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Abstract Enforcing Service Level Agreements (SLA)

on service provisioning is a challenge in cloud comput-

ing environments. This paper proposes an architecture

for multiparty (provider and client) auditing in cloud

computing to identify SLA deviations. The architec-

ture uses inspectors (software agents) and an indepen-

dent auditor (third party) to collect SLA metrics from

these parties. Privacy is preserved by using the sepa-

ration of duties for all associated entities (inspectors

and auditors). Additionally, service computing surges

are automatically detected and handled using machine

learning, avoiding performance bottlenecks and misin-

terpretation of measured SLA items. Thus, this paper

improves service maintainability by avoiding service de-

sign changes when the service faces performance issues.
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1 Introduction

Web services technologies enable the fast creation of

new Software-as-a-Service (SaaS) applications to meet

businesses’ needs. It offers flexibility through applica-

tion composition. Because many services must be avail-

able in a multiparty cloud-based environment [1], Qual-

ity of Service (QoS) information on each service de-

ployed at each party is required. The goal is to evolve

or to change an application in this scenario, as business

application evolution depends on service maintenance

[3].

Cloud computing usage has grown significantly in

recent years due to its adaptability to business demands.

However, the contractor’s administration actions on the

management interface offered by the cloud platform are

restricted by the same features that make the cloud

computing model attractive for the service contractors [4].

Usually, Infrastructure-as-a-Service (IaaS) providers

form a cloud platform where contractors develop SaaS

applications consumed by their clients (end-users of

SaaS applications). Some providers offer environments

tailored to SaaS development and execution in a model

known as Platform as a Service (PaaS) [5]. These plat-

forms are multitenant (i.e., can serve multiple contrac-

tors) and can be public or private. Contractors are or-

ganizations who develop and provide SaaS applications

to clients who effectively consume those services. Thus,

the contractor uses a cloud platform to offer services

for multiple end-users (clients).

Organizations that transfer their systems to cloud

providers share with them the responsibility of manag-

ing their information and implementing business-critical

operations. The Service Level Agreement (SLA) is a

way to ensure that the contracted service meets the re-

quirements defined by the contractor. The cloud provider



2 Eduardo Viegas et al.

must guarantee the SLA, implemented as QoS metrics

or other indicators defined by the parties [6] [7].

The service quality perceived by the clients is not

solely affected by the provider’s performance, despite

the establishment of an SLA [8]. The service may be af-

fected by factors outside the provider’s control and the

behaviors of contractors and clients (end-users). SLA

auditing mechanisms are needed to monitor the actions

of contractors and providers within a cloud computing

platform, enabling the identification of external factors

causing service degradation for each party [7].

Monitoring resources consumed by the contractors

at the provider side offers only a limited view of service

providing quality. Besides, providers are prone to con-

flicts of interest when delivering the services and mon-

itoring it themselves. Differences between SLA mea-

surements made by the provider and those perceived

by clients further aggravates the situation. The perfor-

mance of several parties, including the cloud provider

and the user’s internet service provider (ISP), can af-

fect the evaluation of the service based on the end-user

recent experiences [9]. SLA monitoring must collect in-

formation about all involved parties for an effective au-

dit. Furthermore, auditing should also consider factors

external to the cloud that may affect the client’s ex-

perience (perception of the service provided), such as

traffic flow problems among the parties, for instance.

Auditing must identify causes why a client is un-

questionably experiencing bad service quality by all the

parties. That means it must be possible to identify if

the problem lies in the contractor’s application, connec-

tion through the ISP, or the cloud provider. Therefore,

a multiparty audit must have monitoring points to con-
tinuously measure the services and resources available

in each party [10].

Cloud computing segregates the environment of each

party; that is, a given party does not have access to au-

diting information from other parties [11]. Therefore,

the contractor does not have access to the underlying

infrastructure of the provider. She sees only her Vir-

tual Machine (VM). The provider does not know the

inner workings of a contractor’s application. She only

knows which VM she is providing. Moreover, neither

the contractor nor the provider can access a client’s

environment, thus unable to evaluate any of the end-

users’ perception or experience problems. Dealing with

such a situation without causing conflicts of interest is

challenging.

Measurements made on the client-side can help iden-

tify the components that offer low-quality services and

cause non-conformity with the SLA. However, this in-

formation is only partially visible to clients and the con-

tractor in the current business-driven cloud comput-

ing model. Furthermore, information that could help

to identify bottlenecks in operations outside the cloud

(thus alleviating the provider’s responsibility on SLA

non-conformities) is not available in such a model. There-

fore, it is not clear how to carry out an adequate audit-

ing process in this business-driven model.

Providers can increase resource allocation through

the cloud’s reconfiguration when an SLA non-conformity

is detected and is negatively impacting the client’s per-

ception of the provided service. The provider must solve

this situation quickly. As bottlenecks may have many

reasons, it is common to migrate the VM to more pow-

erful hardware, which takes time and causes consider-

able overhead.

Performing live migrations for short-lived increases

in usage demands are troublesome. These unexpected

massive processing demands are called spikes [8] and

are highly undesirable [13]. Heavy processing demands

observed for a long time are called flash crowds [14]. In

this last case, not performing the live migration may

seriously degrade the service’s quality. It is impera-

tive to handle spikes and flash crowd processing surges

while avoiding costly application design changes. SaaS

solutions must be smart enough to reconfigure its re-

source allocation only when a flash crowd is detected,

avoiding spikes, reducing the number of unnecessary

and costly VM migrations [16]. The service quality mo-

mentously degrades during a flash crowd, but cloud

elasticity solves the problem. We emphasize that cloud

computing resources are elastic, and automatic service

reconfiguration, aiming to ensure QoS for the client,

may worsen the situation (e.g., when facing spikes, re-

configurations may cause more overhead than bene-

fits if not carefully evaluated). Detecting spikes helps

avoid ’fake’ processing surges that could cause cloud

providers’ overhead and SLA item measurement prob-

lems. Such a situation is challenging because one must

discover if the service quality is degraded due to SLA

deviations or processing surges before performing re-

configuration actions.

