DySc was compared to that of the Storm default scheduler, EvenScheduler (ES), which 
employs a round-robin-based scheduling policy. The goal was to measure the benefits and overhead of DySc in 
a multitenant environment. The experiments were performed in the testbed scenario (Figure 3, Section 4). 

The same topologies used to evaluate ES in Section 4 were used. As presented in Table 2, all evaluated 
topologies (WC, WCF, and TT) were affected by the multitenant environment because ES does not consider the 
node state. It is expected that the use of DySc will improve the performance of these topologies. 

DySc requires two parameters, as discussed in Section 5. For the spreadability, we used the value 1.0 to 
increase the distribution between nodes with the best states. For the meaningfulness, we used the value 0.5, 
which was established through rescheduling behavior analysis tests. DySc executes the rescheduling algorithm 
periodically (every 60 s) to allow the SAs to update their states. Each SA is given 15 s to update its state. After 
this period, the MA requests the next node to update its state, and so on. When all node states have been 
updated, the MA waits another 15 s before restarting the update process. 

7.1.1 Scheduler Evaluation 
This subsection presents the results obtained from running DySc and ES in a multitenant environment. The 
measurements compare the total number of tuples generated by DySc and ES in the Baseline Cluster (Figure 3), 
in which there is no interference from a third-party VM.  

Figure 8 compares the performance of the topologies. The vertical axis represents the maximum relative 
percentage of tuples processed compared with the baseline cluster (Figure 3). The horizontal axis shows the 
topology pairs, wherein the first topology is executed in the main cluster and the second topology in the 
secondary cluster, generating parallel processing loads to mimic multitenant interference. 

 

Fig. 8. DySc and ES processed tuples ratio comparison 

When the topologies are “mirrored” in clusters (same resources are overloaded), our proposal can 
provide an improvement of 50.10% when the WC is executed in parallel on both the main and secondary 
(mirrored) cluster (WC & WC in Figure 8). DySc was 62.30% better with parallel WCF executions (WCF & 
WCF in Figure 8) and 43.80% better when executing parallel TT (TT & TT in Figure 8). When the main 
topology resource is available, but the other resource is experiencing multitenant interference, DySc can also 
improve the performance to that of ES; for instance, in CPU-bound topology while executing IO-bound 
topology in a secondary cluster. However, ES has significantly poorer performance when the same topology is 
present in both clusters—as both processing/topologies require the same computational resources. One 
important thing to note is as long as the disk resource is being used by other cloud tenants, the topology 
performance significantly decreases, processing only an average of 35.40%, while the DySc can process an 
average of 94.57% compared to the baseline cluster. 

Figure 9 shows the average processing time for each tuple of the WC topology when using DySc and ES. 
DySc processed a tuple in an average of 0.0014 ms, whereas ES required approximately 0.0022 ms. Thus, DySc 
improved the processing of each tuple by 57%.  

 

WC &
WC

WCF &
WC

TT & WC
WC &
WCF

WCF &
WCF

TT &
WCF

WC & TT
WCF &
TT

TT & TT

Dynamic Scheduler 92,80% 95,30% 96,50% 90,70% 95,80% 97,20% 92,10% 93,90% 96,90%

Even Scheduler 42,70% 80,90% 80,40% 35,80% 33,50% 36,90% 82,50% 89,40% 53,10%

0%

20%

40%

60%

80%

100%



 
Fig. 9. WC tuples processing time by DySc and ES 

Figure 10 shows the average processing time for each WCF tuple. DySc obtained an improvement of 
172% compared with ES (average of 0.18 ms against 0.49 ms). 

 

 
Fig. 10. WCF tuples processing time by DySc and ES 

Figure 11 shows the average processing time for each TT tuple. DySc again produced better results than 
ES. The average processing time for each tuple was 0.78 ms for DySc and 1.52 ms for ES, representing an 
average gain of 94.87%. 

 
Fig. 11. TT tuples processing time by DySc and ES 

Another important behavior is that the results generated by ES exhibited greater variation than those of 
DySc. This reflects the absence of scheduling policies evaluating the physical state of a node before sending a 
request. Big data streaming frameworks generate large amounts of data intermittently, and it is expected that the 
processing environment will not present a highly variable processing time. 

7.1.2 Rescheduler Evaluation 
Multitenant environments are characterized by highly variable usage of resources over time. A controlled 
environment was created, and the processing loads were varied to evaluate the DySc behavior during the 
rescheduling procedure. The objective was to evaluate the time required by DySc to identify the resource 
degradation, change the processing among cluster nodes, and redistribute tasks after the resources became fully 
available again. 

