
SDN-based and Multitenant-Aware Resource Provisioning
Mechanism for Cloud-based Big Data Streaming

Cleverton Vicentini¹, ², Altair Santin¹, Eduardo Viegas¹, Vilmar Abreu¹
¹Graduate Program in Computer Science / Pontifical Catholic University of Parana, Curitiba, Parana, Brazil

²Federal Institute of Parana, Curitiba, Parana, Brazil
{cleverton, santin, eduardo.viegas, vilmar.abreu}@ppgia.pucpr.br

Abstract: Cloud computing provides elastic on-demand resource allocation, enabling big data systems to
process large amounts of streaming data in real time. However, a shared cloud infrastructure (multitenant at
the hypervisor level) may reduce system performance or even resource availability, particularly when big data
processing demands significantly increase through concurrent task allocations on the same physical hardware.
Such situations are not easily detectable from the tenant’s perspective, because the tenant may suffer from poor
performance without knowing why, as the infrastructure is not under the tenant’s control. Moreover, as task
processing demand changes over time, the available infrastructure may be insufficient owing to increased
processing load or multitenant interference. This paper presents a multitenant-aware resource provisioning
mechanism that is independent of any hypervisor and can perform task scheduling and dynamic ongoing task
rescheduling for big data streaming while considering the state of each virtual machine (VM). Moreover, the
proposed mechanism ensures load balancing through several cloud-based clusters of VMs using a software-
defined network (SDN). The prototype was implemented using Apache Storm (big data), Helion Eucalyptus
(cloud computing), and Floodlight (SDN). The evaluation shows that when the resources are under multitenant
interference, our proposal results in an improvement of 50.1% for CPU-bound tasks, 62.3% for disk-bound
tasks, and 43.8% for network-bound tasks. In addition, the load balancer forwarded 72.04% of the load to a
fully available cluster, meaning that our mechanism can realize a 22.04% improvement in effectiveness over
traditional approaches.

Keywords: Dynamic rescheduling for big data, SDN-based load balancing, Cloud-based big data streaming,
Dynamic resource provisioning mechanism

1 INTRODUCTION
In general, big data techniques are used when it is infeasible to handle the amount of data through conventional
processing and storage resources [1]. The processing of such data requires the development of a distributed
infrastructure, traditionally composed of distributed filesystems, task schedulers, programming models, and
batch or real-time (data streaming) processing. Batch frameworks for big data processing (e.g., Hadoop [2]) are
characterized by the storage of all data in a distributed filesystem prior to processing. In contrast, streaming
frameworks for big data processing (e.g., Storm [3, 4]) continuously process data arriving in the steam.

Big data streaming frameworks require adequate infrastructure for high-performance computing (HPC).
Cloud computing is one alternative that supports HPC, as it offers massive storage capacity, scalability,
resilience, and high availability [5].

Multitenant scenarios, which are common in cloud computing infrastructure, occur when several virtual
machines (VMs) from different cloud tenants share the same physical hardware [6] controlled by a hypervisor.
However, the benefits of physical hardware (resource) sharing contradict the time-multiplexing of the physical
infrastructure. This conflict can cause undesirable performance variations in cloud client applications because of
concurrent access requests for the same resources. Moreover, cloud providers can overbook resources by
accepting more VMs than its infrastructure can support, causing further impacting VM performance [7].

When a customer contracts a cloud service, a service-level agreement (SLA) is established to ensure a
specific quality of service. The customer believes that the service provider will honor the contracted SLA [8].
However, the provider may overbook its resources by allocating more VMs than the available physical
infrastructure can support, thus affecting system performance [9]. The main problem is that the customer's view
of the provided resources is virtual, given that the service provider exclusively performs the contracted SLA
metrics monitoring. Thus, if a customer does not have an additional mechanism to monitor available resources, a
customer can suffer from performance variability without being notified.

Performance variability in cloud computing becomes critical in big data streaming, as there are often
strict real-time requirements. For instance, if performance declines, a data stream-based application may not
work fast enough to adhere to real-time requirements. Ameliorating this performance degradation in a
multitenant cloud infrastructure is a challenge because there is no control over the resources used by different
tenants—they can only manage the virtualized resources, i.e., inside the VMs.

Several studies have focused on improving physical resource management and resource utilization [10,
11, 12] or evaluating and minimizing performance variability by choosing or creating homogeneous VMs [13,

14, 15]. Other research has sought to improve performance by scheduling tasks for distributed applications by
considering the availability of virtual resources [16, 17, 18]. However, physical resources and their allocation
are under the control of cloud providers. Thus, the performance variability caused by concurrent resource
utilization remains an unaddressed issue.

Moreover, the processing load in big data streaming may change over time, thus demanding more
processing resources. A common approach in such cases is increasing the number of VMs (nodes) available to
the client of the cloud [19]. However, in general, this approach does not consider the state of physical resources
in the cloud (host). Providing more available nodes to the client increases the infrastructure management
complexity, and the application might still suffer from performance variability because of other cloud tenants.
Nonetheless, the increase in the number of nodes requires the cloud resource provisioning framework to
communicate with the big data processing framework [2, 4].

A popular approach that reduces the complexity of infrastructure management during resource
provisioning is to provide resources horizontally. This method duplicates the cluster (the set of nodes of a
specific tenant) instead of adding more nodes to it. Thus, the resource-provisioning framework does not need to
communicate with the currently executing application [20]. Despite reducing the complexity of the resource-
provisioning framework, this approach faces other challenges. The client application must be aware that
different clusters (with different network addresses) can process the load and forward its request to the
appropriate cluster. Nonetheless, identifying which cluster should process a request to ensure load balancing is
an intensive task [21]. This task usually addresses network or system metrics to determine the target of a request
or requires changes in the client application to obtain its advantages [20].

Nowadays, the system and network status are considered together to perform load balancing through
software-defined networks (SDNs) [23, 24, 25]. SDNs leverage the packet forwarding mechanism of
switches/routers to a centralized entity named the Controller, which defines the virtual network topology at the
software level [26]. The main advantage of the SDN model is its capacity to define the network topology in real
time. This eliminates the usage of legacy hardware with static policies for network route configuration [26].
Normally, when performing load balancing through an SDN, we simply compute which node is the current
target of a request by considering the current network load [23, 24]. Although this approach can deliver network
load to less-used nodes or through less-busy paths, it lacks the capacity to communicate with the cloud
computing infrastructure. Thus, it cannot take advantage of the cloud node elasticity and does not consider
multitenant features and is thereby unable to establish whether a node can execute a processing load with respect
to the current state of physical resources. Moreover, when the whole cluster is exhausted, the processing load
can be forwarded to a target node regardless of the cluster’s capacity to process it.

This paper proposes a novel approach to provide cloud-based elasticity to big data streaming while
considering the availability of physical resources in cloud-based environments. The main contributions of this
paper are as follows:

 A dynamic scheduler and rescheduler for big data streaming processing frameworks that schedules and
periodically reschedules processing tasks to less overloaded nodes according to their physical and
virtual resource states.

 Elastic resource provisioning through network functions virtualization (NFV, an SDN facility to
aggregate software applications). By using the cloud computing elasticity, the resource provisioning is
conducted transparently, enabling the creation or termination of a cluster. However, in our proposal, it
is done considering the general state of the infrastructure, which involves the state of each VM in a
physical and virtual cluster. In other words, processing resources are transparently delivered according
to the impact of multi-tenancy on the cluster and the required processing over time.

 Load balancing through NFV using the SDN controller data, which enables load balancing across
several clusters according to the current state of each cluster while considering the physical and virtual
current state of each cluster node (VM).

The remainder of this paper is organized as follows. Section 2 addresses the fundamentals of multitenant
cloud infrastructure, SDNs, and Apache Storm. Section 3 presents related works. Section 4 introduces a case
study that shows the impact of multitenant infrastructure usage on big data streaming applications. Section 5
describes the proposed transparent and multitenant-aware resource provisioning model. Section 6 discusses the
prototype, and Section 7 presents the results of its evaluation. Finally, Section 8 draws together our conclusions.

2 BACKGROUND
2.1 Multitenancy in Cloud Computing
A cloud computing environment can be briefly characterized as a hardware infrastructure that provides on-
demand computational services, such as processing, storage, and networking [5]. This is achieved through the
virtualization concept [27], which abstracts the physical hardware layer and shares it among several hosts,

known as VMs. The mechanism responsible for physical resource abstraction and controlling its access is
known as the Hypervisor [28].

In general, cloud computing can be classified as private, public, hybrid, or community [5]. In private
cloud computing, the VM administrator has access to the Hypervisor, thus allowing the administrator to handle
the VMs disposition and control the access to physical resources. In public, hybrid, or community cloud
computing, the VM administrator does not normally have access to the Hypervisor. Thus, the administrator
cannot determine the status of VM physical resource, as the hardware is shared among several other tenants.

Physical Machine

Hypervisor

Hardware

Disk

CPU Memory

NIC

Virtual Machine

Operating System

Applications

Fig. 1. Typical cloud computing shared environment scenario.

Figure 1 shows a typical hardware virtualization concept performed by a Hypervisor. The Hardware
resources (CPU, disk, network, and other components) are abstracted and accessed through the Hypervisor.
When a VM requests access to the hardware (physical resource), it must communicate with the Hypervisor. The
sharing of physical resources among several other VMs is known as a multitenant scenario.

The way in which the VM accesses its host physical resource depends on the Hypervisor being used. For
instance, the VMWare hypervisor [29], by default, shares the physical CPU among its VMs through the fair
share algorithm, which aims to provide CPU access for VMs according to their historical usage. In contrast, the
Xen [30] hypervisor provides equal CPU time regardless of historical usage [31]. The VM processing capacity
is related to the way physical resources are currently used [32]. Resources such as network access and disk read
and write are affected by the concurrent access occurring in multitenant environments.