An entity external to the cloud should own the au-

diting agents (inspectors), offering enough visibility on

all sides to allow multiparty auditing and to minimize

conflicts of interest among the parties [15]. Inspectors

collect and send the information to an external aggre-

gation point. Afterward, an external and independent

auditor analyses this information to identify deviations

from the SLA, reporting any occurrence to the involved

parties. This third party should be independent and

trusted by all parties (provider, contractor, and client).

The collected information should be available to (and

agreed by) all the concerning parties in case of an SLA

violation.
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The purpose of multiparty auditing is twofold: (i) to

provide SLA monitoring for IT management issues, and

(ii) to provide metrics (evidence) for service maintain-

ability [17]. Moreover, from the service point of view,

such auditing information can positively affect the way

service (software) engineers design the SaaS applica-

tions, considering that performance is a challenging is-

sue in an environment with a low coupled service pro-

visioning and dynamic resource allocation (cloud com-

puting) [18].

We focus on obtaining metrics for SLA auditing in

multiparty cloud computing platforms, considering in-

ternal and external factors that may affect a SaaS ap-

plication’s performance. The service designer does not

need to change the application after an internal process-

ing bottleneck is detected (and treated using cloud com-

puting resources). Besides, when an external cause is

negatively influencing the performance, she only needs

to contact the corresponding providers (cloud or inter-

net). We tackle the challenge of identifying comput-

ing surges demanding cloud computing resources, ap-

plying a novel machine learning approach that moni-

tors VM usage. In summary, our proposed architectural

model estimates service quality through SLA auditing

and processing surge identification with machine learn-

ing techniques. Therefore the proposal can identify and

assess the service quality issue properly.

The paper’s remains are organized as follows: Sec-

tion 2 presents the backgroud, Section 3 addresses the

related work, and Section 4 describes the proposal. Sec-

tion 5 presents the prototype and its evaluation, and

Section 6 concludes the paper.

2 Background

This section briefly reviews the services in a cloud com-

puting environment, the applicable service-level agree-

ment concepts, and some virtualization aspects.

2.1 Types of Cloud Computing Service

Cloud computing services can be provided in different

ways. The National Institute of Standards and Technol-

ogy (NIST) defines three models of cloud architectures

according to the type of resources offered to the client

[5]:

Software as a Service (SaaS): The contractor’s ser-

vice to clients consists of applications delivered by a

SaaS provider, running on a cloud computing infras-

tructure. It is the service that a client (end-user) con-

sumes and usually consists of a web-based application.

Platform as a Service (PaaS): development and pro-

duction (support) environments provided to the con-

tractor to facilitate her applications’ development and

execution.

Infrastructure as a Service (IaaS): involves compu-

tational resources (physical infrastructure) made avail-

able to a contractor. The computational resource usu-

ally consists of VMs that provide processing power,

RAM, network connectivity, and storage for a contrac-

tor to install and run its applications on an Operating

System (OS).

2.2 Service Level Agreements

An SLA may specify and quantify, with abstract lev-

els, the expected performance characteristics for a ser-

vice being provided. The SLA should be measured using

performance metrics, known as Service Level Indicators

(SLIs), to be evaluated objectively [19][40]. The service

metric associated with a goal (value) is called a Service

Level Objective (SLO) [20]. For instance, ”availability”

and ”service average response time” are examples of

SLIs commonly used in an SLA, while values as 95%

availability or 1.3 seconds of response time, respectively,

are examples of SLOs [10].

For an application to meet an SLA, the underly-

ing resources that support it – e.g., processor, memory,

and network bandwidth – must be appropriately mea-

sured. Examples of resource metrics measurements are

the percentage of available memory, percentage of net-

work consumption, and the percentage of CPU utiliza-

tion.

A set of metrics collected to monitor service require-

ments is considered in the Quality of Service (QoS) pa-

rameters. Resource metrics are also used to compose

SLAs when SLOs are composed of SLIs that run the

provisioning of IaaS.

2.3 Virtualization

A server’s virtualization involves abstracting a com-

puting machine’s physical resources, sharing physical

hardware between the virtualized machines. Virtual-

ization is present on almost all cloud computing plat-

forms, and it is considered one of its defining features.

The computing machine is abstracted to offer multiple

physical hardware views in a virtualized server envi-

ronment, each having its processor, memory, storage,

network bandwidth, and other hardware abstractions.

The virtualized hardware is controlled by a software en-

tity called the hypervisor, which manages and provides

the abstracted hardware resources to the VMs’ OS [21].
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An OS running on a VM instance shares the same

physical resources (multitenant) with other VMs run-

ning in the same hardware [22]. This resource sharing

means better hardware utilization since the resource

consumption of each VM usually varies during runtime.

Therefore, on average, the hardware peak consumption

in one VM is compensated by lower usage at the same

time in another VM [23].

3 Related Work

The work of Skene [24] models the consumption of in-

ternet services and shows how external factors [25] (i.e.,

out of contractor or provider control) influence the con-

sumption of services. Network connection problems can

harm a client’s perception of a server’s response time,

for example. However, the server’s compliance with the

SLA can only be found after considering external fac-

tors. An SLI for ”response time” can be applied to cir-

cumvent such influences, inserting timestamps on sent

and received packets, an approach that was not consid-

ered by Skene.

Yu and his colleagues [26] proposed the deployment

of transparent mechanisms at the software service pro-

viding level. Every auditing mechanism [27] for software

protection is based on an agent located in the SaaS

level, implemented in a client-transparent way [28]. The

centralized and multitenant cloud platform forms the

base for this mechanism to work. Yu’s proposal can

track application usage, but it cannot deal with con-

flicts of interest.

