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Abstract — Despite highly accurate intrusion detection schemes 
based on machine learning (ML) reported in the literature, 
changes in network traffic behavior quickly yield low accuracy 
rates. An intrusion detection model update is not easily feasible 
due to the enormous amount of network traffic to be processed 
in near real-time for high-speed networks, in particular, under 
big data settings. In this paper, we propose a new scalable long-
lasting intrusion detection architecture for the processing of 
network content and the building of a reliable ML-based 
intrusion detection model. Experiments performed through the 
analysis of five years of network traffic, about 20 TB of data, 
have shown that our approach extends the lifespan of our model 
by up to six weeks. That occurs because the average accuracy 
rate of our proposal lasted eight weeks after the training phase, 
and traditional ones reached only two weeks after the model 
building. Additionally, our proposal achieves up to 10 Gbps of 
detection throughput in a 20-core big data processing cluster. 

Keywords—Machine Learning, Intrusion Detection, Big Data, 
High-Speed Networks. 

I. INTRODUCTION  

In recent years, network devices have been significantly 
increasing their bandwidth capability. Therefore, the average 
broadband speeds are expected to double within only five 
years, growing from 39 Mbps in 2017 to 75.4 Mbps in 2022 
[1].  

 Cyberattacks have also significantly increased their 
capabilities, e.g., in 2017, a Distributed-Denial-of-Service 
(DDoS) attack peaked at 600 Gbps –  a year after it reached 
over 1.7 Tbps, which is a 183 percent throughput increase. 
Thus, when DDoS attacks are occurring, they might represent 
up to 25 percent of a country's total current Internet traffic. 
Hence, current and future deployment of Intrusion Detection 
System (IDS) mechanisms must be able to perform at such 
high-speed network bandwidths.  

Traditionally, IDS techniques were built using signature-
based approaches, meaning that the cyberattacks are detected 
by matching a signature (e.g., well-known streaming of bits or 
a sequence of events). Therefore, only known attacks can be 
detected through such an approach. In addition, as new attacks 
are discovered over time, new signatures must be built 
demanding human intervention, and detection throughput is 
further decreased as more signatures must be evaluated [2]. 
Therefore, the detection can only be performed after the 
cyberattack occurrence.  

In a machine learning (ML)-based IDS, the intrusion is 
represented through a feature set that comprises the 
appropriate event behavior to enable the classification 
between benign and malicious events. Consequently, an ML 

model is expected to properly classify other events as long as 
they present the same behavior learned in a training phase.  

When the network traffic behavior changes, a new 
intrusion model must be built as the current one has passed its 
lifespan. Building an intrusion model involves the storage of 
the new network data content, labeling of data content events, 
extraction and selection of intrusion features, the ML 
algorithm parameter optimization, detection model training, 
and testing of the model.  

Current approaches in the literature, in general, assume 
that the intrusion model is updated regularly without taking 
into account the demanded human intervention and time spent 
to perform such a task [4]. For instance, a single 1 Gbps node 
can produce more than 10 TB of content in a single day. The 
impact of network traffic changes over time to proposed ML-
based intrusion detection approaches is not evaluated in the 
literature. Consequently, the model update periodicity, and the 
accuracy degradation over time are not taken into account. In 
contrast, authors often assume periodic model updates while 
disregarding the challenges it poses to proposed ML-based 
techniques. As a result, the accuracy impact and the model 
lifespan of current literature approaches are unknown.  

 In the production (real-world) environment, the network 
traffic behavior changes daily, either due to new attack 
discoveries or the offering of new services [3]. Nonetheless, 
in the current big data era, network data arrives in an 
unstructured manner from a variety of sources.  

Beyond having to deal with model updates, an intrusion 
detection architecture has to be deployed as a distributed 
system. Thus, it must provide a near real-time detection of 
network attacks from a variety of sources while also being 
able to update the ML model before its lifespan has passed. 
Otherwise, its accuracy rates quickly decrease, rendering the 
system unreliable.  

Current proposals for network traffic measurement and 
analysis in the big data context often rely on batch-based 
Hadoop clusters [5]. In general, current techniques store 
network packets as raw data (e.g., pcap format) in a distributed 
file system (e.g., the Hadoop distributed file system (HDFS) 
[6]) for later processing. However, although such approaches 
offer significant improvements in scalability [7], they lack 
applicability in a real-world environment because, in such 
settings, the network traffic must be analyzed at network 
speed for delay-free intrusion detection. 

In this study, we propose a novel ML-based intrusion 
detection architecture suited for near real-time intrusion 
detection in high-speed networks. Our goal is twofold.  



First, we propose a novel multi-objective feature selection 
technique. Our technique aims at providing a higher model 
lifespan with no significant impact on model accuracy. 
Consequently, the built model can survive for longer periods 
of time, while maintaining the accuracy rates obtained at 
training time. Thus, model updates are required less frequently, 
enabling model deployment in high-speed networks, which is 
advantageous since model updates are not always feasible.  

Second, we proposed a novel architecture suited for near 
real-time intrusion detection. The proposed architecture is 
twofold. The first, stream-based, is responsible for performing 
the near real-time intrusion detection, executing the feature 
extraction and classification. The second, batch-based, is 
responsible for updating the underlying ML models through 
the proposed multi-objective feature selection technique.  

In summary, the main contributions of this paper are: 

 A network traffic dataset spanning five years of real 
and labeled network traffic is provided. The dataset, 
the first of its kind, which comprises over 20 TB of 
data and ~300 billion of network packets, is the first 
that enables the evaluation of the reliability over time 
of ML-based techniques; 

 We experimentally show how network traffic 
behavior changes affect the current ML-based 
approaches for intrusion detection along the time. 
The evaluation results, not experimentally performed 
in the literature, show that current approaches are 
unfeasible for near real-time detection of intrusion 
attempts in high-speed networks (big data content 
processing) due to their low model lifespan; 

 We propose a novel multi-objective feature selection 
technique aimed at increasing the ML model lifespan. 
The proposed approach is able to increase the period 
in which the ML model is reliable, in other words, it 
maintains the accuracy rates obtained in the test 
phase for longer periods of time; 

 We propose and evaluate an architecture comprising 
near real-time detection and a building technique 
feasible for intrusion detection in big data settings. 
Using ML models with longer lifespans, our 
technique can achieve higher detection throughputs 
while maintaining accuracy for longer periods of 
time. 