The controlled environment consists of a rescheduling scenario that alternated between multitenant and 
single processing, i.e., alternating between the Baseline Cluster and Multitenant Cluster in Figure 3. The 
executions were divided across three distinct periods: (i) machine resources are fully available (Baseline 
Cluster); (ii) parallel processing has started in half of the physical machines, overloading its computational 
resources (Multitenant Cluster, Secondary Topology has started, Figure 3); and (iii) parallel processing has 



ended, returning to the original resource availability state (Baseline Cluster). Each period was executed for 20 
min. 

To measure the impacts and benefits of DySc rescheduling, we used the network-bound topology (TT) 
for both single and parallel processing (Baseline Cluster and Multitenant Cluster). Figure 12 shows the average 
tuple processing time of DySc and ES running the TT topology in the rescheduling scenario. The parallel 
processing started 1200 s later. DySc required 60 s to identify the processing change and perform the 
rescheduling. After 2400 s, parallel processing ended and DySc required 90 s to identify the change and 
redistribute the tasks for all cluster machines. This rescheduling time can be improved if the nodes updated their 
states more frequently (15 s during the experiments) or the rescheduling process was conducted less frequently 
(we considered 60 s). The total time required for rescheduling (identify and redistribute) in both changes of 
processing corresponded to only 4% of the total execution time. 

 
Fig. 12. DySc and ES comparison considering rescheduling in alternate multitenant interference 

7.2  SDN-based Load Balancer Evaluation 
To evaluate the DyLB, two HPE Eucalyptus Clouds were used, each with four physical machines. One cloud 
had all of its physical machine resources fully available (Figure 3, Baseline Cluster), whereas the other cloud 
had half of its physical machines running a cluster from another client (Figure 3, Multitenant Cluster). 

 

Fig. 13. DyLB load distribution among clusters 

The CPU-dependent topology (WC) was executed on both clusters, and tuple processing requests were 
generated intermittently (Figure 6, Stream Units). For each tuple processing request, a Table-miss and Notify 
occurred (Figure 4), generating a request to the DyLB to establish which cluster the tuple processing request 
should be sent to. Eq. (6) was used to compute the load for each cluster. A 60-s interval was used to update the 
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ values. The load distribution among both clusters is shown in Figure 13.  

As a general evaluation, it can be noted that the proposed load balancing approach distributed the load 
properly, because only 27.96% of the processing load (on average) was forwarded to the Multitenant Cluster. 
The Baseline Cluster, which did not experience multitenant interference, had more available resources and 
received 72.04% of the processing load (on average) during the evaluation. Thus, it is possible to conclude that 
the proposed DyLB is 22.04% (on average) more effective than the traditional round-robin approach (which has 
a distribution effectiveness of 50%). 
7.3 Fine-grained SDN Flow Counters Evaluation  
Conducting microbenchmarking tests to identify multitenant interference in public clouds has two main 
drawbacks: (i) the performance degradation caused by microbenchmark processing; and (ii) the waste of 
resources in identifying such resource degradation, possibly implying the unnecessary use of resources. To 
further minimize such microbenchmarking impacts, Worker Node SDN flow counters were considered, as these 
represent a fine-grained point-to-point (Worker-to-Worker) bandwidth. The hypothesis is that, given the 
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homogeneous distributed processing nature of big data processing frameworks, the bandwidth among the 
processing nodes must also be homogeneous, as the processing loads are equally distributed in most cases. 
Thus, multitenant interference can be identified through fine-grained flow counter analysis, eliminating the need 
to perform microbenchmarking during the scheduling process.  
 The Worker-to-Worker flow counters available in the Floodlight Controller were measured to verify 
the hypothesis. Two scenarios were evaluated: the Baseline Cluster and Multitenant Cluster (Figure 3). The 
evaluation tests were performed for 3600 s in both scenarios. Figures 14 and 15 show the download rates 
amongst the Worker Nodes while executing the TT topology in the Baseline Cluster and Multitenant Cluster. 

(a) Worker Node 1 (b) Worker Node 2 

(c) Worker Node 3 (d) Worker Node 4 

Fig. 14. Download rates among Worker Nodes while executing in the Baseline Cluster. 
 

Note that the network flows between the Worker Nodes varied significantly when executing in the 
multitenant scenario. The download rates between multitenant Worker Nodes 01 and 02 were significantly 
higher compared to their counterparts in the Baseline Cluster. This indicates nodes that were overloaded in the 
multitenant scenario, as the resources of the other Worker Nodes (03 and 04) were degraded. The download 
rates of the multitenant Worker Nodes in the Multitenant Cluster (Worker Nodes 03 and 04) were significantly 
lower than those of Nodes 01 and 02. Finally, in the Baseline Cluster, the download rates between the Worker 
Nodes did not show such significant differences. Figure 16 shows the average download rates between the 
Worker Nodes in the Multitenant and Baseline Clusters. 
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(a) Worker Node 1 (b) Worker Node 2 

(c) Worker Node 3 (d) Worker Node 4 

Fig. 15. Download rates among Worker Nodes while executing in the Multitenant Cluster 
 