Li [29] presents the Third Party Auditor (TPA)

[30] for auditing cloud storage services. Both the client

and the provider trust the TPA. For Li, cloud stor-

age providers must offer application programming in-

terfaces allowing the verification of integrity and ac-

cess control, facilitating the development of auditing

services by third parties. Thus, Li suggests the mitiga-

tion of conflicts of interest [25]. In this case, only the

trusted third party must be impartial. However, the au-

thor did not propose the mechanisms to avoid conflicts

of interest

Bod́ık and his colleagues [12] seek to solve problems

of unrealistic performance models, which apply linear

models and queueing theory [31] and are inadequate

to control complex applications on the internet with-

out compromising the SLAs. The authors suggested a

model (software package), including controls and anal-

ysis techniques based on Statistical Learning Machine

(SLM) [32]. In another article, the authors proposed

a model that predicts processing surges, modeling the

changes in network volume of data, and the specific

popularity of each object [33].

The work of Liang [14] reports that most sites un-

prepared for becoming popular suffers from the flash

crowd problem. These sites present high latency and

response time variation as they grow in popularity. The

idea is to predict web traffic surges using metrics that

monitor the external usage of such sites’ resources. The

works of Bodik [33] and Liang [14] characterize spikes

and flash crowds and create models and simulations

for web services, considering only web traffic. Yau and

An [18] address requirements and challenges for service

development [34], while Perepletchikov [3] proposes an

approach to improve maintainability, combining evalua-

tion and maintenance prediction efforts [17] for Service-

Oriented Software [1]. However, they did not consider

that computing surges can significantly affect the way

the service administrator addresses maintainability.

None of the related works mentioned above offer an

auditing architecture for cloud computing that imple-

ments multiparty auditing mechanisms (i.e., the client,

the contractor, and the provider). Efforts seek to de-

crease the impact of spikes and flash crowds in the sys-

tem performance, but none of the proposals analyzed

different processing attributes to distinguish the two

processing profiles in execution time. Moreover, no work

showed the capacity of identifying the causes of devi-

ation from the SLA inside and outside the cloud com-

puting environment, a feature required for solving the

issues about possible conflicts of interest in the audit-

ing of collected records. No proposals in the literature

considered SLA auditing in a multiparty way or with

spike and flash crowd detection while aiming for service

maintainability.

4 Monitoring and Auditing SLA in Cloud

Computing

This section addresses the proposal’s assumptions, its

architecture, its main components, and discusses anony-

mous auditing.

4.1 Assumptions for SLA auditing

The proposed architecture for SLA monitoring and au-

diting in cloud computing assumes the following points:

– A third party should obtain the auditing informa-

tion, that is, an independent entity trusted by all

involved parties;

– The inspectors periodically collect data from the

client, contractor, and infrastructure provider, han-

dling it to the auditor, who builds up the SLI and

compares it to the SLO;
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Fig. 1 Proposed SLA monitoring and architectural auditing model for cloud computing.

– Information obtained from client and contractor en-

vironments should assist in identifying external fac-

tors that negatively influence clients and service en-

gineers perceptions of the cloud service (SaaS);

– Information gathered on the contractor and client

environments may be compared with the provider

measurings to identify and remediate a possible non-

compliance with the SLA caused by factors internal

to the cloud (under the responsibility of the con-

tractor or the infrastructure provider);

– The inspector must not be able to correlate the con-

sumption of services to clients or contractors within

the cloud, avoiding conflicts of interest. On the other

hand, tracking clients and contractors actions within

the cloud should be possible for the contractors’ in-

formation technology (IT) staff;

– Contractors and providers can be liable for their ac-

tions within the cloud environment;

– Collecting information allows the auditing of the

contractor’s service level, including the client con-

sumption experience.

– Processing surges should be detectable at runtime,

and a live migration decision should be taken suit-

ably to help service maintainability.

4.2 Overview of the Proposed Architecture

The auditing mechanism contains three entities: inspec-

tors, auditors, and governance, as shown in Figure 1.

The inspectors are positioned within the cloud entities

to collect auditing data, inserted into the provider in-

frastructure (Inspector IaaS), the contractor applica-

tion side (Inspector SaaS, and the Inspector Service

Provider (APP)), and client-side (Inspector Client). Each

inspector is responsible for collecting data that will

compose an SLI or part of it.

The auditors remain logically and physically out of

the cloud and receive inspector data records to compute

the corresponding SLIs. There may be an auditor for

each SLI or a set of correlated SLIs (i.e., derived from

the same data). The auditor compares the computed

SLI with the corresponding SLO to identify occurrences

of non-compliance with the SLA.

The governance side gets SLO values calculated by

the auditors and the SLIs’ evidence that presented devi-

ation from the SLA. The IT governance administrators

can isolate the causes of possible problems from each

measurement record, as they know all SLIs calculated

for each client. Section 4.3 will address the interpreta-

tion of each measurement. Figure 2 shows an auditing

example for one type of SLI for APP (SA) and an SLI

measured in SaaS (SI); it is possible to monitor more

SLIs through the parallel use of other inspectors and

auditors.

The governance mechanism can produce statistical

data from the collected auditing records and evaluate a

given provider’s services. Moreover, only the governance

administrators can identify the causes for an SLA devi-

ation for a given client – information that is not avail-

able to the auditors because the proposal works with

anonymized information to avoid conflicts of interest.

In the proposal, an inspector only reads the value of

an indicator related to a pseudonym – used to provide

anonymity to service clients [35]. The same happens
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Fig. 2 An Example of inspectors recording timestamps during a webpage request. Inspector C (Client) collects SLI indicators
at client side. Inspector SI (SaaS) collects SLI indicators from the interface server side. Inspector SA (APP) collects SLI
indicators from the application side.

with the auditor that creates SLIs and confronts them

with attributes of SLO for the same pseudonym. After-

ward, the results are made available on the governance

mechanism in a consolidated manner. However, neither

the inspector nor the auditor can link the pseudonym to

a real-world entity identification. Only the governance

administrator has access to mapping the client’s real-

world identity and her pseudonym in the cloud com-

puting platform(Section 4.5). Therefore, the proposed

scheme intrinsically deals with conflicts of interest be-

cause an auditor can audit competing contractors, but

she cannot learn their identities from their pseudonyms.

We assume that the inspector source code for col-

lecting the indicators must be approved before being

executed in the collecting agents. The auditor may in-

spect the source code at any time, and its integrity is

preserved by computing cryptographic hash codes, for

example. In this case, we suggest the code for inspectors

to be developed as a reentrant program [36].