The remainder of this paper is organized as follows. 
Section II presents the challenges that big data settings pose to 
ML-based intrusion detection techniques. Section III 
addresses related works. Section IV describes the novel 
intrusion detection dataset and evaluates traditional ML-based 
techniques regarding the model lifespan. Section V describes 
our proposed intrusion detection architecture and the novel 
multi-objective model-building technique. Section VI 
evaluates our proposal. Finally, Section VII concludes our 
work. 

II. INTRUSION DETECTION AND BIG DATA 

Big data settings pose significant challenges to traditional 
intrusion detection mechanisms. This section further describes 
the typical ML-based intrusion detection schemes and how big 
data impacts them. 

A. Extraction of intrusion behavior from network data 

Network-based intrusion detection systems (NIDSs) 
perform detection according to the intruder behavior gathered 
from the network data content. For instance, network data 
content can be made of packets or network logs, such as 
NetFlow records, among others. In general, a huge amount of 
network packets (big data settings) arrives in a disorderly 
manner. In other words, the network packets must be 
preprocessed before being handled by a NIDS engine.  

During the preprocessing, fields of interest must be 
selected and parsed; only then can they be provided to a 
feature extraction module. The goal of the feature extraction 
module is to extract features; in fact, a vector of network 
behaviors is called a features vector. The networking event is 
aiming to describe behavior by a feature vector, which can 
then be evaluated and classified by an ML algorithm.  

Usually, a single event (e.g., a network packet) does not 
enable a proper behavior characterization required for feature 
extraction because several packets typically comprise a 
network communication (message flow). In general, network-
based attacks only differ from normal behavior when several 
packets are analyzed together. For instance, a single packet 
that occurred during a flood-based DDoS attack, if evaluated 
in isolation, might be either a normal client opening a 
connection or an attack.  

A common practice for a feature’s network extraction is to 
summarize a set of packets into a time-window to allow NIDS 
detection [8]. In this case, each network event is grouped 
according to a selected criterion, e.g., source IP address.  

Table 1 shows a typical feature set extracted from the 
network data split into time-windows, building a network flow. 
In the table, four distinct feature groupings establish how the 
network packets are summarized in the time-window for the 
feature extraction task. For instance, the Destination to Source 
IP Address grouping scheme extracts the listed network 
features by summarizing the network packets that occurred in 
a time-window according to the destination to source IP 
addresses. As a result, for each grouping, 15 features are 
extracted; hence, the final feature vector comprises 60 features 
(15 for each feature grouping). 

TABLE 1 
EXTRACTED FEATURE SET, FOR EACH FEATURE GROUPING IN 

TIME-WINDOW INTERVALS FROM RAW NETWORK DATA 

Features  
Grouping 

# Network Features 
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1 Number of Packets 
2 Number of Bytes 
3 Average Packet Size 
4 Percentage of Packets (PSH Flag) 
5 Percentage of Packets (SYN and FIN Flags) 
6 Percentage of Packets (FIN Flag) 
7 Percentage of Packets (SYN Flag) 
8 Percentage of Packets (ACK Flag) 
9 Percentage of Packets (RST Flag) 

10 Percentage of Packets (ICMP Redirect Flag) 
11 Percentage of Packets (ICMP Time Exceeded Flag) 
12 Percentage of Packets (ICMP Unreachable Flag) 
13 Percentage of Packets (ICMP Other Types Flag) 
14 Average Packet Size 
15 Throughput in Bytes 

 



B. Machine learning for network-based intrusion detection 

In general, intrusion detection through ML-based techniques 
is performed employing pattern recognition approaches [9], 
which have a goal of classifying a given input into a set of 
classes.  

 In NIDS, pattern recognition can be performed by 
classifying given network content as either normal or attack. 
The classifier development task is divided into a three-phase 
process: training, validation, and test.  

 In the training phase, a dataset containing a set of 
previously labeled events (e.g., network data content labeled 
as either normal or attack), is provided to an ML algorithm 
(classifier) to obtain a model. Additionally, a validation 
dataset can be used to evaluate the produced model and 
perform improvements (if needed) in its input, e.g., select the 
best subset of features and adjust the model parameters.  

 The evaluation of the resulting model through a test 
dataset is performed, and the accuracy rates, such as the rates 
of true-positive, true-negative, false-positive, and false-
negative instances, are measured. The accuracy rate is 
measured as the ratio of instances correctly classified from the 
total number of evaluated instances.  

 A true-positive (TP) rate denotes the ratio of attack events 
correctly classified, whereas a true-negative (TN) rate denotes 
the ratio of normal events correctly classified. In contrast, a 
false-positive (FP) rate denotes the ratio of normal events 
misclassified as attacks, whereas a false-negative (FN) rate 
denotes the ratio of attack events misclassified as benign 
events.  

 In general, in the literature, authors often aim at decreasing 
their system FP rates, considering that a high FP rate renders 
the system unreliable to the administrator, which disregards 
further system alerts. 

A popular approach to improve the obtained system 
accuracy is to perform a feature selection technique, for 
instance, through a wrapper-based approach. In this case, the 
best subset of features is selected according to a given feature 
selection goal, e.g., the test dataset's obtained accuracy.  

Several techniques have been proposed for the feature 
selection task, ranging from random subset selection [16] to 
genetic search algorithms [17], which have yielded promising 
results. The genetic search feature selection approach 
leverages the notion of gene selection to find the best subset 
of features.  

The idea behind genetic search algorithms is to use a 
ranking selection method to emphasize good points and a 
niche method to maintain stable subpopulations of good 
evolutionary features. Hence, during the feature selection task, 
the classifier is used to find the obtained accuracy according 
to a given subset of features. At the same time, the genetic 
search algorithm emphasizes good subsets for subsequent 
feature selection. 