A cloud computing manager must be used to enable a cloud computing environment. A well-known
cloud manager is the HPE (Hewlett-Packard Enterprise) Helion Eucalyptus [33], which is an open-source
solution for building private clouds that are compatible with Amazon Web Services (AWS).

2.2 Software-Defined Networks and Network Function Virtualization
The SDN model decouples the control and data planes [26]. The control plane operates network device
management, whereas the data plane is the hardware layer responsible for forwarding network packets
according to the policies defined in the control plane. This decoupling turns the network switches/routers into
simple forwarding devices, while logic control is implemented in the controller that operates as a centralized
network operating system. Thus, the SDN is composed of two entities: the Controller and the Forwarding
Devices (SDN switch or router).

The Forwarding Devices have a set of flow rules that are applied in the network packets. A flow rule
can be defined by combining different matching fields (e.g., IP and Port). As each network packet arrives, the
Forwarding Device analyzes its characteristics and compares them to the current flow rules. In general, there is a
default flow rule in which the unmatched network packets are forwarded to the Controller, which in turn
establishes the network packet flow rule and updates the flow rule set in the forwarding device.

The Controller establishes the set of flow rules in each forwarding device, defining the communication
policy between forwarding devices through a software-level function. The Controller demands a communication
protocol (control/data plane) that installs the flow rules in the network devices. The emerging solution is the
OpenFlow protocol, proposed by [34] and standardized by the Open Network Foundation [35], which allows
Controllers to access and modify the flow rules set remotely in forwarding devices.

SDN characteristics such as agile network programmability, centralized controller, and open-standard
usage (OpenFlow) have led to increased interest in the development of solutions that combine the cloud
platform with the SDN architecture [36, 37, 38] to optimize services and provide new technological approaches.

The concept of NFV [39, 40] is generally used as a complement to SDN. The main motivation of NFV
[39] is to migrate the network functions implemented by dedicated hardware that executes specific functions,
such as routers, firewalls, gateways, load balancers, and other devices, to generic devices operating on common
x86 architecture. This characteristic allows virtualized network functions to be installed at any network point,

making the scenario dynamic and adaptable to consumer needs while also expanding the service provider
possibilities. In this manner, it becomes possible to implement several NFVs, each having its own objective, and
integrate them with the SDN that updates flow rules according to NFV needs.

Several SDN controllers [56, 57] that support OpenFlow protocols have been developed. Currently, the
most popular is the open-source Floodlight [41]. Floodlight provides full integration with OpenFlow protocols
and Representational State Transfer (REST) application programming interfaces (APIs), which enable the
development of NFV applications, allowing forwarding device flows to be defined through a REST function.

2.3 Apache Storm
To evaluate the proposed architecture (Section 5), it is necessary to use a framework that typically operates in a
multitenant cloud environment, performs distributed big data processing, and demands real-time (data
streaming) decision making. This subsection describes Apache Storm, a well-known robust architecture for real-
time stream data processing.

2.3.1 Storm Overview

In the Storm platform [3], data processing is performed through the definition of topologies. A topology defines
the necessary infrastructure format to perform the processing over data sources. Two main components perform
topology processing: (i) Spouts and (ii) Bolts. The Spouts are responsible for reading the data source (internal or
external) and generating data streaming for the platform. The Bolts are responsible for consuming the data
generated by the Spouts and performing related processing. Note that the Bolts may also consume the data
generated by other Bolts. Each processing unit generated by the Spouts and Bolts is called a tuple (message
exchanged between Spout–Bolt or Bolt–Bolt). A topology is composed of several executors (threads) that
perform the predetermined processing of a Spout or Bolt. During execution, a topology formed by the Spouts
and Bolts is known as a logic abstraction of the Storm environment.

Master Node

Zookeeper

Nimbus

Even Scheduler

(i)
Executors
assignment

Worker Node 02

Supervisor 02

S
L
O
T

Worker

Executors

S
L
O
T

Worker

Executors

Worker Node 01

Supervisor 01

S
L
O
T

Worker

Executors

S
L
O
T

Worker

Executors

Spout (5)
Bolt (12)

Bolt (8)

Fig. 2. Storm architecture overview with topology scheduling

The Storm architecture, called a Storm Cluster (Figure 2), is composed of a server named the Master
Node and one or more Worker Nodes1. The Master Node executes the Nimbus process (daemon), which is
responsible for submitting the topologies to be executed by the Worker Nodes. Each Worker Node has a daemon
named as Supervisor, which is responsible for managing the tasks (based on the topologies) submitted to
Nimbus. Besides the Supervisor, the Worker Nodes have Slots, which are the available communication ports.
Normally, the number of available Slots for each Worker Node is related to the number of CPU cores on the
node. To process the tasks in each Slot, it is necessary to associate a Worker (process) with one or more
executors (threads). The communication between the Master Node and Worker Nodes is performed through the
Zookeeper [42], an Apache tool that provides a service for the configuration, coordination, and discovery of
services in distributed applications.

2.3.2 Scheduler
The Storm scheduling process defines how topologies are disposed of in the available infrastructure. Each
newly- submitted topology must be scheduled to allow the Worker Nodes to execute their processing. Thus, the
Nimbus uses EvenScheduler (ES) by default. The ES relies on a round-robin policy to uniformly distribute the
executors among the workers allocated to the topology. To show such policy execution, the Word Count (WC)
topology [43] is used, which is composed of the following:

 Sentence: Spout formed by five executors, operating as a topology data source, through periodic
phrase generation.

1 Note the distinction between (i) worker and (ii) worker node: a worker is a process, composed by the topology
executors, whereas the worker node is a machine that belongs to the Storm cluster.

 Split: Bolt formed by eight executors. Responsible for reading the phrase generated by the Spout and
splitting the phrase into words to send to the next component.

 Count: Bolt formed by twelve executors. Responsible for counting the words generated by the Split.
Figure 2 shows an overview of the Storm Cluster with topology scheduling. The WC topology is formed

by 25 executors, which are distributed across the Workers through the ES policy. The Nimbus has a topology
waiting to be scheduled according to the scheduler policy. In this case, the first topology to be submitted is the
WC (Figure 2, event i). To illustrate such a scenario, the Spout is shown as yellow triangles and the Bolts are
illustrated as green triangles. The executors are shown as orange triangles.

In Figure 2, it is possible to identify the ES behavior as it schedules the executors among the available
Workers. The 25 executors are distributed such that all available topology Slots are occupied, regardless of their
computational state. Briefly, the ES selects the first executor and allocates it to the first available Slot, then
selects the second executor and allocates it to the next Slot. This process is repeated for all remaining topology
executors. Although the ES relies on a strategy that uniformly distributes the executors to the Workers, this
approach is not always efficient. In multitenant environments, applying the scheduling policy without
considering the physical machine state may negatively affect performance during the topology execution.

3 RELATED WORKS

Performance variability in public and private clouds has been addressed by a number of studies. Schad et al.
[13] reported a large variation in performance on Amazon EC2, mainly caused by different cloud loads at
different times of the day and physical hardware variations. The authors were able to identify performance
variability using microbenchmarks within the cloud client infrastructure.
 On the other hand, to address performance variations in private clouds Rego et al. [14] and Galante et
al. [15] proposed the creation of homogeneous VMs according to the physical hardware used. Although their
work minimized performance variability, it is not applicable to public cloud infrastructures, as the client does
not have control over physical resources. Shen et al. [10] presented a system to automate the elastic resource
scaling for multitenant cloud computing infrastructures, performing resource provisioning according to a
processing forecasting mechanism. Despite presenting significant improvements over traditional approaches,
their work required access to the cloud physical infrastructure, while also did not consider the multitenancy
impact. The evaluation of resources other than the CPU was proposed by He et al. [11] by using a probabilistic
model to select physical hosts for VM allocation. Their results showed that not only the CPU must be
considered but also other physical resources. However, they only considered the cloud provider perspective
during resource provisioning. Finally, Tomas and Tordsson [12] showed that when a multitenancy scenario is
considered, the performance must be continuously evaluated, as resource utilization changes overtime. In this
context, our work leverages the approach from [13] to identify multitenancy issues through microbenchmarks
while also considering several physical resources as in [11] during load distribution in an ongoing manner as in
[12]. Finally, to the best of our knowledge, ours is the first approach that takes into account the cloud client
perspective.
 When the application level is considered, approaches in the Apache Storm scheduler try to choose the
better distribution and redistribution of application tasks by considering virtualized resource availability.
Aniello, Baldoni, and Querzoni [17] presented two scheduler approaches: a topology-based and network traffic-
based approach. The topology-based scheduler works offline and considers only the components (spouts and
bolts) and their connections in the topologies. The network traffic-based scheduler works online and considers
network traffic among worker nodes in order to distribute and redistribute tasks. However, neither approach is
transparent to applications, demanding the topology source code instrumentation and prior knowledge of the
demanded topology processing. Xu et al. [16] presented T-Storm, an online Storm scheduler that distributes and
redistributes tasks according to CPU load and inter-executor traffic among worker nodes. T-Storm is transparent
to Storm applications and uses the virtual CPU status and number of tuples sent between executors (not the
network traffic) to schedule tasks. Their approach, however, is not applicable in the multitenant context, where
the virtual resource may not represent the actual physical resource state. A more comprehensive approach that
considers several resources state is the R-Storm proposed by Peng et al. [53], which considers a homogeneous
cluster and the processing, network, and memory resources. However, similar to [16] the resources are
considered virtually, as only the internal stats of the operating system (OS) are used.
 In other big data frameworks, the scheduling process also considers only the virtual resource
availability. For instance, Grandl et al. [18] presented Tetris, a Hadoop multiresource scheduler that takes into
account the CPU, memory, disk, and network status. Tasks are grouped by multiresource requirements,
supporting complementary objectives and minimizing job completion time. Their approach requires source code
instrumentation and prior knowledge of the demanded resources. Finally, Yan et al. [54] addressed scheduling
tasks by considering heterogeneous multicore processors. Virtual resource pools were used to classify and
distribute resources (based on core types) and tasks (based on requirements). However, physical resources and

allocation are under the control of cloud providers, and the performance variability caused by concurrent
resource utilization remains an open issue. In contrast to [53], our proposed scheduler takes into account the
physical status of several resources. Moreover, we do not require the source code instrumentation as in [17, 18]
by computing the physical node state over several resources.