Inspectors can start to monitor the cloud infrastruc-

ture and its applications after the initial environment

assumption for obtaining auditing metrics is defined.

The proposed architecture assumes a scenario with in-

frastructure (IaaS) provisioning VMs. Moreover, for the

application, the proposed scenario is designed to work

with applications deployed on web servers – in the roles

of interface server (SaaS, for the client) and an appli-

cation mechanism (APP, as shown in Figure 2).

In the infrastructure side, the Infrastructure Inspec-

tor (namely Inspector IaaS, Figure 1) gets information

about the availability and consumption of virtual re-

sources controlled by the hypervisor, i.e., the Inspector

collects the measurements of SLIs from the IaaS.

Figure 2 details the timestamp gathering locations

and responsibilities using a webpage request as an ex-

ample. In the application, inspectors run on the inter-

face server (shown as Inspector SI, Figure 2), on the

client (shown as Inspector C, Figure 2), and on the

application mechanism server(Inspector SA, Figure 2).

The information collected by the inspectors is the basis

for the auditors to create the SLI ”response time to the

client (end-user) per operation.”.

Inspectors collect the following timestamps:

– T1: timestamp of the web page request submitted

by the client, i.e., the time of operation request to

the application;

– T2: timestamp when receiving the operation request

on the interface server.

– T3: timestamp immediately before sending the re-

quest to the application mechanism server.

– T4: timestamp immediately after receiving the op-

eration request.

– T5: timestamp immediately before sending the op-

eration result.

– T6: timestamp immediately after receiving the ap-

plication mechanism response.

– T7: timestamp immediately before sending the re-

sponse to the client.

– T8: timestamp immediately after receiving the op-

eration result.

The goal of Inspector C (Figure 2) is to collect

timestamps of transactions that occur within the client

station (T1 and T8, Figure 2). The application inspec-

tors running in the contractor application environment

have distinct duties. The Inspector SI (Figure 2) runs

on the interface server and records timestamps when in-

teracting with the client and the application mechanism

server (T2, T3, T6, and T7, Figure 2). The Inspector

SA (Figure 2) runs on the application mechanism server

(Inspector SA) and records a timestamp (T4, Figure 2)

when receiving the request for operation execution, and
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Fig. 3 Timestamp and obtained SLI relation.

Fig. 4 Processing Surge Detection.

another one when returning the response to the client

(T5, Figure 2).

4.3 The role of auditor and governance module

Correlating the timestamps obtained by the inspectors

can reveal SLA deviations in the response time within

an operation. Table 1 summarizes the indicators and

the analysis that can be provided by the governance

module.

Figure 3 shows the relation between the timestamps

and the SLIs obtained. In addition to the main SLI

(Tru), the auditors produce other intermediate indica-

tors from the collected timestamps (Table 1). These

indicators are necessary to identify the causes of the

deviation in the SLA.

In the case from the example mentioned above (i.e.,

for the SLI ”response time to the client (user) per op-

eration”), we can interpret a deviation in the SLA as

follows:

a Performance issues external to the cloud: observed

as high latencies experienced by the client in her

connection to the interface server or (through it)

with the application server. The deviation on SLA

occurs when we observe values for SLIs above the

limits set for Trd2 or Trd1 (Figure 3);

b Performance issues internal to the cloud: this SLA

deviation can be detected with indicators calculated

from the difference between collected timestamps

within the same server. In such a case, more time

is needed to complete a transaction in bellow situa-

tions:

b.1 In the interface server, evidenced by Tsi (Fig-

ure 3).

b.2 In the application mechanism server, shown by

Tsa (Figure 3).

The identification of problems inside the cloud com-

puting environment (evidenced by the indicators Tsi

and Tsa) does not characterize the non-compliance with

the internet service provider or problems in the client’s

environment. These measurements need to be combined

with the information obtained by Inspector IaaS (Fig-

ure 1). When analyzing operations that took a long

time to be completed, the auditor searches for evidence

of high consumption (or even exhaustion) of hardware

resources, such as CPU and memory, due to the mul-

titenant environment. However, if the problem affects

a client process that demands more resources than are
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Table 1 SLIs provided by the Auditor and their interpretation from the governance perspective.

SLI Operation represented by the
indicator

Analysis on the governance module

Tru Identifies the response time for the
client (complete execution of an op-
eration).

An SLO exceeded suggests the analysis of more indicators to identify the
operation’s bottleneck.

Trd1 The indicator gets the time to send
the client content to the front-end
(interface) server.

Long times between sending and receiving the content indicate bottle-
necks in the network communication (between client and server).

Tsi The indicator gets the interface
server’s processing time to execute
the received operation and packag-
ing the contents.

Long times to receive and transmit content indicate a bottleneck in the
interface server, though without identifying if there is any problem in
the availability of the hardware employed or resource exhaustion. In the
case of long times in the measured values, additional information from
the Inspectors is required.

Tsa The indicator gets the processing
time from the application mecha-
nism server to send the contents.

Long times to receive and transmit the contents indicate a bottleneck
in the application mechanism server, without identifying if there is any
problem in the availability of the hardware employed or resource exhaus-
tion. In the case of high values for measurements, additional information
from the Inspectors is required.

available on the SaaS provider, a mitigation approach

will be discussed in section 4.4.

4.4 Surge Computing Detection and Remediation

When items b.1 and b.2 happen in a situation described

in section 4.3 (b), the SaaS provider management sys-

tem’s main problem is to decide on giving more re-

sources to the VM, hoping to re-establish an accept-

able performance for the client. An alternative is the

live migration of a VM to more powerful hardware (to

another host, for instance), though it may cause an un-

desirable overhead if triggered in response to a spike

(sudden and brief high-intensity processing demand)

that may finish before the migration process ends. On

the other hand, if the management system mistakes a

flash crowd (very intense and long-lasting processing

demand) for a spike, the client will experience severe

service performance degradation.