C. Network-based intrusion detection in big data settings 

Big data scenarios are often characterized in 5 main aspects, 
namely 5Vs, which includes Volume, Velocity, Variety, 
Veracity, and Value [35]. For instance, consider a monitored 
high-speed network environment. In such a case, network data 
is generated at high velocity, which produces a vast amount of 
volume. The monitored network data may arrive in a variety 

of formats, which includes network packets, netflow records, 
or even application logs. Finally, the analysis of such data 
provides value, for instance, through the identification of an 
intrusion, if its veracity is assured.   

 In such settings, traditional computing architectures are 
unable to cope with the processing demands [36]. Hence, big 
data environments require novel and distributed processing 
architectures, such as those provided on Hadoop ecosystem 
[5].  

 For instance, to overcome network-based intrusion 
detection challenges in high-speed environments, several 
works have proposed distributed and highly scalable intrusion 
detection mechanisms [6]. In such a context, the data 
capturing mechanism must be able to read the network packets 
in an unstructured format from several sources (big data 
settings). The feature extraction mechanism must be able to 
structure the captured data and extract features in a distributed 
fashion. Hence, the usage of time-window intervals for the 
feature extraction task becomes challenging [10], because the 
data to be processed must be distributed between several 
nodes and analyzed according to its common properties, e.g., 
the source IP address (Table 1, Features Grouping). Therefore, 
the data summarization for network content classification 
poses a significant challenge for feature extraction.  

In NIDS, an ML intrusion model is only reliable for a 
small period of time, considering that the network traffic 
constantly changes even in high-speed networks. However, 
after the model lifespan has passed, the classifier continues to 
classify events, even with an obsolete model, producing an 
unreliable classification. Thus, it becomes necessary to detect 
the accuracy decrease to perform the model update task.  

The problem is that the administrator does not know when 
accuracy decreases. As a result, model updates remain a great 
challenge in ML-based NIDS, since they are needed to 
perceive the accuracy decrease and repeat the classifier 
development process.  

Surprisingly, in related works, the focus is on distributing 
the ML model into several nodes for throughput increase 
purposes [11]. However, the model update task remains to be 
addressed as a big challenge for NIDS deployment in big data 
settings. 

III. RELATED WORKS 

The next subsections further describe related works that 
address the tasks of Intrusion Detection Through Machine 
Learning Techniques and Intrusion Detection for High-speed 
Networks. 

A. Intrusion Detection Through Machine Learning 
Techniques 

Network traffic behavior changes over time are often 
neglected in the literature in which authors often assume that 
periodic model updates are performed, without considering 
the cost achieving such a task. For instance, Ambusaidi et al. 
[20] propose an ML-based NIDS based on support vector 
machine (SVM) and filter-based feature selection. In their 
work, the authors show that feature selection can improve 
detection accuracy.  

 Pajouh et al. [21] apply a feature reduction technique to 
decrease the feature set dimensionality, then naïve Bayes and 



k-nearest neighbor classifiers are applied in conjunction with 
the classification task.  

 Wang et al. [22] apply a feature augmentation technique 
to increase the feature set dimensionality. In their evaluation, 
through an SVM, the authors can improve detection accuracy.  

 A feature selection approach was also performed by 
Shitharth et al. [23]. In their work, the authors rely on a 
wrapper-based feature selection through a cuckoo search 
algorithm and a neural network-based classifier for intrusion 
detection. Similarly, the authors were able to improve 
detection accuracy.  

 In our prior work [24], a feature selection technique 
through a multi-objective genetic search algorithm was 
applied in the context of network-based intrusion detection, 
aiming for accuracy improvement and energy consumption 
decrease. The evaluation results have shown that a multi-
objective feature selection technique aids in improving 
conflicting objectives.  

 Feature selection techniques are widely used, aiming for 
accuracy improvement. However, their applicability to 
improving model lifespan is yet to be known. In addition, 
related works generally do not consider the challenges that 
model updates introduce to their technique. As a consequence, 
the difficulties introduced by performing model updates 
render their proposed approach unable to cope with the 
evolving behavior of network traffic. To the best of our 
knowledge, we are the first to address the model lifespan at 
the model building stage. 

B. Intrusion Detection for High-speed Networks 

Approaches for flow measurement and classification of 
massive network activities, in general, rely on pre-stored data. 
For instance, in Lee and Lee [25], a Hadoop-based network 
traffic monitoring and analysis system is proposed. The 
authors performed the network flow extraction by mapping 
the network packet files in HDFS. Their proposed approach 
was able to reach 14 Gbps in a 200-node cluster. However, 
their approach demanded the storage of the network packet 
files. In their work, the classification was performed using a 
connection threshold established through a set of Hive queries. 
Consequently, the queries must be periodically updated due to 
the network traffic changes over time.  

Fortugne et al. [26] integrated several anomaly detectors 
in a big data processing architecture for network traffic 
classification. The authors applied a hash function to split the 
network data into groups. Each group held an anomaly 
detection model that classified network data according to the 
obtained anomaly score, using a previously established 
threshold. Consequently, their proposed technique did not 
address the classification scheme update challenge, and the 
model update task was neglected. In addition, their proposal 
detection throughput is unfeasible for high-speed network 
monitoring in a big data environment.  

 Some authors have proposed stream processing techniques 
for the measurement of massive network data. For instance, in 
Baer et al. [27], a data stream warehouse for network traffic 
classification is proposed. The authors relied on time windows 
for incremental and continuous execution of their data queries. 
In addition, their proposed technique combined an ML 
framework for the classification of their exported network 
features at each time window. However, their technique relied 
on a supervised dataset while failing to consider the scalability 

challenge of their ML algorithms and the challenge of 
improving the ML model lifespan. A similar approach to the 
proposal was taken by Apache Metron [28]. The tool relies on 
the Apache Storm [29] processing framework to perform 
feature extraction at each time window. However, the tool 
demanded the storage of the occurred network activities in the 
HBase for post-classification, consequently significantly 
decreasing their proposal throughput.  