Finally, according to Kreutz et al. [26] load balancing was one of the first applications developed in SDN.
The Plug-n-Server [24] and Aster*x[25] presented by Handigol et al. were proposed by the SDN development
team at Stanford University, with the aim of minimizing server response time by evaluating the communication
link (congestion) and server virtual CPU load. Their approach enabled load balancing at the network-level
without relying in application-level schemes. The approach proposed by Zhong, Fang, and Cui [55]
implemented an SDN-based load balancer that distributes new requests according to the server response time,
thus avoiding any reliance on traditional methods such as ping response times. Our proposed approach leverages
the approach by [25, 26] to perform load balancing at the network level without relying in application-level
approaches. Moreover, we consider the cluster state (computed through the current physical resource state)
during the load balancing. This is a more comprehensive approach than [55], which only considers the response
time. To the best of our knowledge, this study is the first to address multitenant clouds in SDN-based load
balancing by employing the NFV approach.

4 Preliminary Study
This section evaluates the impact on the Apache Storm framework of operating in a multitenant environment
and presents some factors that motivated this work.

4.1 Scenario Configuration
A series of tests were conducted to diagnose existing problems and motivate the proposed solution. To this end,
a controlled cloud computing environment was built using HPE Helion Eucalyptus (version 4.3.0). The cloud
computing environment consisted of four physical computers, each equipped with an 8-core Intel i7 CPU and 16
GB RAM, connected through a gigabit network interface (NIC). The host runs a minimal CentOS 7, the VMs on
an Ubuntu server 16.04, through the Kernel-based VM hypervisor. The cloud computing was divided into two
zones, each composed of two physical machines. The client’s cloud infrastructure was composed of five VMs
(one Master Node and four Worker Nodes), which were created and assigned to the physical machines according
to the Eucalyptus cloud policy (round-robin VM disposal policy).

Apache Storm version 1.0.2 was used in the client’s cloud infrastructure. A tool was developed to
perform the information reading related to the generation and processing of data stream tuples. The Storm UI
REST provided this information [44] and enabled interaction with the Storm cluster. This in turn enabled the
management of its operations, such as starting or ending a topology, and provided information about the state of
the currently executing topologies. The developed tool requests that the number of tuples be processed at 10 s
intervals, which is the Storm update periodicity for this value.

To generate the workload, the WC topology was used, which is publicly available and commonly used in
the literature. Additionally, the default topology was modified to allow words to be written and read in the hard
disk attached to the physical machine. Three topologies were used, each focusing on the usage of a specific
computational resource. To generate the CPU load, the WC topology [43] was used. To evaluate the network
usage impact, the Throughput Test (TT) [45] topology was utilized to generate random strings of a fixed size of
10 KB. Finally, to evaluate the impact on hard disk throughput, we performed the same approach used by [16],
changing the default WC topology to generate each tuple by reading a text file [46] from the hard disk while
writing the same words back to the hard disk. This modified topology is named the Word Count File (WCF)
topology.

With regard to the topologies and their parameters, tests were performed to evaluate their behavior in two
distinct scenarios, which illustrated in Figure 3.

 Baseline Cluster: Each physical machine hosts a VM, with one machine operating as the Master
Node and the others operating as Worker Nodes that comprise the main cluster. The Baseline Cluster
VMs are distributed in all Eucalyptus zones. This scenario aims to evaluate the behavior of topologies
without external interference to the VM by other cloud clients.

 Multitenant Cluster: This scenario aims to evaluate the behavior of topologies while experiencing
multitenant interference. Similar to the Baseline Cluster, each physical machine hosts one VM to
comprise the main cluster. However, the four physical machines add hosts to a secondary Storm
cluster (Figure 3, Multitenant Cluster). Thus, this scenario holds two clusters: the main cluster, which
is composed of five VMs (distributed in all zones), and a secondary cluster composed of five VMs
(distributed solely in Eucalyptus Zone B). This scenario aims to evaluate the main cluster topology
performance under multitenant interference in half of the physical machines.

Figure 3 shows the cluster distribution in the Baseline Cluster and Multitenant Cluster. The performance
evaluation metrics were measured over the main cluster. The secondary cluster is responsible for the parallel
real processing load generation, which occurred through the execution of topologies using the same parameters

as the Main Cluster. In this manner, our scenarios mimic the real-world environment, in which a physical
machine may run several VMs with different priorities and services.

B
as
el
in
e
 C
lu
st
er

Topology Caption: Main topology Secondary Topology

Eucalyptus Cloud

Zone A

Physical Machine 01

Worker Node 01
(VM)

Master Node
(VM)

Physical Machine 02

Worker Node 02
(VM)

Zone B

Physical Machine 03

Worker Node 03
(VM)

Physical Machine 04

Worker Node 04
(VM)

Eucalyptus Cloud

Zone A

Physical Machine 01

Worker Node 01
(VM)

Master Node
(VM)

Physical Machine 02

Worker Node 02
(VM)

Zone B

Physical Machine 03

Worker Node 03
(VM)

Physical Machine 04

Worker Node 04
(VM)

Master Node
(VM)

Worker Node 01
(VM)

Worker Node 02
(VM)

Worker Node 03
(VM)

Worker Node 04
(VM)

M
u
lt
it
en

an
t
C
lu
st
e
r

Consumer
(tenant)

Consumer
(tenant)

Consumer
(tenant)

Fig. 3. Testing scenario

4.2 Performance Evaluation

This subsection presents the results of evaluating the multitenant impact of real-time cloud processing
frameworks. The execution time for each test was 300 s. The topology parameters are presented in Table 1.

TABLE 1. Main and Secondary topologies configuration (Figure 3)
Topologies Number of Workers Spout

(Sentence)
Bolt

(Split)
Bolt

(Count)
Baseline Cluster 4 4 8 12
Multitenant Cluster 4 4 8 12

The results are listed in Table 2, where the average (big data) tuples processed per second in both scenarios are
given for each tested topology. The Baseline Cluster column represents the number of tuples generated per
second in an environment without multitenant interference. The Multitenant Cluster column lists the percentage
of tuples per second under multitenant interference when compared to the Baseline Cluster. Considering the
former as the baseline proposal, it is possible to note that the Multitenant Cluster performance was degraded in
all cases, mainly when the Secondary Topology executed the same topology (mirror) as the Main Topology.

Comparison of the results generated by the Baseline Cluster and Multitenant Cluster shows that the
performance was degraded in all cases where the topology used the same type of resource. In the WC topology
(CPU-bound), only 42.7% of tuples were processed when executed in a multitenant environment. For the WCF
topology (IO-bound), only 33.5% of tuples were processed. Finally, for the TT topology (network-bound), only
53.1% of tuples were processed when compared to the Baseline Cluster.

TABLE 2. Scenario A and B comparison using ES
Topologies Baseline Cluster

(tuples/s)
Multitenant Cluster (baseline related percentage)

WC
(CPU-bound)

WCF
(IO-Bound)

TT
(Network-bound)

WC (CPU-bound) 803,622 42.7% 35.8% 82.5%
WCF (IO-bound) 5,757 80.9% 33.5% 89.4%
TT (Network-bound) 1,333 80.4% 36.9% 53.1%

These results reveal the importance of scheduling methods that consider the state of physical nodes to
prevent performance impacts in big data applications. Multitenant environments are a realistic proposition,
especially in business-driven cloud computing (e.g., AWS, Salesforce, etc.), and drastically influence the
performance of big data stream processing systems such as Apache Storm. The situation is complicated by cloud
computing providers that sell Infrastructure as a Service (IaaS), but do not provide any kind of information
about the status of the physical hardware running the VM in the IaaS.

Thus, during task scheduling, the scheduling algorithm must consider the physical state of the node to
avoid performance degradation. Additionally, big data stream processing systems must also consider the
periodic task rescheduling, as the performance of VMs may change dramatically over time because of
concurrent hardware access by other cloud tenants (see Table 2, the worst case is 66.5% performance
degradation in the WCF). Moreover, the resource provisioning and load balancing algorithms must also consider
the multitenant property because the related increase in the number of big data processing clusters might not

provide the expected increase in processing capacity, or the processing load might be forwarded to an already
overloaded cluster because of multitenant interference.

5 Multitenant-Aware Mechanism
This paper proposes (i) a task scheduler for big data stream processing in cloud-based multitenant environments
named Dynamic Scheduler (DySc); (ii) an SDN-based resource provisioning mechanism named Elastic
Resource Provisioning (ERPr); and (iii) a load balancer for several multitenant environments named SDN-based
Load Balancer (DyLB). DySc is responsible for scheduling and periodically rescheduling big data streaming
tasks among nodes with available physical resources within a specific cluster.