The surge in processing comprehends three steps: (i)

surge classification; (ii) VM migration; and (iii) surge

computing, as illustrated in Figure 4. A surge classi-

fication indicating a spike requires no further steps.

However, when the classification process reveals a flash

crowd, two extra steps (ii and iii) are needed, migrat-

ing the VM to an improved configuration to handle the

incoming load.

In our proposal, CPU surges (spike and flash crowd)

are modeled and identified using machine-learning tech-

niques on the usage data collected from CPUs. This

method helps service engineers avoid service-oriented

software maintenance (reengineering) and also the SaaS

provider management system to detect a computing

surge and treat it accordingly. The next sections briefly

describe the proposed online detection method, which

Table 2 Selected set of features.

Collected Metric Name Description
CpuSystemTotalLoad CPU System – Total Load
CpuSystemLoad CPU System – System Load
CpuSystemLoadAvg CPU System – Average Load
CpuSystemUserLoad CPU System – User Load
CpuSystemWaiting CPU System – Wait for Load
CpuCore01TotalLoad CPU Core 01 – Total Load
CpuCore01SystemLoad CPU Core 01 – System Load
CpuCore01UserLoad CPU Core 01 – User Load
CpuCore02TotalLoad CPU Core 02 – Total Load
CpuCore2SystemLoad CPU Core 02 – System Load
CpuCore02UserLoad CPU Core 02 – User Load

aims at minimizing the time needed to identify the pro-

cessing surge (Figure 4).

4.4.1 Data Collection and Attribute Selection

In our testbed scenario, a sensor in the browser (pro-

vided by the System Guard tool [38]) performed the

data collection. Instantaneous values for 14 processor-

related attributes of a VM in a commercial datacenter

were collected and saved in a text file (txt).

Attribute values were collected from the System Guard

log at 1-second intervals. In total, 800 values were col-

lected for each attribute, yielding a collecting time of

13.33 minutes (for both spikes and flash crowds).

Several testbed configurations were evaluated (Fig-

ure 5). We configured the amount of processing time

(by running a complex indexing process and a massive

data search request on the elasticsearch engine - sec-

tion 5.1) to collect the attribute values for the process-

ing surges featuring spikes or flash crowds. The surge

duration time grows incrementally from two seconds to

twenty-eight seconds in steps of 2 seconds. Afterward,

we consulted with an expert (cloud-based datacenter
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Fig. 5 Testbeds evaluated, and labels assigned according to each average CPU processing time

admin) to label the events, as shown in Figure 5. The

event is labeled as a flash crowd when the testbed has

an average CPU usage time of more than 36%, or else it

is a spike. Additionally, we created a file named flash*

or spike* (e.g., spike01 for a computing surge lasting 2

seconds and flash13 for 28 seconds) to store each period

captured (CPU Usage Cases, Figure 5).

We performed attribute selection to decrease the

noise (imprecision of classification) and improve the

classifier’s performance. After using the information gain

filter technique, from the Weka tool1, only 11 attributes

remained from the initial set of 14. Table 2 shows the

collected attributes used to obtain the model, as well

as a brief description of each one.

We developed a script to preprocess the log file gen-

erated by the System Monitor, eliminating irrelevant

information and generating the attribute vectors (Ta-

ble 2). We applied the algorithm for obtaining the model

after attribute vectors (characteristics), and their label-

ing (composing the dataset) were generated. We used

three popular ML algorithms: Na ”ive Bayes (NB), KNN

(k-Nearest Neighbors), and SVM (Support Vector Ma-

chine) [41]. The NB is a probabilistic classifier that as-

sumes independence between feature values. The KNN

is a distance-based classification algorithm that classi-

fies new instances according to its majority of neigh-

boring labels. The SVM maps the feature set input in

a hyperparameter space for classification purposes.

In all tests, we divided the dataset in the proportion

of 50% for model training and 50% for model testing.

It means that 400 records from each file were used for

training and the other 400 for testing. The NB classifier

used the supervised discretization method to map input

feature sets. The KNN classifier computed the instance

neighbors using a k value of 5 and a Euclidean distance

algorithm for the value computation. Finally, the SVM

classifier applied a radial basis function as its kernel

algorithm. We had to normalize the input feature set

between −1 and +1 for both KNN and SVM.

In the training phase, there were three classes (nor-

mal, spike, and flash crowd), and we used cross-validation

1 www.cs.waikato.ac.nz/ml/weka/

with the k-fold method (the k-fold cross-validation method

divides the total set of training data in k subsets).

The cross-validation procedure consists of repeating the

tests three times, having the average result used to es-

timate the parameters and calculation of the model’s

accuracy. Based on an expert’s knowledge, we named

the first eight files as spike1-spike8 and the remaining

files as flash9-flash13.

4.4.2 Online surge processing detection

Different from the procedure adopted in [37], we con-

sider that files Spike 01 to Spike 03 to represent the

spike profile – we used them to define the model, and

its accuracy was used as a baseline to evaluate other

spike files captured under different intensive processing

situations, as shown in Figure 5. We tested the remain-

ing spike files against the model to get an idea about

the spike-flash transition border – identified when the

accuracy for a test file becomes far from the baseline

(i.e., the model accuracy), meaning the test file con-

tains records that belong to a flash crowd profile. We

applied a similar approach for files flash12-flash13, rep-

resenting a flash crowd profile and also used for training

purposes.

Observing Figure 6, we concluded that algorithm

NB is better for classifying computing surges as spikes

or flash crowds, as its accuracy for test files are closer to

the baseline for adjacent times in the following files. The

reason is that the spike profile is closer to file spike04

than file spike08 — while capturing the files, we used

an incremental processing surge time duration, as ex-

plained in section 4.4 (Figure 5). The same happens

for flash crowds, given that file flash11 is closer to the

baseline model for flash crowd profile than file flash09,

captured in a smaller period of surge processing dura-

tion.

We aimed at establishing the minimum time re-

quired for the Na ”ive Bayes classifier to detect a spike

or a flash crowd without losing accuracy. The goal was

to know whether the usage of NB is feasible in a real-

world situation. We rebuilt the model using the files
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Fig. 6 Classifier’s accuracy for different CPU Usage Cases; using a 28 seconds collection period.