 To the best of our knowledge, our work is the first that 
does not require the storage of network events, neither for 
feature extraction nor for classification. In addition, we deal 
with the evolving behavior of networks in the case of high-
speed networks through a multi-objective feature selection 
technique that takes into account the model lifespan at the 
model building phase, thus, decreasing the ML model update 
periodicity. 

IV. LIFESPAN OF TRADITIONAL MACHINE LEARNING 

DETECTION TECHNIQUES 

Although the need for model updates for NIDS is a known 
requirement, the lifespan of current detection models remains 
unknown. This section evaluates the accuracy of degradation 
and the model lifespan of traditional ML detection techniques.  

A. Data description 

An important issue to be considered in intrusion modeling 
is to have a properly built training and testing dataset. A 
dataset used for such a purpose must be made of network data 
with real, valid, variable, publicly available, and correctly 
labeled events (network packets). However, in general, to 
provide such an enriched dataset, one must record real data, 
making data sharing unfeasible due to privacy concerns. 
Nonetheless, the evaluation of a model lifespan is even more 
difficult since data must be recorded for long periods, 
increasing the amount of data to be labeled and stored. 

Our work has leveraged the measurement and analysis of 
the WIDE Internet (MAWI) network traffic archive [12]. 
More specifically, it has used the MAWI Samplepoint-F, from 
the MAWI archive, collected daily for a 15-min-long interval 
from a transit link between Japan and the USA, therefore made 
of real network traffic.  

The used archive enables proper evaluation of model 
lifespan and accuracy degradation, using five years of network 
traffic ranging from 2012 to 2016. The built dataset comprises 
over 20 TB of data from ~300 billion network packets. To 
automatically label the input records, i.e., tag events as either 
normal or attack, an unsupervised ML technique from 
MAWILab [13] was employed.  

MAWILab employs several unsupervised machine 
learning algorithms to find anomalies in MAWI data, which 
do not demand individual event labels. The anomalies found 
are tagged as an attack, whereas the remaining data is assumed 
to be normal. The feature extraction algorithm (explained in 
Section V) groups events in a 15-second time-window interval, 
while extracting the feature set shown in Table 1.  

B. Accuracy behavior over time 

The first evaluation aims at assessing the ML model 
accuracy over time through the built dataset. Due to the 
imbalanced nature of the dataset (only ~2% of instances are 
samples of attack), a random under-sampling without 
replacement was performed in the training data. Hence, the 



data distribution used for training purposes is equally 
distributed between the classes.  

The total amount of data, ~20 TB, is used for evaluation 
purposes. To properly evaluate the network traffic behavior 
and the change impact on the ML model, the classifier is 
trained through the first dataset month (January 2012) and 
then evaluated throughout the remaining five years without 
model updates.  

Four widely used ML algorithms in big data settings were 
evaluated: random forest (RF), decision tree (DT), boosting 
and bagging. The selected set of ML algorithms were defined 
due to the vast amount of data in the used dataset, which 
renders more complex training and classification ML 
techniques unfeasible for real-time classification of network 
traffic.   

The RF, boosting, and bagging algorithms were each built 
with 100 decision trees as their base learners. The DT 
classifier was implemented through the C4.5 algorithm, with 
a confidence factor of 0.25. The classifiers were built with and 
without feature selection.  

The wrapper-based genetic search algorithm was used as 
a feature selection method, with a mutation probability of 3.3% 
and a crossover probability of 60%, executed with 100 
generations with 100 populations each. The feature selection 
algorithm used the accuracy as a fitting parameter, as 
measured through the validation dataset, a common approach 
in the literature. The classifiers were built on top of Weka API 
version 3.8 [34] and were evaluated in a distributed manner 
through Apache Flink framework version 1.8.1 [31]. The 
classifiers were evaluated based on their TP and TN rates, 

being the ratios of attacks and normal events correctly 
classified, respectively.  

It is important to note that as the system considers a two-
class scenario, the FP and FN rates can be measured as the 
opposite of the TN and TP rates, respectively. Consequently, 
a low TN rate denotes a high FP rate, while a low TP rate 
denotes a high FN rate.   

Figure 1 shows the accuracy behavior of the evaluated 
classifiers with and without feature selection. It is notable that 
when model updates are not performed, the model accuracy 
decreases for all the evaluated classifiers, with or without 
feature selection being made.  

Surprisingly, significant decreases can be found within a 
few months after training. For instance, the RF classifier TP 
rate decreased by 11% in the first month following the training 
phase. Be that as it may, the accuracy continues to decrease as 
time passes, reaching only 19% for the RF, in the worst TP 
rate in November 2015, i.e., a 61% decrease from the rate 
obtained at the test phase, in January 2012.  

The TN rate does not significantly decrease over time; in 
contrast, it even improves in May 2013 for the majority of the 
evaluated classifiers. Such accuracy behavior variation, a 
significant decrease in the TP rate, and a slight decrease or 
improvement in the TN rate shows that the built model is no 
longer reliable. The accuracy rates obtained at the test phase 
(January 2012) can no longer rely on only months after a 
training period.  

It is worth noting that feature selection does not positively 
impact ML model accuracy over time (Figure 1-e to 1-h) 

FIGURE 1 
ACCURACY BEHAVIOR OF SEVERAL ML ALGORITHMS WITH AND WITHOUT FEATURE SELECTION OVER A 5-YEAR RANGE. 

 

(a) Random Forest without feature 
selection 

 

(b) Decision Tree without feature 
selection 

 

(c) Boosting without feature 
selection 

 

(d) Bagging without feature 
selection 

 

(e) Random Forest with feature 
selection 

 

(f) Decision Tree with feature 
selection 

 

(g) Boosting with feature selection 

 

(h) Bagging with feature selection 

 



compared to its counterpart using all features (no feature 
selection). We further investigate the accuracy tradeoff in 
Figure 2, which shows the RF accuracy over time with and 
without the traditional feature selection being made. It is 
possible to note that traditional feature selection has little or 
no impact on the final ML model lifespan, which, in general, 
improves the TP rate by only 0.1% over the evaluated five 
years of our built dataset. 