Client Infrastructure Cloud Provider Infrastructure

Cloud Provider Interface

Cloud‐Based Cluster N

Cloud‐Based Cluster 02

Cloud‐Based Cluster 01
(a) Table‐miss

Virtual Forwarding Device

Flow Table

SDN Controller

Flow Policies

(b) Update Flow

(c) Notify
(d) Update
Flow Policies

NFV

SDN‐based Load Balancer

Elastic Resource Provisioning

Slave Node (VM)

Slave Agent

Microbenchmark

Slave

Executors

Virtual Forwarding Device
Flow Table

Master Node (VM)

Coordinator

Dynamic Scheduler Master Agent

NFV

Intra‐Cloud State

(e) Create Cluster

(f) Cluster Created

(g) Get State

SDN Controller

Flow Policies

Data
Stream

Stream Units

Fig. 4. Overview of the proposed architecture

ERPr is responsible for transparently detecting overloaded clusters, and then instantiating and terminating
cloud-based clusters according to the processing load. Finally, DyLB is responsible for balancing the load
between clusters, considering the processing and networking flow status. An overview of our proposal is shown
in Figure 4, and further details are given in the following subsections.

5.1 Dynamic Scheduler

DySc relies on four main components (Figure 5) to schedule and reschedule tasks in a multitenant environment.
The Dynamic Scheduler and Master Agent (MA) are responsible for monitoring the node states and scheduling
and rescheduling tasks (x) accordingly in real time. The Slave Agent (SA) obtains the Slave Node state (using
microbenchmarks) and reports it to the MA when requested. Finally, the Intra-Cloud State provides fine-grained
control over the network flows. The following subsections detail each of the DySc elements.

Master Node (VM)

Coordinator

Dynamic Scheduler

Master Agent

Slave Node (VM)

Slave

Executors (α0 ... αN)

Slave Agent

Microbenchmark

NFV

Intra‐Cloud
State

Virtual Forwarding Device

Flow Table

(a) UpdateState

(b) getState

(c) getState

(d) getCounters

(e) updateFlow

SDN Controller

Flow Policies

(i) Task (βx)

(ii) Run/Stop Task (βx)

Fig. 5. Overview of dynamic scheduler architecture

5.1.1 Slave Agent
The proposed system considers a multitenant environment with shared physical resources. The SA

reports the state of each node (𝑛𝑜𝑑𝑒௦௧௔௧௘) by collecting information about the resources (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘). For
each resource, the SA reports two sets of states: the physical state and virtual state. The physical state refers to
the current condition of the shared resource, e.g., the hard disk write capacity. The virtual state refers to the
current condition of an internal VM resource (virtual resource), e.g., the CPU consumption, provided by the
guest OS.

A first proposal relies on microbenchmarking tools to collect information about the physical state of each
resource. It is important to provide a hypervisor-independent solution and mitigate the conflicts of interest
between the customer and service provider (SP), as the SP may report inconsistent states to obtain unfair
advantages [47].

The process of determining the nodes’ physical states is divided into two stages. Initially, the maximum
throughput of each physical resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫) is obtained, establishing how a resource behaves
without interferences from external entities to the VM. The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫ value can be obtained through
values provided by the resource manufacturer, or through a benchmark tool without interference, in a controlled
environment. Several metrics of VM utilization should be measured to ensure realistic values for each
benchmark.

It is then possible to use microbenchmarks (specific benchmarks) to define, in real time, the current state
of the physical resource of each node (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧). Through 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫ and
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧, the current state of each shared physical resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘) can be
established using Eq. (1).

 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
௥௘௦௢௨௥௖௘೛೓೤ೞ೔೎ೌ೗_೎ೠೝೝ೐೙೟

௥௘௦௢௨௥௖௘೛೓೤ೞ೔೎ೌ೗_೘ೌೣ
 (1)

Note that 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ can be affected by internal VM usage. For instance, the hard disk
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧ value may have a lower read/write rate because of the VM usage itself. To consider
such interference, our approach uses the internal (virtual) state of a resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘) as a
smoothing state attribute. The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘ is obtained through the VM OS and defines the usage rate
of a specific VM virtual resource. Finally, Eq. (2) defines the state of a resource (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘).

 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘ ൌ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൅ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘ (2)

The product of all 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘ values establishes the 𝑛𝑜𝑑𝑒௦௧௔௧௘, as indicated in Eq. (3), where n
denotes the number of resources.

𝑛𝑜𝑑𝑒௦௧௔௧௘ ൌ ෑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௧௔௧௘
௜

௡

௜ୀଵ

ሺ3ሻ

5.1.2 Master Agent

The MA is responsible for managing the SAs and computational demands. The MA requests that the Slave
Node states are updated (Figure 5, event a). When the SA receives an update state request, it computes and
stores its state value (nodeୱ୲ୟ୲ୣ). The MA periodically requests the update node state for each cluster node
(Figure 5, event b). During the scheduling and rescheduling process (Sections 5.1.3-A and 5.1.3-B), the MA
requests the node states to be computed (Figure 5, event a), thus improving its response time.

5.1.3 Dynamic Scheduler Scheduling/Rescheduling Policies

DySc is responsible for scheduling and rescheduling tasks inside a cluster. The following subsections describe
the scheduling and rescheduling task policies.

A) Scheduling Policy
The Scheduler algorithm considers a task to have a set of processing units () that must be distributed to the
available Slave processing units ().

Algorithm 1 details the DySc scheduling policy for a set of required processing units (β). DySc
requests the SAs to compute the 𝑛𝑜𝑑𝑒௦௧௔௧௘ for all cluster (C) slave nodes. Slave nodes that do not have available
processing units () are not taken into account during the scheduling. DySc computes the weight of each
processing unit (weightఉ) as the sum of all 𝑛𝑜𝑑𝑒௦௧௔௧௘ values divided by the number of tasks. The weightఉ
defines the weight of each unit  in relation to 𝑛𝑜𝑑𝑒௦௧௔௧௘. DySc then assigns the current β to a slave node with
the highest 𝑛𝑜𝑑𝑒௦௧௔௧௘ (𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒). Finally, the 𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ is subtracted according to the prior computed
weightఉ and a parameterized spreadability value. The spreadability value defines the  distribution among the
cluster slave nodes; a lower spreadability value is more likely to overload better slaves. In this manner, the node

with the highest 𝑛𝑜𝑑𝑒௦௧௔௧௘ is not overloaded with all tasks  and the process is repeated until every unit  has
been allocated to . The proposed task scheduling algorithm assumes that every β demands node resources. The
spreadability value prevents the best nodes from being overloaded.

B) Rescheduling Policy
DySc is also responsible for rescheduling big data tasks through cluster monitoring and real-time redistribution
of previously scheduled processing units (β). After the scheduling stage, rescheduling occurs periodically to
optimize task performance by moving β from nodes that have poor 𝑛𝑜𝑑𝑒௦௧௔௧௘ values to those with better ones.
This task reallocation aims to minimize the multitenant interference effect in the processing of streaming data.
Interference can occur after the scheduling a task when another VM is instantiated alongside an existing slave
node and starts to use the shared resources excessively.
 The rescheduling algorithm (Algorithm 2) considers tasks running in the cluster, meaning that all β are
already assigned to an  in a slave node. Thus, DySc requests the SAs to compute the 𝑛𝑜𝑑𝑒௦௧௔௧௘ for the slave
nodes in all clusters (C). DySc then recomputes weightఉ for a running task. All 𝑛𝑜𝑑𝑒௦௧௔௧௘ values are then
updated according to the number of units β previously assigned to the node. DySc selects two nodes: the node
(best_node) with available  and the best state (𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘), and the node (worst_node) with a β assigned
and the worst state (𝑤𝑜𝑟𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘). If the 𝑏𝑒𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ is better than the 𝑤𝑜𝑟𝑠𝑡_𝑛𝑜𝑑𝑒௦௧௔௧௘ , adjusted by a
parameterized meaningfulness value, β is reallocated. The meaningfulness value prevents unnecessary
rescheduling when the difference between the available resources in the nodes is not significant. Moreover, in
the case of reallocation, the states of both nodes are updated. The rescheduling process is repeated until there are
no available better nodes to reallocate β units.

5.1.4 Intra-Cloud State NFV

The Intra-Cloud State NFV acts as the cloud client’s infrastructure manager. Thus, the NFV is responsible for
setting the intra-cloud (cloud client’s infrastructure domain) network flows to the startup level (Figure 5, event
e) through the SDN controller. The NFV also acts as the intra-cloud state provider, allowing the SDN-based
Load Balancer (Section 5.2) and Elastic Resource Provisioning (Section 5.2.1) to determine the cloud client’s
infrastructure state. To this end, the NFV periodically requests the DySc to update the Slave Node states (Figure
5, event c) and, through the SDN controller, the flow metrics among the Slave Nodes (Figure 5, event d).

5.2 SDN-based Load Balancer

DyLB transparently provides elasticity to cloud-based processing infrastructure to improve task processing. The
proposed system considers that a specific task processing cluster may, temporally or not, become unable to
process a designated load (Data Stream that generates several Stream Units, Figure 4). This may be due to an
increase in the processing load, implying processing load spikes [19], or a significant loss of cluster processing
power, e.g., caused by multitenant interference.

DyLB relies on the Intra-Cloud State NFV to identify exhausted clusters (Figure 4, event g), and
periodically requests the Intra-Cloud State NFV to determine the state of each cluster (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘). Eq. (4)
defines the state of a cluster as the average of each 𝑛𝑜𝑑𝑒௦௧௔௧௘ within that cluster, where N denotes the number of
nodes within a cloud-based cluster.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ ൌ
∑ 𝑛𝑜𝑑𝑒௦௧௔௧௘

௜௜
ே

𝑁
 ሺ4ሻ

From the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ value of each cluster, DyLB provides elasticity for resource allocation and load
balancing. The following subsections describe the elastic resource provisioning and load balancing methods.

5.2.1 Elastic Resource Provisioning

Our proposed system performs horizontal scaling, in which the cluster is replicated, rather than vertical scaling
by adding more Slave Nodes (Figure 5, Slave Nodes) to the cluster. In this way, it provides elastic resources

without any knowledge of the application demand. Thus, ERPr relies on the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ values to identify the
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. Eq. (5) defines the state of the infrastructure as the average of each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ within
the infrastructure, where N denotes the number of clusters in the infrastructure.

𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ ൌ
∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘

௜௜
ே

𝑁
 ሺ5ሻ

ERPr creates or terminates clusters according to the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. Therefore, it uses two
parameterized values, 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ and 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ. The former defines
the minimum acceptable 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘. When the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ is less than the
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ, ERPr requests the cloud platform to create another cluster (Figure 4, event e). In
contrast, when the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ is greater than the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ, ERPr requests the
cloud platform to terminate the cluster with the lowest 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ (Figure 4, event e).

ERPr is periodically executed according to the sum of two parameters: T and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘. T is a
parameter that defines the frequency of cluster state updates, whereas 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘ is the time required by
the cloud provider platform (Figure 4, event f) to create the cluster. Using both parameters, the elastic resource
provisioning function waits for the cluster creation time (Figure 4, event f) before checking the
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ again.

Note that our proposal assumes that the present load is not a spike—a type of load in which the time
required to provide more resources (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௖௥௘௔௧௜௢௡ ௧௜௠௘) is greater than the time required to process the load
[19].

5.2.2 SDN-based Load Balancing

ERPr increases the infrastructure process capacity by creating several clusters to perform the processing and
flow tasks. However, the data stream unit generator (Figure 4, Data Stream) cannot define which cluster the
Stream Units should be sent to. To perform such load balancing transparently, our proposal relies on the SDN
model.

Our load balancing scheme establishes the cluster load capacity (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬) according to each
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘. Each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ is periodically established through Eq. (6), where N denotes the number
of clusters in the infrastructure.

𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ ൌ
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘

∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘
௜௜

ே
 ሺ6ሻ

The load balancing function performs its designated function at the granularity of the data stream units.
During a period, each cluster receives a load rate per 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬. For instance, a Storm cluster with
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ ൌ 0.7 should receive 70% of the data stream units (i.e., Storm tuples). The
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ values are updated according to a predefined time window.

An overview of the load balancing process is shown in Figure 4. The Data Stream periodically generates
Stream Units and sends them to known-clusters. As no flow entry is specified for the Stream Unit according to
its identifiers (e.g., source IP and Port), a table miss occurs. Thus, the SDN Switch transfers the first stream data
unit packet to the SDN Controller (Figure 4, event a). The SDN Controller notifies the DyLB NFV (Figure 4,
event c) to define the target cluster according to the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௟௢௔ௗ ௖௔௣௔௖௜௧௬ of each cluster. Then, the DyLB NFV
updates the SDN Controller flow policies accordingly (Figure 4, event d). Next, the SDN Controller creates a
flow entry for the chosen cluster and Stream Unit identifiers (Figure 4, event b). In this manner, further packets
from the same stream unit are forwarded to the chosen cluster.

6 PROTOTYPE
This section describes a prototype of the proposed system, which is split into (i) ERPr and DyLB, and (ii)

DySc prototypes. All tools, source codes, and binaries are publicly available in [58].

6.1 ERPr and DyLB Prototype
Figure 6 shows the ERPr and DyLB prototype. To make the prototype evaluation more realistic, a Data Stream
generator (Figure 6, Data Stream) was developed that periodically generates tuple requests to a topology. In this
manner, the load is generated outside the topology as it occurs in real-world applications. Floodlight [41] was
used in the prototype as the SDN controller (version 1.2). A PACKET-IN module was implemented at the
controller. This module receives PACKET-IN (when a packet has no matching flow policies) messages from the
OpenVSwitch at each new tuple arrival (Figure 6, Data Stream Units), identified through the source IP and port
addresses. The module requests the DyLB and waits for a response as to which cluster the tuple generation
request should be forwarded to.

HPE Helion Eucalyptus (version 4.3.0) was used as the cloud provider. Each Eucalyptus cloud
computing environment is composed of four physical computers equipped with an 8-core Intel i7 CPU and 16
GB RAM, connected through a gigabit NIC. The cloud client infrastructure (Figure 4, Cloud-Based Cluster) was
created through a CloudFormation [33] template. The template creates five VMs (one Master Node and four
Worker Nodes), and these dynamically execute the Apache Storm topology at startup through the cloud-init
template field. The ERPr creates or terminates a cluster through the Eucalyptus CloudFormation template
(Figure 6, event e).

Client Infrastructure Eucalyptus Infrastructure

Eucalyptus Cloud
(AWS Interface)

CloudFormation Template Instance N

CloudFormation Template Instance 02

CloudFormation Template Instance 01

Open vSwitch

Flow Table

Floodlight Controller

Flow Policies

(b) Packet‐Out/
Update Flow

Worker Node (VM)

Slave Agent

Microbenchmark

Supervisor

Executors

Open vSwitch
Flow Table

Master Node (VM)

Nimbus

Dynamic Scheduler Master Agent

NFV

Intra‐Cloud State

(e) Create Cluster

(f) Cluster Created

ODL Controller

Flow Policies

Data
Stream

Stream Units

PACKET‐IN Module

NFV

SDN‐based Load Balancer

Elastic Resource Provisioning

(g) Get State

(c) Notify
(d) Update
Flow Policies

(a) Packet‐In/
Table‐miss

Message Caption: JAX‐RS (RESTFul) SDN (Openflow)
Fig. 6. ERPr and DyLB prototype implementation architecture

The DyLB periodically requests the Intra-Cloud State NFV for each CloudFormation instance at 60-s
intervals. The ERPr also requests the DyLB to update the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ every 60 s. The DyLB receives the SDN
Controller PACKET-IN notifications, which are called through a PACKET-IN module implemented in the
Floodlight Controller. The DyLB load balancing scheme is defined at the tuple level according to the source IP
and port addresses. The ERPr requests the Eucalyptus cloud for the creation or ending of clusters through the
Eucalyptus client API. The cluster is defined through a Eucalyptus CloudFormation template.

6.2 Dynamic Scheduler Prototype
This section describes the DySc prototype executed within the CloudFormation template. The whole
infrastructure is dynamically configured through the cloud-init field from the CloudFormation template,
enabling the ERPr evaluation. Figure 7 shows the DySc prototype. A virtual OpenVSwitch is executed within
each Worker Node VM, enabling fine-grained flow measurements (evaluated in Section 7.4) within the cloud.
The flow setup is performed at CloudFormation template startup through the Floodlight Controller REST
Interface. The flow counters are also obtained through the Floodlight Controller REST Interface. The counters
are invoked every 60 s.

As mentioned in Section 2.2, Apache Storm allows the scheduling policy to be customized, enabling
the creation of new scheduling policies according to the needs of the user/environment. The API that provides
such customization is called the IScheduler, which provides a scheduling method to implement a customized
scheduler.

The MA runs with the Storm Master Node. On the other side, the SAs run in each Storm Worker Node.
The SAs were implemented as a RESTful web service through the JAX-RS API [48]. In this way, the SAs have
two main methods: updateState (Figure 7, event a) responsible for starting the node state compute process, and
getState (Figure 7, event b) which returns the last computed state. DySc starts or interrupts a task (a set of β
processing units) through the functions assign and freeSlot [49].

Master Node (VM)

Nimbus

Dynamic Scheduler

Master Agent

Worker Node (VM)

Supervisor

Executors (α0 ... αN)

Slave Agent

Microbenchmark

NFV

Intra‐Cloud
State

Open vSwitch

Flow Table

(a) UpdateState

(b) getState

(c) getState

(d) getCounters

(e) updateFlow

Floodlight Controller

Flow Policies

(i) Task (βx)

(ii) Run/Stop Task (βx)

Zookepeer

Message Caption: Storm‐based JAX‐RS (RESTFul) SDN (Openflow)
Fig. 7. DySc prototype implementation architecture

The following relations were applied between the notation from DySc and Storm (Figure 7):
 Cluster: set of Storm worker nodes
 Node/Slave: Storm worker nodes
 Task: Storm topology
 Β: topology worker
 : slot in a worker node
We used microbenchmarks to compute the node states in terms of the CPU, hard disk, and network.

These resources were shared in a multitenant environment, and thereby suffered degradation of
processing/throughput capacity when overloaded by another cloud client, as discussed in Section 4. Table 3
describes the tools and methods used to obtain the shared resource state (resource ୱ୦ୟ୰ୣୢ ୱ୲ୟ୲ୣ).

To ensure that the physical resource state measurements are made in real time, the MA relies on a cyclic
algorithm to update the 𝑛𝑜𝑑𝑒 ௦௧௔௧௘ (Figure 7, event a). MA waits for a predetermined time before requesting the
next node update, preventing two Worker Nodes allocated in the same infrastructure from performing
simultaneous microbenchmarks, and thus degrading their state wrongly or having the results influenced by data
caching.

The 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௩௜௥௧௨௔௟_௦௧௔௧௘ of the CPU, hard disk, and network is obtained from the Linux OS using the
proc filesystem [52].

TABLE 3. Resource state computation methods
Resource

Process to obtain 𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍_𝒔𝒕𝒂𝒕𝒆

CPU

Sysbench [50] performs a set of prime number computations. The average processing time with free resources
was previously established (𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௛௔௥௘ௗ_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed as

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௦௛௔௥௘ௗ ௦௧௔௧௘ ൌ 1 െ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧ െ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫

Hard Disk

Sysbench [50] also performs reads and writes of a predetermined set of blocks. The average write time with
free resources was established (resource௣௛௬௦௜௖௔௟_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed
as

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫

Network

The Master Node hosts an iPerf [51] server. This measures the maximum available throughput for each Slave
Node, which in turn has an iPerf client. The average connection throughput was previously established
(𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫) and the real-time 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ was computed as

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௦௧௔௧௘ ൌ
𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௖௨௥௥௘௡௧

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒௣௛௬௦௜௖௔௟_௠௔௫

These tools allow the microbenchmark execution time to be parameterized. This concern justifies itself,
as this study does not aim to measure the total physical resource computation time through long-duration
benchmarks. What is intended is to perform microbenchmarking to obtain real-time results and adequately use
the available resources in a multitenant environment.