The blue lines show the download rates between Worker Nodes 01 and 02 in the Multitenant Cluster, 
which averaged 35.72 MB/s and 35.43 MB/s, respectively. In the Baseline Cluster, the average download rates 
between the Worker Nodes remained almost equal, showing at most a difference of 0.6 MB/s. Thus, it is 
possible to conclude that the fine-grained download flow analysis between the Worker Nodes allows us to 
establish whether a VM is suffering from multitenant interference. Such results eliminate the need to perform 
microbenchmarking to identify multitenant interference, reducing the waste of processing resources and 
performance degradation. 
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Fig. 16. Average download rates between the Worker Nodes (VMs) in the Multitenant Cluster and Baseline Cluster 

7.4 Elastic Resource Provisioning Evaluation 
Finally, DySc, DyLB, and ERPr were evaluated. For this purpose, two Eucalyptus clouds were deployed, in 
which each cloud had four physical machines (Figure 3). The testbed scenario ran for 9000 s. In the first 3000 s 
(0–3000 s) the first cloud did not experience multitenant interference. However, after 3000 s, the first cloud 
started to experience multitenant interferences (competing WC topologies ran on all physical machines), which 
also lasted for 3000 s (3000–6000 s). Finally, multitenant interference in the first Eucalyptus cloud terminated 
and the remaining test ran free of multitenant interference (6000–9000 s). 
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A single cluster was deployed in the first Eucalyptus cloud, which executed the WC topology, while 
the second Eucalyptus cloud was available for the ERPr for the allocation of further clusters through a 
CloudFormation template. The 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ of 0.3 and 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ of 0.9 
were defined, since these provided the best cluster creation and ended the tradeoff through evaluation tests. 
Figure 17 shows the evaluation results for the load distribution performed by the DyLB, the average processing 
time through the DySc (for all allocated clusters), and the ERPr delay for the identification of the multitenant 
interference beginning and the end.  

The average processing time, per tuple, during the whole testbed execution time did not significantly 
change. At 3000 s, when the First Cluster started to experience multitenant interference, the ERPr was able to 
identify such interference through the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ value and it requested the creation of another cluster 
in the second Eucalyptus cloud. A delay of 107 s was observed up to the creation of the second cluster owing to 
the time demanded by the second Eucalyptus cloud to instantiate the CloudFormation template. When the 
second cluster was created, the DyLB was able to properly balance the incoming load in a manner that the 
second cluster received an average 78% of the incoming load. During multitenant interference in the first 
cluster, the average processing time remained without multitenant interference. Finally, at 6000 s, the 
interference ended and the ERPr required 225 s to end the second cluster through the 
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ values. 

 
Fig. 17. Multitenant interference: highlighted (by red border) in the picture. 

8 CONCLUSION AND FUTURE WORK 
This study evaluated the impact of a multitenant cloud on the big data stream processing framework, Apache 
Storm. We revealed that scheduling computational demands without considering the physical state of the nodes 
(VM) that performed the processing, as done in previous methods, is an inefficient practice because the nodes 
resources may have been exhausted by other cloud customers (tenants). 

 The Dynamic Scheduler (DySc) was developed to deal with the cloud computing multitenant 
environment. This system continuously evaluated the state of available physical resources in the cloud 
computing environment through microbenchmarks. These measurements were linked to scheduling and 
rescheduling policies, making it possible to schedule computational demands in a manner that avoids nodes with 
exhausted resources. Experimental evaluations performed with DySc and comparison with ES show that it is 
possible to improve application performance using the same computational resources by 50.1%, 62.30 %, and 
43.8 % for the CPU, hard disk, and network, respectively, in the Multitenant Cluster scenario where 
multitenancy caused its biggest impact. 

Processing big data streams is extremely variable, even with an efficient task scheduling policy such as the 
proposed DySc, which considers both virtual and physical resource availability, as significant increases in 
processing demand might occur. Thus, a resource provisioning strategy is needed that considers the multitenant 
cloud properties. To this end, an Elastic Resource Provisioning and SDN-based Load Balancing approach was 
proposed. Using the SDN flow counters, a fine-grained flow analysis allowed us to determine whether a VM 
was suffering from multitenant interference. Such insight eliminates the need to perform microbenchmarking 
tests to identify multitenant interference, reducing the waste of resources and performance degradation. The 
proposed system was implemented through the NFV and used to balance the processing and flow loads through 
multitenant cloud-based clusters. It sent 72.04 % of the load to a fully resource-available cluster and yielded a 
22.04% gain over the traditional round-robin algorithm. 

As future work we consider that security aspects should be addressed, given that a dynamic environment as 
this one can be target of Distributed Denial of Service or vulnerabilities exploitation, for instance. In such a 
case, the proposal might wrongly consider a processing resulting from security weakness as system load.    
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