Finally, we also investigate the relation between model 
lifespan and average accuracy to better understand the impact 
of model update periodicity in the ML model. We evaluated 
the accuracy behavior according to the model update 
periodicity in 2016, as obtained through the RF classifier with 
all features.  

The goal of the evaluation is to confirm if the accuracy 
decrease over time (shown in Figure 1) is related to the 
model's age. In other words, to confirm if the network traffic 
behavior is causing the accuracy decrease. Figure 3 shows the 
relation between the model update periodicity (model lifespan) 
and the average accuracy in 2016 for the RF classifier. A direct 
relation is notable between model update periodicity and 
model accuracy for up to 21 days of the model lifespan. That 
means it is possible to increase the system accuracy if model 
updates are performed regularly every 3 weeks or more. In 
addition, if a higher accuracy rate is desired, one must update 
the ML model more often. For instance, a daily updated model 
can reach ~91% accuracy, almost a 5% accuracy increase 
when compared to a weekly updated model.  

C. Discussion 

 Over the last few years, proposed ML-based intrusion 
detection schemes have disregarded the challenge of network 
traffic changes over time. This built dataset is a breakthrough 
toward the proper evaluation of ML-based intrusion detection 
schemes. To the best of our knowledge, it is the first dataset 
made of real network traffic, previously labeled, publicly 
available, and comprising many years of network traffic 
behavior. 

 The evaluation performed through our built dataset has 
shown that current ML-based intrusion detection schemes are 
unable to cope with the evolving behavior of network traffic, 
even when feature selection is made.  

 Current approaches significantly decrease their accuracy 
within weeks after the training period (Figure 1). Therefore, 
ML-based schemes must be updated regularly, making their 
applicability in real-world environments more challenging.  

 The periodic model has a direct impact on model accuracy 
over time (Figure 3). However, the model update task is a 
challenging process, particularly in big data settings. The data 
to be used must be stored and labeled, and only then can the 
training be performed. The training task is, in general, a highly 
computationally expensive process, which can demand days 
or even weeks of analysis of TB-scale data. 

 To enable the reliable usage of proposed intrusion 
detection schemes, the building of ML models with longer 
lifespans becomes imperative. Therefore, ML-based 
techniques must be able to withstand long periods without 
model updates. In other words, techniques must be able to 
remain reliable, even after a long period since the last model 
retraining.  

 It is important to note that such characteristics are often 
not given proper care. In general, proposed techniques are 
evaluated concerning their attained accuracy rate during the 
test phase, without taking into account the challenges that the 
changes in network traffic behavior over time pose to their 
proposed scheme. 

V. LONG-LASTING INTRUSION DETECTION ARCHITECTURE 

FOR BIG DATA ENVIRONMENTS 

In order to address the evolving behavior of network traffic 
over time while also performing the intrusion in near real-time 
in big data environments, we propose a Long-Lasting 
Intrusion Detection Model. The proposed model is 
implemented in a twofold manner.  

First, we address the ML model lifespan through a multi-
objective feature selection technique. The proposal insight is 
to take into account the model lifespan at the feature selection 
stage, aiming to increase the model lifespan with no 
significant side-effect on accuracy.  

The proposal leverages a multi-objective feature selection 
technique with two main goals: accuracy and model lifespan. 
The accuracy objective aims to improve the model accuracy 
in a test dataset, which is the common approach used in the 
literature. In contrast, the model lifespan objective is to 

FIGURE 3 
MODEL LIFESPAN (UPDATE PERIODICITY) AND AVERAGE 

ACCURACY FOR AN RF CLASSIFIER IN 2016 

 

FIGURE 2 
RF ACCURACY TRADEOFF OVER TIME WITH AND WITHOUT 

FEATURE SELECTION 

 



decrease the model update periodicity, and it takes into 
account the impact of the selected subset of features on model 
lifespan. As a consequence, the proposed model building 
technique can increase the model lifespan while maintaining 
or even improving the system accuracy. 

Second, we propose a distributed intrusion detection 
architecture comprising both batch and stream processing 
environments. The goal is to perform near real-time intrusion 
detection through stream processing techniques while also 
provide updated ML models through the batch processing 
environment. In other words, the stream processing enables 
our architecture to detect intrusion attempts in big data 
environments in near real-time, whereas the batch processing 
environment periodically provides an updated ML model for 
the stream processing side. 

The main aspects addressed by the proposed long-lasting 
intrusion detection architecture for big data settings are shown 
in Figure 4. The next subsections describe each stage in detail. 

A. Architecture data flow 

The proposed architecture acquires network data from 
monitored network devices (Figure 4, Network Device), such 
as routers, switches, servers, and other network hardware or 
devices exposed to network attacks.  

The network data comprises network events of interest, 
such as network packets, netflow records, or network logs. 
Afterward, the Data Ingestion module (Figure 4) acts as a 
middleware between the proposed architecture and the 
network devices. Its goal is to handle the communication 
between the various monitored devices and ensure the proper 
handling of messages, providing a single interface between 
the unstructured data and the proposed architecture.  

As the data is acquired, the Data Preprocessing module 
(Figure 4, Data Preprocessing) reads it in near real-time for 
both the Real-time Intrusion Detection and Offline Intrusion 
Model Update modules. 

In the Real-time Intrusion Detection module, the ingested 
data is forwarded for further processing in near real-time. The 
data is sequentially distributed and processed by the Feature 
Extraction, Detection, and Alert modules (Figure 4). 

The ingested data can also be used for model update 
purposes and is forwarded to the Offline Intrusion Model 
Update module. In this case, the collected data is stored in the 
Distributed File System until the model update periodicity has 
passed, triggering the model update procedure. In turn, the 
procedure is run by the Data Preprocessing, Dataset 
Labeling, and Model Building modules (Figure 4), which, 
when a new model is built, update the Detection module.    