7 EVALUATION
This section describes the DySc, DyLB, and ERPr evaluation tests.

7.1 Dynamic Scheduler Evaluation
The performance of DySc was compared to that of the Storm default scheduler, EvenScheduler (ES), which
employs a round-robin-based scheduling policy. The goal was to measure the benefits and overhead of DySc in
a multitenant environment. The experiments were performed in the testbed scenario (Figure 3, Section 4).

The same topologies used to evaluate ES in Section 4 were used. As presented in Table 2, all evaluated
topologies (WC, WCF, and TT) were affected by the multitenant environment because ES does not consider the
node state. It is expected that the use of DySc will improve the performance of these topologies.

DySc requires two parameters, as discussed in Section 5. For the spreadability, we used the value 1.0 to
increase the distribution between nodes with the best states. For the meaningfulness, we used the value 0.5,
which was established through rescheduling behavior analysis tests. DySc executes the rescheduling algorithm
periodically (every 60 s) to allow the SAs to update their states. Each SA is given 15 s to update its state. After
this period, the MA requests the next node to update its state, and so on. When all node states have been
updated, the MA waits another 15 s before restarting the update process.

7.1.1 Scheduler Evaluation
This subsection presents the results obtained from running DySc and ES in a multitenant environment. The
measurements compare the total number of tuples generated by DySc and ES in the Baseline Cluster (Figure 3),
in which there is no interference from a third-party VM.

Figure 8 compares the performance of the topologies. The vertical axis represents the maximum relative
percentage of tuples processed compared with the baseline cluster (Figure 3). The horizontal axis shows the
topology pairs, wherein the first topology is executed in the main cluster and the second topology in the
secondary cluster, generating parallel processing loads to mimic multitenant interference.

Fig. 8. DySc and ES processed tuples ratio comparison

When the topologies are “mirrored” in clusters (same resources are overloaded), our proposal can
provide an improvement of 50.10% when the WC is executed in parallel on both the main and secondary
(mirrored) cluster (WC & WC in Figure 8). DySc was 62.30% better with parallel WCF executions (WCF &
WCF in Figure 8) and 43.80% better when executing parallel TT (TT & TT in Figure 8). When the main
topology resource is available, but the other resource is experiencing multitenant interference, DySc can also
improve the performance to that of ES; for instance, in CPU-bound topology while executing IO-bound
topology in a secondary cluster. However, ES has significantly poorer performance when the same topology is
present in both clusters—as both processing/topologies require the same computational resources. One
important thing to note is as long as the disk resource is being used by other cloud tenants, the topology
performance significantly decreases, processing only an average of 35.40%, while the DySc can process an
average of 94.57% compared to the baseline cluster.

Figure 9 shows the average processing time for each tuple of the WC topology when using DySc and ES.
DySc processed a tuple in an average of 0.0014 ms, whereas ES required approximately 0.0022 ms. Thus, DySc
improved the processing of each tuple by 57%.

WC &
WC

WCF &
WC

TT & WC
WC &
WCF

WCF &
WCF

TT &
WCF

WC & TT
WCF &
TT

TT & TT

Dynamic Scheduler 92,80% 95,30% 96,50% 90,70% 95,80% 97,20% 92,10% 93,90% 96,90%

Even Scheduler 42,70% 80,90% 80,40% 35,80% 33,50% 36,90% 82,50% 89,40% 53,10%

0%

20%

40%

60%

80%

100%

Fig. 9. WC tuples processing time by DySc and ES

Figure 10 shows the average processing time for each WCF tuple. DySc obtained an improvement of
172% compared with ES (average of 0.18 ms against 0.49 ms).

Fig. 10. WCF tuples processing time by DySc and ES

Figure 11 shows the average processing time for each TT tuple. DySc again produced better results than
ES. The average processing time for each tuple was 0.78 ms for DySc and 1.52 ms for ES, representing an
average gain of 94.87%.

Fig. 11. TT tuples processing time by DySc and ES

Another important behavior is that the results generated by ES exhibited greater variation than those of
DySc. This reflects the absence of scheduling policies evaluating the physical state of a node before sending a
request. Big data streaming frameworks generate large amounts of data intermittently, and it is expected that the
processing environment will not present a highly variable processing time.

7.1.2 Rescheduler Evaluation
Multitenant environments are characterized by highly variable usage of resources over time. A controlled
environment was created, and the processing loads were varied to evaluate the DySc behavior during the
rescheduling procedure. The objective was to evaluate the time required by DySc to identify the resource
degradation, change the processing among cluster nodes, and redistribute tasks after the resources became fully
available again.

The controlled environment consists of a rescheduling scenario that alternated between multitenant and
single processing, i.e., alternating between the Baseline Cluster and Multitenant Cluster in Figure 3. The
executions were divided across three distinct periods: (i) machine resources are fully available (Baseline
Cluster); (ii) parallel processing has started in half of the physical machines, overloading its computational
resources (Multitenant Cluster, Secondary Topology has started, Figure 3); and (iii) parallel processing has

ended, returning to the original resource availability state (Baseline Cluster). Each period was executed for 20
min.

To measure the impacts and benefits of DySc rescheduling, we used the network-bound topology (TT)
for both single and parallel processing (Baseline Cluster and Multitenant Cluster). Figure 12 shows the average
tuple processing time of DySc and ES running the TT topology in the rescheduling scenario. The parallel
processing started 1200 s later. DySc required 60 s to identify the processing change and perform the
rescheduling. After 2400 s, parallel processing ended and DySc required 90 s to identify the change and
redistribute the tasks for all cluster machines. This rescheduling time can be improved if the nodes updated their
states more frequently (15 s during the experiments) or the rescheduling process was conducted less frequently
(we considered 60 s). The total time required for rescheduling (identify and redistribute) in both changes of
processing corresponded to only 4% of the total execution time.

Fig. 12. DySc and ES comparison considering rescheduling in alternate multitenant interference

7.2 SDN-based Load Balancer Evaluation
To evaluate the DyLB, two HPE Eucalyptus Clouds were used, each with four physical machines. One cloud
had all of its physical machine resources fully available (Figure 3, Baseline Cluster), whereas the other cloud
had half of its physical machines running a cluster from another client (Figure 3, Multitenant Cluster).

Fig. 13. DyLB load distribution among clusters

The CPU-dependent topology (WC) was executed on both clusters, and tuple processing requests were
generated intermittently (Figure 6, Stream Units). For each tuple processing request, a Table-miss and Notify
occurred (Figure 4), generating a request to the DyLB to establish which cluster the tuple processing request
should be sent to. Eq. (6) was used to compute the load for each cluster. A 60-s interval was used to update the
𝑐𝑙𝑢𝑠𝑡𝑒𝑟௦௧௔௧௘ values. The load distribution among both clusters is shown in Figure 13.

As a general evaluation, it can be noted that the proposed load balancing approach distributed the load
properly, because only 27.96% of the processing load (on average) was forwarded to the Multitenant Cluster.
The Baseline Cluster, which did not experience multitenant interference, had more available resources and
received 72.04% of the processing load (on average) during the evaluation. Thus, it is possible to conclude that
the proposed DyLB is 22.04% (on average) more effective than the traditional round-robin approach (which has
a distribution effectiveness of 50%).
7.3 Fine-grained SDN Flow Counters Evaluation
Conducting microbenchmarking tests to identify multitenant interference in public clouds has two main
drawbacks: (i) the performance degradation caused by microbenchmark processing; and (ii) the waste of
resources in identifying such resource degradation, possibly implying the unnecessary use of resources. To
further minimize such microbenchmarking impacts, Worker Node SDN flow counters were considered, as these
represent a fine-grained point-to-point (Worker-to-Worker) bandwidth. The hypothesis is that, given the

0

0,5

1

1,5

2

2,5

3

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600

A
vg
. P

ro
c.
 T
im

e
 (
m
s)

Running Time (s)

Even Scheduler Dynamic Scheduler

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Lo
ad

 D
is
tr
ib
u
it
io
n

Running Time (s)

Baseline Cluster Multi‐tenant Cluster

homogeneous distributed processing nature of big data processing frameworks, the bandwidth among the
processing nodes must also be homogeneous, as the processing loads are equally distributed in most cases.
Thus, multitenant interference can be identified through fine-grained flow counter analysis, eliminating the need
to perform microbenchmarking during the scheduling process.
 The Worker-to-Worker flow counters available in the Floodlight Controller were measured to verify
the hypothesis. Two scenarios were evaluated: the Baseline Cluster and Multitenant Cluster (Figure 3). The
evaluation tests were performed for 3600 s in both scenarios. Figures 14 and 15 show the download rates
amongst the Worker Nodes while executing the TT topology in the Baseline Cluster and Multitenant Cluster.

(a) Worker Node 1 (b) Worker Node 2

(c) Worker Node 3 (d) Worker Node 4

Fig. 14. Download rates among Worker Nodes while executing in the Baseline Cluster.

Note that the network flows between the Worker Nodes varied significantly when executing in the
multitenant scenario. The download rates between multitenant Worker Nodes 01 and 02 were significantly
higher compared to their counterparts in the Baseline Cluster. This indicates nodes that were overloaded in the
multitenant scenario, as the resources of the other Worker Nodes (03 and 04) were degraded. The download
rates of the multitenant Worker Nodes in the Multitenant Cluster (Worker Nodes 03 and 04) were significantly
lower than those of Nodes 01 and 02. Finally, in the Baseline Cluster, the download rates between the Worker
Nodes did not show such significant differences. Figure 16 shows the average download rates between the
Worker Nodes in the Multitenant and Baseline Clusters.