Fig. 7 Live migration time for different memory sizes.

from spike01 to spike07, and given the accuracy when

using these files was 100% (Figure 6), we did the same

for files flash09-flash13 (Figure 5).

We tested the model against the files spike01 and

spike08 (profiles of the two extremes). First, we con-

sidered all the records in the files – the entire collec-

tion time duration (60 sec.), then we tested the model

against the records in files between 15 sec. and 60 sec.,

and so on. In all cases, we took note of the accuracy

(shown in Figure 8). We did the same while testing it

against the files flash09 and flash13, to obtain the re-

sults shown in Figure 8.

Observing Figure 8, we can conclude that if a pro-

cessing surge happens, one needs to capture the at-

tributes (Table 2) for a period between 40 and 60 sec-

onds to have 100% accuracy in the classification of pro-

cessing surges as spikes or flash crowds.

These results allow the SaaS provider management

system to decide VM migration if the classifier identi-

fies such processing surge profile as a flash crowd after

about one minute (between 40 sec. and 60 sec.). The in-

formation about the time needed to detect a flash crowd

using the proposed classification technique is relevant,

as it gives an idea of how long the client will wait before

the processing conditions begin to improve. The time

required for processing conditions to normalize will be

higher than one minute because we need to consider

live migration duration as well.

We performed some experiments in an IBM HS23

blade chassis with 12 blades (2 Intel Xeon Six-core

E5650 2.66GHz, 64 GB), sharing the same storage. We

ran a complex indexing process and a massive data

search request on the elasticsearch engine – section 5.1,

that overloaded the CPU and demanded a VM live mi-

gration, done using VMWare vSphere 5.

Figure 7 shows that to solve a processing overload

problem in a VM with 4GB of RAM, about 2 min-

utes are needed (1 minute for flash crowd detection and

56 seconds for live migration). While solving the same

problem for a VM with 32GB of RAM, the demanded

time will be 60 seconds + 550 seconds = 610 seconds

(about 10 minutes).

It is necessary to observe that during live migration,

the CPUs continue to work, and the client processes
continue to evolve. However, when the CPU processing

does not return to normality sometime after the migra-

tion, this indicates some problem that requires special

attention.

4.5 Anonymous Auditing

The timestamps obtained by inspectors in operations

performed by clients are transmitted to the auditor

repository, identifying the clients by a pseudonym to

avoid conflict of interest among auditors (remember

that an auditor can work for competing organizations).

A pseudonym server running in the contractor’s gov-

ernance domain (Figure 1) provides client pseudonyms.

It is external to the inspecting services and external to

auditing services. Although the auditor sees this pseu-

donym on each operation made in cloud services and

records it for accounting [39] and SLA monitoring [7],
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she should not obtain other information that could iden-

tify the client in the real world.

The pseudonym server renews the pseudonyms with

a predefined frequency to prevent the tracking of clients

who, for whatever reason external to the identification

system, may have revealed their pseudonym. A trail of

operations is recorded for auditing associated with the

pseudonym, and only external interventions can trace

it to the real-world identity of a client. There is a map-

ping from pseudonym to client (e.g., for legal reasons

that often arise when there is no agreement on the com-

pliance of an established SLA).

5 Prototype

We implemented a prototype of the architecture for

cloud computing multiparty auditing and tested it to

evaluate the proposal’s feasibility.

5.1 Prototype development

We developed the prototype (Figure 9) as a web appli-

cation for storing files for further information retrieval

(search engine, receiving messages with attachments for

storage and indexing) on a private cloud infrastructure

(on-premise). We divided the application into an inter-

face layer and an application mechanism. The interface

layer is responsible for receiving and sending the re-

quests (web requests) to interact with the client, han-

dling the responses received, and forwarding the pro-

cessing requests to the application mechanism. We im-

plemented a search engine (application mechanism) as

an ElasticSearch cluster [42], which receives RESTful

messages from the interface layer, stores the received

document, and builds an inverted index for later search-

ing over the stored documents.

The servers are instantiated in a LAN-based cloud

computing environment, deployed by the Eucalyptus

HPE version 4.4 [43]. Each server runs as a VM based

on the Ubuntu 16.04 operating system, with eight vir-

tual cores and 16 GB of RAM. The interface server

uses Apache Tomcat for the RESTful web service de-

ployment. The ElasticSearch cluster is composed of a

single VM.

The messages exchanged between the interface server

and the application mechanism server follow the JSON

format (Javascript Object Notation, a message exchange

format alternative to XML – Extensible Markup Lan-

guage). The ElasticSearch cluster also receives the re-

quests through a JSON format.

Inspector IaaS (Figure 1) connects to the hypervisor

to obtain the SLI directly from the Xentrace subsystem,

Fig. 8 Accuracy-Feature Collection Period tradeoff for the
Näıve Bayes Classifier in Spike01, Spike08, Flash 09, and
Flash 13 scenarios.

Fig. 9 Evaluated prototype architecture: (i) Client sends
a file for storage; (ii) Interface Server forwards the file to
the ElasticSearch Cluster for both storage and indexing; (iii)
ElasticSearch replies to the storage request; (iv) Interface
Server replies to the client when the file was successfully
stored.

which is an event generator available natively on the

XEN virtualizer (bare-metal hypervisor). The informa-

tion is sent to the auditor to record the operation, as

described in section 4.5. The Inspector IaaS, developed

in the C programming language, saves the information

collected in text files for further auditor consolidation.

In this prototype, the Inspector IaaS receives only

the CPU consumption per server to identify process-

ing resources’ depletion. However, Inspector IaaS could

get metrics of other hardware resources from the hy-

pervisor. We opted for leaving these additional metrics

out because we do not use it on the tests. The inspec-

tor from the application service (SA), developed in the

Java programming language, was named following the

environment where it was executed, as shown in section

4.2.