B. Real-time Intrusion Detection 

Despite the need for an ML model that properly classifies 
network events, the alarms must be generated on time, aiming 
to enable the proper handling of intrusion attempts while also 
helping reduce the damage when an attack is occurring. 
Therefore, ingested data must be classified as soon as possible 
by the Real-time Intrusion Detection module, which aims to 
detect network attacks in near real-time. The module is 
deployed as a stream processing big data architecture. The 
processing flow is performed as an acyclic graph flow. Each 
module is deployed in several processing worker nodes. Thus, 
the processing flow becomes scalable, providing a higher 
detection throughput. 

During the processing flow, data arrives for preprocessing 
and is processed until it can be properly handled. The 
processing flow consists of the following tasks: Data 
Preprocessing, Feature Extraction, Detection, and Alert 
modules, each replicated in several workers' nodes (Figure 4).  

The Data Preprocessing module receives unstructured 
input data from monitored devices and properly structures 
them for further processing. In other words, the module 
receives data in a variety of formats (e.g., network packets, 
logs, NetFlow records) and structures them into a single, 
known format.  

As soon as data is structured, it is forwarded to both the 
Feature Extraction and Offline Intrusion Model Update 
modules. In the former, the real-time processing flow is 
continued for proper classification and reporting. In 
contrast, in the latter, data is stored until the model lifespan 
has passed and a model update is required.  

For the classification, feature extraction must be 
performed. The structured data is forwarded to the Feature 
Extraction module grouped according to its properties. For 
instance, the data with the same source IP address is forwarded 
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to the same feature extraction worker node for proper data 
value summarization.  

Data summarization is performed according to the features 
grouping (Table 1, Features Grouping). Nevertheless, data 
must be grouped in time-intervals. Therefore, the feature 
extraction exports the extracted feature set following a time-
interval rule.  

Finally, after the proper feature extraction, the 
classification can be performed in near real-time. Each 
Detection module holds a separate ML model. The goal is to 
increase detection throughput, considering that, in general, 
detection is orders of magnitude faster than training.  

By replicating the model across multiple workers, it is 
possible to achieve a higher detection throughput than when 
using a single distributed model. After the proper detection of 
a network intrusion attempt, the alarm is forwarded to an Alert 
module. That module, in turn, sends the event to a reporting 
engine that provides the detailed detection report to the end-
user. In this case, it is typically made of a graphical dashboard, 
data analytics engines, and other tools for better 
comprehension of the found intrusion attempt.  

C. Offline Intrusion Model Update 

In general, the ML training phase demands a great amount of 
time to properly learn behavior from the input event samples. 
In addition, in big data settings, the demanded time and 
required processing infrastructure for training significantly 
increase. The processing infrastructure for training involves 
ML algorithms, parameter optimization, feature selection, and 
model testing. Besides the execution of the IDS in near real-
time, the ML model must be periodically updated offline. 
Consequently, the Offline Intrusion Model Update module is 
deployed as a batch processing architecture. The processing 
flow is executed sequentially and divided among several 
processing worker nodes.  

Initially, the preprocessed data produced in near real-time 
by the stream processing side is stored in the Distributed File 
System to enable further processing. Afterward, at the end of 
each model lifespan, the model update process is performed.  

The model lifespan must be established according to the 
administrator's discretion. For instance, one may use a lower 
model lifespan as an attempt to increase system accuracy. 
Others may use a higher model lifespan to decrease the 
processing costs. Therefore, the model lifespan must be 
established considering such tradeoff, as shown in Figure 3, 
through a traditional model building technique.  

When the model update process takes place, the first 
performed task is in the Dataset Preprocessing module, which 
performs the feature set extraction and addresses incomplete 
data and outliers [29]. The preprocessed data is then handled 
by the Dataset Labeling module since, due to the vast amount 
of data, labeling cannot be performed by an expert; therefore, 
an automatic process must be performed. For instance, an 
unsupervised ML algorithm [30] can be used to identify 
anomalies.  

As soon as data is preprocessed and correctly labeled, it is 
handled by the Model Building module that selects the 
appropriate feature set, customizes parameters, and trains and 
tests the model. Finally, at the end of the training phase, the 
new and updated model is forwarded to the Real-Time 

Intrusion Detection module, more specifically, the Detection 
module.  

The model is then replicated in several worker nodes, 
improving the system throughput, i.e., maintaining the 
obtained system accuracy during the test phase in production 
deployment.   

D. Building models with longer lifespans 

In the state-of-art, current model building techniques do not 
take into account the model lifespan at the training phase. That 
happens mainly because proposals in the literature do not have 
a properly built training dataset that spans for long periods (see 
Section III). In contrast, our architecture evaluates the model 
lifespan and takes it into account during the feature selection 
task. However, to provide a high detection accuracy, during 
feature selection, the model lifespan is coupled with detection 
accuracy in a multi-objective feature selection process.  

The model building process is performed through a multi-
objective feature selection technique with two objectives, 
namely accuracy and model lifespan. The objectives are 
computed through Eq. 1 and Eq. 2, in which N denotes the 
number of evaluated events, TP the number of true positives, 
and TN the number of true negatives. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃  + 𝑇𝑁  

𝑁
                                  (1) 

𝑚𝑜𝑑𝑒𝑙 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 =
𝑇𝑃  + 𝑇𝑁  

𝑁
             (2) 

The accuracy goal is computed using Eq. 1. In this case, 
the goal is to improve the detection accuracy in a specific 
period (period i). For instance, improve detection accuracy in 
the period from the 1st day to the 15th day of January 2012. On 
the other hand, the model lifespan goal is computed through 
Eq. 2. It aims at improving detection accuracy in the period 
following the accuracy computation period (period i + 1). For 
instance, improve detection accuracy in the period between 
the 15th to 30th day of January 2012. In other words, the 
accuracy goal improves detection accuracy in a specific 
period in time, whereas the model lifespan goal improves 
detection accuracy in the period following training time, 
aiming to improve model lifespan. 

Our model building technique trains the model using the 
first half period of the training dataset and evaluates the model 
using the second half of that period. For instance, in a dataset 
comprising 30 days of network data, the first 15 days are used 
for training and accuracy computation (Eq. 1), whereas the 
remaining 15 days are used for model lifespan evaluation (Eq. 
2).  