0

20

40

60

60 720 1380 2040 2700 3360

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 2
Worker Node 3
Worker Node 4

0

20

40

60

60 720 1380 2040 2700 3360

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 3
Worker Node 4

0

20

40

60

60 720 1380 2040 2700 3360

D
o
w
n
lo
ad

s
Fl
o
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 2
Worker Node 4

0

20

40

60

60 720 1380 2040 2700 3360

D
o
w
n
lo
ad

s
Fl
o
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 2
Worker Node 3

(a) Worker Node 1 (b) Worker Node 2

(c) Worker Node 3 (d) Worker Node 4

Fig. 15. Download rates among Worker Nodes while executing in the Multitenant Cluster

The blue lines show the download rates between Worker Nodes 01 and 02 in the Multitenant Cluster,
which averaged 35.72 MB/s and 35.43 MB/s, respectively. In the Baseline Cluster, the average download rates
between the Worker Nodes remained almost equal, showing at most a difference of 0.6 MB/s. Thus, it is
possible to conclude that the fine-grained download flow analysis between the Worker Nodes allows us to
establish whether a VM is suffering from multitenant interference. Such results eliminate the need to perform
microbenchmarking to identify multitenant interference, reducing the waste of processing resources and
performance degradation.

Baseline Cluster

Worker Node 02

Worker Node 04Worker Node 01

Worker Node 03

21.67 MB/s

21
.5
6
M
B
/s

21.53 MB/s

21
.36 M

B
/s 21

.3
7
M
B
/s

21.42 MB/s

21.51 MB/s

Multi‐tenant Cluster

Worker Node 02

Worker Node 04Worker Node 01

Worker Node 03

9.67 MB/s

35
.7
2
M
B
/s

10,15 MB/s

4.54 M
B
/s 4.

59
 M

B
/s

9.69 MB/s

10.29 MB/s

Fig. 16. Average download rates between the Worker Nodes (VMs) in the Multitenant Cluster and Baseline Cluster

7.4 Elastic Resource Provisioning Evaluation
Finally, DySc, DyLB, and ERPr were evaluated. For this purpose, two Eucalyptus clouds were deployed, in
which each cloud had four physical machines (Figure 3). The testbed scenario ran for 9000 s. In the first 3000 s
(0–3000 s) the first cloud did not experience multitenant interference. However, after 3000 s, the first cloud
started to experience multitenant interferences (competing WC topologies ran on all physical machines), which
also lasted for 3000 s (3000–6000 s). Finally, multitenant interference in the first Eucalyptus cloud terminated
and the remaining test ran free of multitenant interference (6000–9000 s).

0

20

40

60

120 780 1440 2100 2760 3420

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 2
Worker Node 3
Worker Node 4

0

20

40

60

120 780 1440 2100 2760 3420

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 3
Worker Node 4

0

20

40

60

120 780 1440 2100 2760 3420

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 2
Worker Node 4

0

20

40

60

120 780 1440 2100 2760 3420

D
o
w
n
lo
ad

 F
lo
w
s
M
B
/s

Running Time (s)

Worker Node 1
Worker Node 2
Worker Node 3

A single cluster was deployed in the first Eucalyptus cloud, which executed the WC topology, while
the second Eucalyptus cloud was available for the ERPr for the allocation of further clusters through a
CloudFormation template. The 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௟௢௪௘௥ ௧௛௥௘௦௛௢௟ௗ of 0.3 and 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ of 0.9
were defined, since these provided the best cluster creation and ended the tradeoff through evaluation tests.
Figure 17 shows the evaluation results for the load distribution performed by the DyLB, the average processing
time through the DySc (for all allocated clusters), and the ERPr delay for the identification of the multitenant
interference beginning and the end.

The average processing time, per tuple, during the whole testbed execution time did not significantly
change. At 3000 s, when the First Cluster started to experience multitenant interference, the ERPr was able to
identify such interference through the 𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௦௧௔௧௘ value and it requested the creation of another cluster
in the second Eucalyptus cloud. A delay of 107 s was observed up to the creation of the second cluster owing to
the time demanded by the second Eucalyptus cloud to instantiate the CloudFormation template. When the
second cluster was created, the DyLB was able to properly balance the incoming load in a manner that the
second cluster received an average 78% of the incoming load. During multitenant interference in the first
cluster, the average processing time remained without multitenant interference. Finally, at 6000 s, the
interference ended and the ERPr required 225 s to end the second cluster through the
𝑖𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒௨௣௣௘௥ ௧௛௥௘௦௛௢௟ௗ values.

Fig. 17. Multitenant interference: highlighted (by red border) in the picture.

8 CONCLUSION AND FUTURE WORK
This study evaluated the impact of a multitenant cloud on the big data stream processing framework, Apache
Storm. We revealed that scheduling computational demands without considering the physical state of the nodes
(VM) that performed the processing, as done in previous methods, is an inefficient practice because the nodes
resources may have been exhausted by other cloud customers (tenants).

 The Dynamic Scheduler (DySc) was developed to deal with the cloud computing multitenant
environment. This system continuously evaluated the state of available physical resources in the cloud
computing environment through microbenchmarks. These measurements were linked to scheduling and
rescheduling policies, making it possible to schedule computational demands in a manner that avoids nodes with
exhausted resources. Experimental evaluations performed with DySc and comparison with ES show that it is
possible to improve application performance using the same computational resources by 50.1%, 62.30 %, and
43.8 % for the CPU, hard disk, and network, respectively, in the Multitenant Cluster scenario where
multitenancy caused its biggest impact.

Processing big data streams is extremely variable, even with an efficient task scheduling policy such as the
proposed DySc, which considers both virtual and physical resource availability, as significant increases in
processing demand might occur. Thus, a resource provisioning strategy is needed that considers the multitenant
cloud properties. To this end, an Elastic Resource Provisioning and SDN-based Load Balancing approach was
proposed. Using the SDN flow counters, a fine-grained flow analysis allowed us to determine whether a VM
was suffering from multitenant interference. Such insight eliminates the need to perform microbenchmarking
tests to identify multitenant interference, reducing the waste of resources and performance degradation. The
proposed system was implemented through the NFV and used to balance the processing and flow loads through
multitenant cloud-based clusters. It sent 72.04 % of the load to a fully resource-available cluster and yielded a
22.04% gain over the traditional round-robin algorithm.

As future work we consider that security aspects should be addressed, given that a dynamic environment as
this one can be target of Distributed Denial of Service or vulnerabilities exploitation, for instance. In such a
case, the proposal might wrongly consider a processing resulting from security weakness as system load.

0

0,4

0,8

1,2

1,6

0%

25%

50%

75%

100%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

A
vg

. P
ro

c.
 T

im
e

(m
s)

L
oa

d
 D

is
tr

ib
u

ti
on

Running Time (s)

First Cluster Second Cluster Dynamic Scheduler

Without Multitenant Interference Multitenant Interference Without Multitenant Interference

ACKNOWLEDGMENT
This work was partially sponsored by the Brazilian National Council for Scientific and Technological
Development (CNPq), grants 310671/2012-4 and 404963/2013-7. Cleverton Vicentini wishes to thank the
Coordination for the Improvement of Higher Level Personnel (CAPES) for the scholarship, grant no. 140/2013.

REFERENCES

[1] NIST. Big Data Interoperability Framework: Volume 1, Definitions, NIST Special Publication 1500-1, 2015,

pp. 1-32, doi:10.6028/NIST.SP.1500-1
[2] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/docs/current [Accessed: September 2017]
[3] A. Toshniwal, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,

S. Kulkarni, J. Jackson, K. Gade, and M. Fu, “Storm@twitter,” in Proc. of ACM SIGMOD Int. Conf.
Manag. Data - SIGMOD’14, 2014, pp. 147–156, doi:10.1145/2588555.2595641.

[4] Apache Storm, 2016. [Online]. Available: http://storm-project.net/ [Accessed: September 2017]
[5] P. Mell, T. Grance, “The NIST definition of cloud computing (Draft)”, National Institute of Standards and

Technology, 2009, Security and Privacy Guidelines, pp. 97-101. doi:10.6028/NIST.SP.800-145.
[6] S. Subashini, V. Kavitha, “A survey on security issues in service delivery models of cloud computing,”

Journal of Network and Computer Applications, vol.34, no.1, 2011, pp. 1–11,
doi:10.1016/j.jnca.2010.07.006.

[7] R. Weingärtner, G. B. Bräscher, C. B. Westphall, “Cloud resource management: A survey on forecasting and
profiling models,” Journal of Network and Computer Applications, vol.47, no.1, 2015, pp. 99–106,
doi:10.1016/j.jnca.2014.09.018.

[8] P. Wieder, J. Seidel, O. Wäldrich, W. Ziegler & R. Yahyapour. “Using SLA for resource management and
scheduling—a survey,” in Springer US Grid Middleware and Services, 2008, pp. 335-347, doi:10.1007/978-
0-387-78446-5_22.

[9] S. A. Baset, L. Wang, and C. Tang, “Towards an understanding of oversubscription in cloud,” 2nd USENIX
Conf. Hot Top. Manag. Internet, Cloud, Enterp. Networks Serv. USENIX Assoc. pp. 7–7, 2012.

[10] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “CloudScale: elastic resource scaling for multi-tenant cloud
systems,” in Proc. of 2nd ACM Symp. Cloud Comput. - SOCC ’11, 2011, pp. 1–14,
doi:10.1145/2038916.2038921.