5.2 Definition of test scenarios

We decided to run the tests only in a private cloud, as

a public cloud would deny Inspector IaaS access to the

hypervisor for reading SLI. For instance, in the Ama-
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zon cloud computing environment, only the CPU steal-

time is given (i.e., the CPU time requested by the VM

that the hypervisor could not provide). In this context,

further diagnosis of the VM condition becomes unfea-

sible. Most of the well-known public cloud providers do

not offer any hypervisor-level metrics. Thus, all pro-

posed scenarios express variations of conditions within

a single computing environment. Besides, to evaluate

supervised machine learning techniques, we needed fine-

grained control over the application demands, given

that we must label each scenario application charac-

teristic for the proper training and testing of machine

learning algorithms.

Three scenarios were defined for our tests:

– Baseline Scenario

All the resources of the servers are fully available.

We used this scenario to find the baseline SLI level for

unaffected cloud infrastructure.

– CPU Load Scenario

In this scenario, we compromised the processing ca-

pacity of both servers (Figure 2, Interface Server, and

Application Mechanism Server) with a concurrent ap-

plication load (multitenant interference). The concur-

rent load is generated inside both server VMs by a com-

plex indexing process and a massive data search request

on the elasticsearch. The concurrent load is generated

continuously, wherein a request is performed for the

elasticsearch server to index a 10MB file. The elastic-

search, in turn, updates its inverted index entries ac-

cordingly for each received request. Consequently, the

CPU is used throughout our experiments, while also

generating a realistic side-load effect. The steps per-

formed for each request in the concurrent load genera-

tion is shown in Figure 9. The process is repeated con-

tinuously throughout the experiments. The SLIs that

should be affected are the Tsi (Figure 2, the time be-

tween the Interface Server receiving the request and

forwarding it to the Application Mechanism Server),

and Tsa (Figure 2, processing time demanded by the

Application Mechanism Server).

This type of scenario also occurs with heavily loaded

applications, such as real-time stream processing and

big data frameworks, and malware detection applica-

tions. This context mimics a real and current problem

faced when processing loads with near real-time require-

ments in public cloud providers.

– Network Load Scenario

In this scenario, to control, observe, and analyze

the experiment’s behavior, the network bandwidth be-

tween a client and the servers was restricted, while

the server resources were fully available. We controlled

the bandwidth using the CBQ (Class-Based Queue), a

Linux traffic shaping utility. The measured bandwidth

between the client and the server was 100 Mbps. The

SLIs that should identify the limited bandwidth is the

Trd1 (Figure 2, the time between the Client sending

the request and the Interface Server receiving it), and

Trd2 (Figure 2, the time between the Interface Server

sending the response and the Client receiving it).

5.3 Scenarios Discussion

When performing operations in the CPU Load and Net-

work Load scenarios (Section 5.2), we observed results

that deviate from the proposed SLA (which we obtained

in the Baseline scenario). As the interactions at differ-

ent cloud platform points cause the deviation of SLA

in CPU Load and Network Load scenarios, we decided

to measure the interference through indicators related

to these components.

The private cloud was implemented in a laboratory

over a local area network (LAN) to control and ob-

serve the experimental results. The servers were instan-

tiated in an open-source cloud computing platform, the

Eucalyptus, using the XEN hypervisor. The interface

server runs on the Linux operating system (Ubuntu)

and Apache Tomcat, with one virtual core processor

and 256 MB of RAM. The application mechanism server

also runs on the Linux operating system (Ubuntu), with

one virtual core processor and 256 MB of RAM.

The purpose of the tests was to identify the abil-

ity of the prototype to identify three properties: (i) ex-

ternal interferences, not associated with cloud perfor-
mance (on the client); (ii) instances of non-compliance

with the SLA through the information obtained in the

environments of the client, contractor (SaaS provider),

and infrastructure (IaaS) provider; and finally, (iii) to

obtain information that might have identified the en-

tity responsible for the non-compliance with the SLA,

by analyzing the SLIs.

5.4 Results of tests and analyzes

Test results showed the auditor’s ability to identify vi-

olations in the SLA by assuming SLIs for each internal

operation performed by the client and their comparison

with their respective SLOs.

The governance module can successfully distinguish

between external and internal interferences in the cloud

and link them to the entity responsible for it. Figure 10

shows the indicators extracted in each scenario. In all

measurements, the coefficient of variation was less than
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Fig. 10 SLIs obtained in each scenario.

3%. We repeated each set of tests 40 times in each sce-

nario. We measured the time needed for each operation,

from the message sent by the end-user to the message

processing by the ElasticSearch cluster. The indicators

produced were previously presented in Table 1.

In the Baseline Scenario (Figure 10), the goal was to

collect the indicators in a neutral scenario without in-

ternal and external interferences in the cloud platform.

In this scenario, we established the reference values for

the SLIs measured in the next scenarios, composing the

SLOs for each operation. In the Baseline Scenario, CPU

consumption indicators do not indicate exhaustion (or

excessive consumption) of resources, leaving the aver-

age CPU consumption at 12.6% for the interface server

and 7.5% for the application mechanism server during

the execution of each operation.

In the CPU Load Scenario (Figure 10), we executed

additional applications to increase the processing load

on the interface and application mechanism servers dur-

ing the experimentation (Section 5.2). Considering the

extra CPU load, we expected the total time for oper-

ations in the application to increase. Moreover, the in-

spector SI and SA could identify which operations were

affected by the environment’s changes.

Through inspectors C, SI, and SA measurements,

the auditor successfully identified the increased dura-

tion of operations (internal to the operations) that ran

in the server environment, represented by SLIs Tsi and

Tsa. Compared to the SLO established with the mea-

surements from the Baseline scenario, the indicators de-

viated 270% and 900%, respectively. These longer ex-

ecution times for processing the servers on the servers

affected the SLI Tru in 420%, which expresses the op-

eration’s total time.