The accuracy obtained in the last days is used as a model 
lifespan measure. However, to measure accuracy, the model 
is built and evaluated using five years. Consequently, the 
produced model contains information over the whole training 
period and has a higher expected model lifespan because we 
considered both model accuracy and expected lifespan during 
the feature selection task.  

The built model is expected to last longer while also 
providing a higher detection accuracy. One must note that 
detection accuracy may present a conflicting objective to 
model lifespan. For instance, one may increase model 
accuracy by overfitting it for a specific period, and as a 
consequence, decreasing the model accuracy after such period, 



i.e., model lifespan. Therefore, the selected accuracy and 
model lifespan tradeoff must be selected according to the 
administrator's needs. 

E. Discussion 

Current approaches for network-based IDSs are not able to 
cope with the network traffic behavior changes over time 
(Section III) and high-speed networks. In fact, in general, the 
model lifespan is not even evaluated. As a consequence, when 
ML-based techniques are deployed in production 
environments, the ML model quickly becomes outdated, and 
a new model must be built, which demands expert intervention 
and wastes time.  

 The proposal takes into account both model accuracy and 
model lifespan. It achieves its goal by considering a specific 
period for evaluating the current model accuracy and the 
following period for evaluating the model lifespan. As a result, 
by considering the model lifespan during the model building 
stage, we can improve the expected model lifetime, decreasing 
the needed periodicity for model updates. 

To overcome the challenge of ML-based IDSs in high-
speed networks, we propose a twofold architecture, composed 
of real-time intrusion detection and offline intrusion model 
updates. The former handles IDSs in near real-time through a 
distributed stream processing architecture. The latter handles 
the periodic model updates, employing the aforementioned 
multi-objective feature selection approach to provide ML 
models with longer lifespans. Therefore, in summary, the 
proposed architecture performs intrusion detection in near 
real-time while also handling model updates aiming for a 
higher model lifespan. 

VI. PROTOTYPE 

A proposal prototype was implemented and deployed in a 
distributed environment, as shown in Figure 5. The prototype 
is implemented on top of Apache Flink [31] processing 
framework, version 1.8.1, due to its capability to operate in 
both batch and stream processing conditions.  

On the stream processing side, the prototype takes as input 
network packet headers from the MAWI archive [12], those 
stored in HDFS [32] version 3.2.1. The network packet 
headers are continuously read and sent to an Apache Kafka 
[33] topic, version 2.3.1, which acts as the proposal data 
ingestion mechanism (Figure 3). Meanwhile, the Data 
Preprocessing module reads the Apache Kafka topic and 
further processes it, forwarding it to the Feature Extraction, 
and then the Detection modules.  

The proposal time-window mechanism was implemented 
for the feature extraction task using the native Apache Flink 
windowing mechanism (default: 15 seconds). The feature 
grouping (Table 1) was realized using the Apache Flink 
KeySelector interface. Finally, the Detection module executes 
the underlying machine learning algorithm through the Weka 
API [34].  

On the batch processing side, a batch job is periodically 
invoked, according to a given model lifespan periodicity. In 
such a situation, the Data Preprocessing module reads the raw 
network data stored on the HDFS, performs the feature 
extraction, and forwards the feature vector to the Dataset 
Labeling module. That module, in turn, labels the feature 
vectors according to the MA WILab [26] label files, which are 

provided in an XML format. Finally, the labeled feature 
vectors are used to build a new model.  

The proposed multi-objective feature selection is 
performed through the NSGA-II [15] genetic search algorithm 
that computes the desired objectives, according to Eq. 1 and 
Eq. 2, and outputs an updated model. The final built model is 
then written to a file and read by the Detection module, which 
is performed in near real-time.  

The proposal's parallelism operators were set according to 
the number of workers nodes used in our experimental 
evaluation.  

VII. EVALUATION 

The evaluation of our proposal was performed in two steps. 
First, we evaluated the technique for multi-objective feature 
selection that aims for a higher model lifespan. Second, we 
evaluated the scalability.  

The performed evaluations aim at answering four research 
questions: i) What is the accuracy and model lifespan tradeoff? 
ii) How good is our long-lasting model building technique at 
improving model lifespan? iii) How often must the model be 
updated to provide reliability? iv) Is the proposed architecture 
processing throughput scalable?  

A. Accuracy and Model Lifespan 

The first evaluation comprises the accuracy and model 
lifespan improvement. To evaluate our proposed model, only 
the RF classifier was used, through the dataset introduced in 
Section III, as the other evaluated classifiers presented similar 
results. Similarly, the same set of parameters from Section III 
were used. Thus, the RF used 100 decision trees as its base-
learner.  

For building models with longer lifespans, the multi-
objective feature selection algorithm NSGA-II was used [15]; 
at each model update, 100 generations with 100 populations, 
a mutation probability of 3.3%, and a crossover probability of 
60% are used to find the best subset of features. A C++ 
program was implemented on top of the NSGA-II algorithm. 
The batch program is invoked by our prototype (detailed in 
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Section VI) periodically. At each execution, the program 
selects a subset of features, as computed by the NSGA-II 
algorithm, builds an ML model through Weka API [34], and 
computes both accuracy (Eq. 1) and model lifespan (Eq. 2).  

During model updates, the last past 30 days are used for 
model building. To evaluate the model accuracy (Eq. 1), only 
the first 15 days are used for training, while the remaining are 
used for the evaluation of the model li fespan (Eq. 2). For 
instance, if the model is updated in the last day of January 
2012, the data that occurred between the 1st and 15th days are 
used for training, and data from the 16th to 30th are used for 
feature selection/testing.  

For comparison purposes, the NSGA-II was also executed 
using a single-objective, in this case, accuracy, which is the 
traditional method used in the literature, using only the 
computation process from Eq. 1.  

The evaluations were performed using an RF classifier 
with 100 decision trees as its base-learner. At each model 
update, a random undersampling without replacement 
procedure is performed due to the imbalanced nature of the 
dataset.  