[11] S. He, L. Guo, M. Ghanem, and Y. Guo, “Improving resource utilisation in the cloud environment using
multivariate probabilistic models,” In, IEEE 5th International Conference on Cloud Computing (CLOUD),
Honolulu, HI, 2012, pp. 574-581, doi:10.1109/CLOUD.2012.66.

[12] L. Tomas and J. Tordsson, “An autonomic approach to risk-aware data center overbooking,” IEEE Trans.
Cloud Comput., vol. 2, no. 3, 2014, pp. 292–305, doi:10.1109/TCC.2014.2326166.

[13] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements in the cloud: observing, analyzing,
and reducing variance,” in Proc. of the VLDB Endowment, v. 3, n. 1-2, 2010, pp. 460–471,
doi:10.14778/1920841.1920902.

[14] P. A. L. Rego, E. F. Coutinho, D. G. Gomes, and J. N. De Souza, “FairCPU: Architecture for allocation of
virtual machines using processing features,” in Proc. of 4th IEEE International Conference on Utility and
Cloud Computing, 2011, pp. 371–376, doi:10.1109/UCC.2011.62.

[15] G. Galante, L. C. E. Bona, P. A. L. Rego, and J. N. Souza, “ERHA: Execution and Resources
Homogenization Architecture,” in Proc. of the Cloud Computing - Intl. Conf. on Cloud Computing, GRIDs,
and Virtualization, pp. 253–259, 2012.

[16] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware online scheduling in Storm,” in IEEE 34th
International Conference on Distributed Computing Systems, 2014, pp. 535–544,
doi:10.1109/ICDCS.2014.61.

[17] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online scheduling in storm,” in Proc. of the 7th ACM
international conference on Distributed event-based systems - DEBS ’13, 2013, pp. 207,
doi:10.1145/2488222.2488267.

[18] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella, “Multi-resource packing for cluster
schedulers,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, 2014, pp. 455–466,
doi:10.1145/2619239.2626334.

[19] D. Segalin, A. O. Santin, J. E. Marynowski, and L. Segalin, “An Approach to Deal with Processing Surges
in Cloud Computing,” in Proc. of Int. Comput. Softw. Appl. Conf., vol. 2, 2015, pp. 897–905, doi:
10.1109/COMPSAC.2015.138.

[20] A. Verma, L. Cherkasova, and R. H. Campbell, “Resource provisioning framework for MapReduce jobs
with performance goals,” in Proc. of the ACM/IFIP/USENIX Int’l Conference on Middleware, 2011, pp.
165–186, doi:10.1007/978-3-642-25821-3_9.

[21] C. A. Bohn and G. B. Lamont, “Load balancing for heterogeneous clusters of PCs,” Futur. Gener. Comput.
Syst., vol. 18, no. 3, 2002, pp. 389–400, doi:10.1016/S0167-739X(01)00058-9.

[22] Y. Fang, F. Wang, and J. Ge, “A Task Scheduling Algorithm Based on Load Balancing in Cloud,” Web
Information Systems and Mining, Lecture Notes in Computer Science, Vol. 6318, 2010, pp. 271-277,
doi:10.1007/978-3-642-16515-3_34.

[23] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load Balancing Gone Wild Into the
Wild,” in in Proc. of 11th USENIX Conf. Hot Top. Manag. internet, cloud enterprise networks and serv, pp.
12, 2011.

[24] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown, G. Parulkar, A. Akella, N. Feamster,
R. Clark, A. Krishnamurthy and V. Brajkovic, “Aster*x: Load-Balancing Web Traffic over Wide-Area
Networks,” pp. 2, 2009.

[25] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari. “Plug-n-Serve: Load-Balancing
Web Traffic using OpenFlow”. In ACM SIGCOMM Demo, pp. 2, 2009.

[26] D. Kreutz, F. M. V Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-
defined networking: A comprehensive survey,” in Proc. of IEEE, vol. 103, no. 1, 2015, pp. 14–76,
doi:10.1109/JPROC.2014.2371999.

[27] B. Grobauer, T. Walloschek, and E. Stöcker, “Understanding cloud computing vulnerabilities,” IEEE
Secur. Priv., vol. 9, no. 2, 2011, pp. 50–57, doi:10.1109/MSP.2010.115.

[28] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: current technology and future trends,” IEEE
Computer, vol. 38, no. 5, 2005, pp. 39–47, doi:10.1109/MC.2005.176.

[29] VMware virtualization. [Online] Available: www.vmware.com [Accessed: September 2017]
[30] The Xen Project. [Online] Available: www.xenproject.org [Accessed: September 2017]
[31] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three CPU schedulers in Xen,” ACM

SIGMETRICS Perform. Eval. Rev., vol. 35, no. 2, 2007, pp. 42–51, doi:10.1145/1330555.1330556.
[32] J. E. Smith and R. Nair, “The architecture of virtual machines,” IEEE Computer, vol. 38, no. 5, 2005, pp.

32–38, doi:10.1109/MC.2005.173.
[33] HPE Helion Eucalyptus. [Online] Available: http://www8.hp.com/us/en/cloud/helion-eucalyptus-

overview.html [Accessed: September 2017]
[34] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J.

Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, 2008, pp. 69, doi:10.1145/1355734.1355746.

[35]Open Networking Foundation (ONF), 2014. SDN architecture 1.0, [Online]. Available:
https://www.opennetworking.org/ [Accessed: September 2017]

[36] G. Wang, T. S. E. Ng, and A. Shaikh, “Programming your network at run-time for big data applications,” in
Proc. of first Work. Hot Top. Softw. Defin. Networks - HotSDN’12, 2012, p. 103,
doi:10.1145/2342441.2342462.

[37] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu, “Transparent and Flexible Network
Management for Big Data Processing in the Cloud,” Present. as part 5th USENIX Work. Hot Top. Cloud
Comput., p. 6, 2013.

[38] A. Ferguson, A. Guha, and C. Liang, “Participatory networking: An API for application control of SDNs,”
Sigcomm, 2013, pp. 327–338, doi:10.1145/2534169.2486003.

[39] ETSI, Network Functions Virtualisation, 2012. [Online]. Available: http://portal.etsi.org/nfv/nfv_
white_paper.pdf. [Accessed: September 2017]

[40] B. Han, V. Gopalakrishnan, L. Ji and S. Lee, “Network function virtualization: Challenges and
opportunities for innovations,” in IEEE Communications Magazine, vol. 53, no. 2, 2015 pp. 90–97,
doi:10.1109/MCOM.2015.7045396.

[41] The Floodlight OpenFlow Controller Platform. [Online] Available: https://www.floodlight.atlassian.net.
[Accessed: September 2017]

[42] Apache Zookeeper, 2016. [Online]. Available: http://zookeeper.apache.org [Accessed: September 2017]
[43] Word Count Topology, 2013. [Online]. Available:

https://github.com/apache/storm/blob/master/examples/storm-
starter/src/jvm/storm/starter/WordCountTopology.java [Accessed: September 2017]

[44] Storm UI REST, 2014. [Online]. Available: https://github.com/Parth-Brahmbhatt/incubator-
storm/blob/master/storm-ui-rest-api.md [Accessed: September 2017]

[45] Storm Throughput Test, 2012. [Online]. Available: https://github.com/stormprocessor/storm-
benchmark/blob/master/src/jvm/storm/benchmark/ThroughputTest.java [Accessed: September 2017]

[46] Alice’s Adventures in Wonderland. [Online]. Available: http://www.gutenberg.org/files/11/11-pdf.
[Accessed: September 2017]

[47] S. Bouchenak, G. Gheorghe, G. Chockler, H. Chockler, and A. Shraer, “Verifying Cloud Services: Present
and Future,” ACM SIGOPS Oper. Syst. Rev., vol. 47, no. 2, 2013, pp. 6–19, doi:10.1145/2506164.2506167.

[48] Java API for RESTful Services. [Online]. Available: https://jax-rsspec.java.net/. [Accessed: September
2017]

[49] Storm Class Cluster. [Online] Available: https://storm.apache.org/apidocs/backtype
/storm/scheduler/Cluster.html [Accessed: September 2017]

[50] Sysbench - Modular, cross-platform and multi-threaded benchmark tool for evaluating OS parameters.
[Online] Available: https://launchpad.net/sysbench [Online] [Accessed: September 2017]

[51] iPerf - The network bandwidth measurement tool. [Online] Available: https://iperf.fr/ [Accessed:
September 2017]

[52] Process information pseudo-file system. [Online] Available: http://linux.die.net/man/5/proc [Accessed:
September 2017]

[53] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-Storm: Resource-Aware Scheduling in
Storm,” in Proc. of the 16th Middleware, 2015, pp. 149–161, doi:10.1145/2814576.2814808.

[54] F. Yan, L. Cherkasova, Z. Zhang, and E. Smirni, “DySccale: a MapReduce Job Scheduler for
Heterogeneous Multicore Processors,” IEEE Trans. Cloud Comput., vol. PP, no. 99, 2015, pp. 1–14,
doi:10.1109/TCC.2015.2415772.

[55] H. Zhong, Y. Fang, J. Cui, “LBBSRT: An efficient SDN load balancing scheme based on server response
time,” Future Generation Computer Systems, vol. 68, 2017, pp 183–190, doi:10.1016/j.future.2016.10.001.

[56] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: towards an
operating system for networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, 2008, pp. 105-
110, doi:10.1145/1384609.1384625.

[57] Pox Controller. [Online] Available: https://openflow.stanford.edu/display/ONL/POX+Wiki [Accessed:
September 2017]

[58] SDN-based and Multi-Tenant Aware Resource Provisioning Mechanism for Cloud-based Big Data
Streaming: Tools. [Online] Available: https://secplab.ppgia.pucpr.br/?q=dynamicscheduler [Accessed:
September 2017]