As the operations showing the higher latency are

run within the cloud infrastructure, and given that they

depend solely on their processing by the server, the gov-

ernance module requests that the auditor (Figure 1)

searches for measurements of the inspectors to obtain

the CPU consumption of the servers. In this scenario,

the interface server’s CPU consumption was 86.5% and

93.2% on the application mechanism server. Therefore,

it was evident to the governance module that the SLO’s

deviation for this operation was caused by the contrac-

tor using intensive CPU consumption. In this case, we

can apply the approach discussed in section 4.4 when

the CPU load reaches more than 100%.

In the Network Load scenario (Section 5.2), we re-

duced the bandwidth available from the client connec-

tion to the interface server during the accesses to the

ElasticSearch cluster (Figure9). Using such bandwidth

restriction, we expected the operation’s total time to

increase; the Inspectors C, SI, and SA could identify

the requests that were impacted by the connection. Us-

ing data from inspectors C, SI, and SA, the auditor
successfully identified the increase in operation dura-

tion that depends on the network connection between

the client and the interface server, represented by SLIs

Trd1 and Trd2. The measurements obtained in this sce-

nario, for these indicators, deviated 1870% and 130%,

respectively, from the SLO (Figure 10). The deviation

was significantly more significant for the Trd1 indica-

tor, compared to Trd2, as the file (transmitted along

with the message form to the interface server) used in

the experiments was sized as 3.5 MB. Thus, the opera-

tion measured by the Trd1 covers the entire operation

duration (including the operation for form submission

and file transmission). However, for Trd2 only a con-

firmation page is sent from the interface server to the

client.

In the Network Load scenario, the governance mod-

ule identified that operations with higher deviation from

the SLO are those dependent on the network connec-

tion and can confirm that the responsibility for the non-
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compliance with the SLA was external to the cloud.

Evaluating the results together in the CPU Load and

Network Load scenario, we can observe that the gov-

ernance module can identify distinct causes for non-

compliance with the SLA in operations where longer

response times are detected.

5.5 Discussion

Service quality in a cloud computing platform is a com-

mon challenge faced by the clients of service providers.

However, it is hard to identify the root cause of such is-

sues. They were considering that non-compliant SLAs

can cause it by the service provider, client-related is-

sues, and even an increase in the application requests,

which demands further processing capacities.

The service providers’ SLA monitoring suffers from

conflict of interest because, for business reasons, the

provider may not want to report possible SLA devia-

tions. On the other hand, identifying processing surges

for service maintainability purposes is also a challenge,

considering that the processing demand must be eval-

uated appropriately before a decision can be made.

The proposal showed that to avoid conflicts of inter-

est between the parties, it is necessary to use an inde-

pendent entity, trusted by all the parties. Such a third

party, the auditor, should get information from all par-

ties, making them auditable, thereby promoting mul-

tiparty auditability. For this reason, the auditor must

have access to information directly from the environ-

ments of the provider, contractor, and client, consoli-

dating them outside of the cloud platform, without in-

terferences. Even though the auditor can have a conflict

of interest, the client anonymity provided by a pseu-

donym identification scheme can avoid such problems.

This privacy-aware approach is essential to improve the

auditability acceptance for the involved parties.

In the auditing scenario, we consider the client, provider,

and contractor to be aware of the auditing mechanism

implementation, as it is necessary to add plugins on the

client and the contractor sides. Moreover, the inspector

source code, running on the provider side, should be

available for auditing by the client and the contractor.

In our tests with the prototype implementation, the

absence of inspectors in public clouds impairs the ex-

perimentation in such environments. However, it is un-

derstood that the parties have an interest in auditing

among themselves. Should this start to happen, the

schemes proposed in this work could become common

to eliminate such limitations.

Although the tendency of using cloud computing

is intensifying in the business environment, the lack

of trust in the traditional approaches for service pro-

viding is still a barrier for many businesses. However,

the creation of services that have multiparty auditing

and trusted auditing entities can increase the confidence

level for future cloud computing contractors.

Tests conducted in a private cloud computing in-

frastructure showed the prototype’s ability to identify

the component responsible for the SLA deviation, con-

sidering the affected operation, making it possible to

determine the SLA violation’s responsibility. Addition-

ally, auditors’ use for the infrastructure and the appli-

cation enables the development of new inspectors and

auditors associated with other SLIs. SLA monitoring al-

lowed the identification of performance bottlenecks ex-

ternal to the SaaS provider. It gives service developers

a valuable resource to identify the causes and responsi-

bilities for a given problem in the application.

The metrics collected for the SLA from the SaaS

provider can give insights for the service developer to

change or to optimize the application and to allow com-

puting surge classification, avoiding actions at the ser-

vice level.

Our proposal for processing surge classification tech-

nique avoids a possibly unnecessary service modifica-

tion because a software engineer who does not know

that spikes and flash crowds are detectable may er-

roneously perceive a short computing surge as a flash

crowd. Many spikes may happen simultaneously. There-

fore, application changes aiming at solving each com-

puting surge problem may be distinct. Depending on

the frequency a flash crowd occurs, a service reengineer-

ing is not justifiable, as a live migration could be a bet-

ter alternative to solve the problem. Thus, we believe

this proposal can significantly help in service maintain-

ability.

6 Conclusion

The proposed architecture allows the contractor’s gov-

ernance team to gather and analyze the quality of ser-

vice indicators from the client, contractor, and provider,

for each monitored operation. Thus, we obtained a unique

insight into service delivery and possible causes of de-

viations from the SLA. Such information is essential

for service designers because it can identify bottlenecks

caused by external factors. In this case, one can demand

a solution from the entities responsible for such external

factors, avoiding changes in the SaaS application.

This proposal has tackled the challenge of identi-

fying the root causes of service quality degradation in

a twofold manner. First, our proposed SLA monitor-

ing and auditing model can identify SaaS bottlenecks
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regarding SLA deviations. Our proposal relies on exter-

nal service auditing for collecting and monitoring SLI.

Second, when no SLA deviation occurs, our proposal

ensures proper processing capacities through machine

learning techniques. We apply machine learning tech-

niques in the VM collected metrics to distinguish be-

tween legitimate processing capacity demands and pro-

cessing surges to achieve such a goal. Experiments per-

formed in a private cloud computing environment have

shown the proposal’s feasibility.
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