To answer the question (i), the first evaluation aimed at 
establishing the tradeoff between model lifespan and 
accuracy. Figure 6 shows the multi-objective tradeoff, for 
monthly model updates, between both feature selection 

objectives taking into account three periods (January 2012, 
January 2013, and January 2014); similar results were found 
at each model update.  

It is possible to note a clear tradeoff between accuracy and 
model lifespan. For instance, in January 2012, one is able to 
increase model lifespan by 10% with a 10% accuracy tradeoff 
(Figure 5-a, Lifespan Error Rate versus Test Dataset Error 
Rate). Therefore, to increase the model lifespan, although not 
significant, an increase in error rate must be tolerated.  

When used in production, one must evaluate whether a 
higher frequency of model updates is needed or if the 
accuracy may be decreased but with a lower model update 
frequency. 

To answer the question (ii), we evaluate the relation 
between model update frequency and accuracy over five 
years. To achieve such a goal at each model update, we select 
the average operation point when both objectives are close to 
zero, obtained from the NSGA-II, and build a new RF model.  

The comparison between our proposed technique and the 
traditional feature selection approach is shown in Figure 7. It 
is notable that our multi-objective feature selection technique 
significantly improves the model lifespan and accuracy 
tradeoff when compared to traditional approaches (single 
objective, using only accuracy as the objective). For example, 
our model building technique was able to provide 90% 
accuracy with a model lifespan of three weeks, whereas the 
single selection approach only maintained the same accuracy 
with a model lifespan of one week, illustrating a model 
lifespan improvement of two weeks.  

Therefore, our approach was able to build models with 
improved lifespans when compared to a traditional building 
technique. For instance, considering a two-week model 
lifespan, our technique experiences only a 1% accuracy 
decrease, while the accuracy of the traditional approach drops 
by 5%. Thus, the accuracy drops when model updates are 
performed less frequently is not as significant as in the 
traditional approach. That behavior can be observed for up to 
six weeks of model lifespan, which only degrades the system 
accuracy by 4% when compared to a weekly updated model. 

It is notable that current approaches, which only consider 
accuracy at the test period, significantly decrease the model 
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lifespan impacting the system accuracy. In contrast, when 
considering the model lifespan during feature selection, one 
can increase the model lifespan for up to six weeks (Figure 7, 
proposed technique model lifespan of eight weeks versus 
traditional technique model lifespan of two weeks).  

We have also evaluated the obtained accuracy through the 
proposed multi-objective technique throughout the five years. 
Figure 8 shows the accuracy of the proposed approach when 
monthly model updates are performed (Figure 6, model 
lifespan of four weeks). It is notable that our proposed 
approach can maintain its accuracy over time (~90%), a 
significant improvement from the traditional approach that 
experiences a significant decrease in accuracy only weeks 
after the training period.  

To answer the question (iii), one must consider the desired 
accuracy rates, given the model accuracy decreases over time 
for network attack classification. Therefore, one must always 
take into account the ‘age’ of the classification model when 
performing IDSs. In other words, higher accuracy over time 
demands higher model update frequency. For instance, to 
reach 90% accuracy, one must perform model updates every 
three weeks, whereas to reach 84%, the model can be updated 
once every eight weeks (Figure 7).  

The improvement in the relation between model lifespan 
and accuracy provided by our multi-objective feature 
selection technique significantly improves the ML-based IDS 
deployment in the production environment. That is because 
the system administrator is now able to properly establish the 
model lifespan and improve it when model updates cannot be 
performed frequently.  

B. Scalability 

To answer question (iv), the architecture throughput was 
evaluated during deployment using our 11-node cluster. The 
classification throughput was evaluated according to the Real-
time Intrusion Detection module, considering that the model 
update task is typically performed offline. The architecture 
was deployed using 11 nodes, each with a 2-core CPU, 8 GB 

of memory, and an Ubuntu 18.04 OS. Out of the 11 nodes, ten 
were used as worker nodes (Figure 5, Task Manager) while 
the remaining node was responsible for the infrastructure 
management, acting as the master node (Figure 5, Job 
Manager). For each evaluation, the architecture was executed 
for 30 minutes, while its throughput was measured according 
to the network packet ingestion rate (Figure 5, Data Ingestion 
to Data Preprocessing)  

Figure 9 shows the proposal scalability when varying the 
number of used worker nodes to perform near real-time 
intrusion detection. It is notable that our proposed approach 
can increase its throughput according to the number of 
available worker nodes. For instance, when deployed in a 10-
worker node cluster, our proposal can reach up to 10.75 Gbps 
detection throughput, as opposed to a 5.67 Gbps detection 
throughput when deployed in a 5-worker node cluster.  

In summary, each added worker node increases our 
architecture detection throughput by 1.07 Gbps on average, 
showing that when deployed in a distributed processing 
environment, our approach can scale-up its detection 
throughput, thus being feasible for high-speed networks. 

VIII. CONCLUSION AND FUTURE WORK 

In recent years, the state-of-the-art of the model update task in 
ML-based IDSs has been neglected by the research 
community. In this work, we have tackled the problem of ML 
model's lifespan in big data environments.  

 We have experimentally shown, through five years of real 
network data, that current and widely used techniques 
available in the literature significantly lose accuracy over time, 
within weeks following the training time. As a consequence, 
ML-based intrusion detection techniques presented models 
with low lifespans, unable to cope with the inherent changes 
of network traffic behavior over time.   

Our work proposed and evaluated a novel long-lasting 
intrusion detection architecture for big data environments. The 
proposed architecture, implemented in a twofold processing 
model: batch and streaming, was able to provide near real-
time scalable intrusion detection while also solving the 
problem of low lifespans of intrusion detection models. 
Concerning proposal scalability, we showed that our 
architecture could be deployed in big data settings while 
demanding significantly fewer model updates over time.  

FIGURE 8 
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As future work, we will consider the improvement of the 
intrusion detection models' lifespan by combining hybrid 
detection architecture, coupling batch techniques, and stream 
learning techniques. 

The used dataset throughout the paper experiments, 
namely MAWIFlow, is publicly available for download in 
https://secplab.ppgia.pucpr.br/mawiflow. 
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