
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Machine Learning Intrusion Detection in Big Data
Era: A Multi-Objective Approach for Longer Model

Lifespans
Eduardo Viegas

Graduate Program in Computer Science
Pontifical Catholic University of Parana

Curitiba, Parana - Brazil
eduardo.viegas@ppgia.pucpr.br

Altair Olivo Santin
Graduate Program in Computer Science
Pontifical Catholic University of Parana

Curitiba, Parana - Brazil
santin@ppgia.pucpr.br

Vilmar Abreu
Polytechnic School

Pontifical Catholic University of Parana
Curitiba, Parana - Brazil

vilmar.abreu@ppgia.pucpr.br

Abstract — Despite highly accurate intrusion detection schemes
based on machine learning (ML) reported in the literature,
changes in network traffic behavior quickly yield low accuracy
rates. An intrusion detection model update is not easily feasible
due to the enormous amount of network traffic to be processed
in near real-time for high-speed networks, in particular, under
big data settings. In this paper, we propose a new scalable long-
lasting intrusion detection architecture for the processing of
network content and the building of a reliable ML-based
intrusion detection model. Experiments performed through the
analysis of five years of network traffic, about 20 TB of data,
have shown that our approach extends the lifespan of our model
by up to six weeks. That occurs because the average accuracy
rate of our proposal lasted eight weeks after the training phase,
and traditional ones reached only two weeks after the model
building. Additionally, our proposal achieves up to 10 Gbps of
detection throughput in a 20-core big data processing cluster.

Keywords—Machine Learning, Intrusion Detection, Big Data,
High-Speed Networks.

I. INTRODUCTION

In recent years, network devices have been significantly
increasing their bandwidth capability. Therefore, the average
broadband speeds are expected to double within only five
years, growing from 39 Mbps in 2017 to 75.4 Mbps in 2022
[1].

 Cyberattacks have also significantly increased their
capabilities, e.g., in 2017, a Distributed-Denial-of-Service
(DDoS) attack peaked at 600 Gbps – a year after it reached
over 1.7 Tbps, which is a 183 percent throughput increase.
Thus, when DDoS attacks are occurring, they might represent
up to 25 percent of a country's total current Internet traffic.
Hence, current and future deployment of Intrusion Detection
System (IDS) mechanisms must be able to perform at such
high-speed network bandwidths.

Traditionally, IDS techniques were built using signature-
based approaches, meaning that the cyberattacks are detected
by matching a signature (e.g., well-known streaming of bits or
a sequence of events). Therefore, only known attacks can be
detected through such an approach. In addition, as new attacks
are discovered over time, new signatures must be built
demanding human intervention, and detection throughput is
further decreased as more signatures must be evaluated [2].
Therefore, the detection can only be performed after the
cyberattack occurrence.

In a machine learning (ML)-based IDS, the intrusion is
represented through a feature set that comprises the
appropriate event behavior to enable the classification
between benign and malicious events. Consequently, an ML

model is expected to properly classify other events as long as
they present the same behavior learned in a training phase.

When the network traffic behavior changes, a new
intrusion model must be built as the current one has passed its
lifespan. Building an intrusion model involves the storage of
the new network data content, labeling of data content events,
extraction and selection of intrusion features, the ML
algorithm parameter optimization, detection model training,
and testing of the model.

Current approaches in the literature, in general, assume
that the intrusion model is updated regularly without taking
into account the demanded human intervention and time spent
to perform such a task [4]. For instance, a single 1 Gbps node
can produce more than 10 TB of content in a single day. The
impact of network traffic changes over time to proposed ML-
based intrusion detection approaches is not evaluated in the
literature. Consequently, the model update periodicity, and the
accuracy degradation over time are not taken into account. In
contrast, authors often assume periodic model updates while
disregarding the challenges it poses to proposed ML-based
techniques. As a result, the accuracy impact and the model
lifespan of current literature approaches are unknown.

 In the production (real-world) environment, the network
traffic behavior changes daily, either due to new attack
discoveries or the offering of new services [3]. Nonetheless,
in the current big data era, network data arrives in an
unstructured manner from a variety of sources.

Beyond having to deal with model updates, an intrusion
detection architecture has to be deployed as a distributed
system. Thus, it must provide a near real-time detection of
network attacks from a variety of sources while also being
able to update the ML model before its lifespan has passed.
Otherwise, its accuracy rates quickly decrease, rendering the
system unreliable.

Current proposals for network traffic measurement and
analysis in the big data context often rely on batch-based
Hadoop clusters [5]. In general, current techniques store
network packets as raw data (e.g., pcap format) in a distributed
file system (e.g., the Hadoop distributed file system (HDFS)
[6]) for later processing. However, although such approaches
offer significant improvements in scalability [7], they lack
applicability in a real-world environment because, in such
settings, the network traffic must be analyzed at network
speed for delay-free intrusion detection.

In this study, we propose a novel ML-based intrusion
detection architecture suited for near real-time intrusion
detection in high-speed networks. Our goal is twofold.

First, we propose a novel multi-objective feature selection
technique. Our technique aims at providing a higher model
lifespan with no significant impact on model accuracy.
Consequently, the built model can survive for longer periods
of time, while maintaining the accuracy rates obtained at
training time. Thus, model updates are required less frequently,
enabling model deployment in high-speed networks, which is
advantageous since model updates are not always feasible.

Second, we proposed a novel architecture suited for near
real-time intrusion detection. The proposed architecture is
twofold. The first, stream-based, is responsible for performing
the near real-time intrusion detection, executing the feature
extraction and classification. The second, batch-based, is
responsible for updating the underlying ML models through
the proposed multi-objective feature selection technique.

In summary, the main contributions of this paper are:

 A network traffic dataset spanning five years of real
and labeled network traffic is provided. The dataset,
the first of its kind, which comprises over 20 TB of
data and ~300 billion of network packets, is the first
that enables the evaluation of the reliability over time
of ML-based techniques;

 We experimentally show how network traffic
behavior changes affect the current ML-based
approaches for intrusion detection along the time.
The evaluation results, not experimentally performed
in the literature, show that current approaches are
unfeasible for near real-time detection of intrusion
attempts in high-speed networks (big data content
processing) due to their low model lifespan;

 We propose a novel multi-objective feature selection
technique aimed at increasing the ML model lifespan.
The proposed approach is able to increase the period
in which the ML model is reliable, in other words, it
maintains the accuracy rates obtained in the test
phase for longer periods of time;

 We propose and evaluate an architecture comprising
near real-time detection and a building technique
feasible for intrusion detection in big data settings.
Using ML models with longer lifespans, our
technique can achieve higher detection throughputs
while maintaining accuracy for longer periods of
time.

The remainder of this paper is organized as follows.
Section II presents the challenges that big data settings pose to
ML-based intrusion detection techniques. Section III
addresses related works. Section IV describes the novel
intrusion detection dataset and evaluates traditional ML-based
techniques regarding the model lifespan. Section V describes
our proposed intrusion detection architecture and the novel
multi-objective model-building technique. Section VI
evaluates our proposal. Finally, Section VII concludes our
work.

II. INTRUSION DETECTION AND BIG DATA

Big data settings pose significant challenges to traditional
intrusion detection mechanisms. This section further describes
the typical ML-based intrusion detection schemes and how big
data impacts them.

A. Extraction of intrusion behavior from network data

Network-based intrusion detection systems (NIDSs)
perform detection according to the intruder behavior gathered
from the network data content. For instance, network data
content can be made of packets or network logs, such as
NetFlow records, among others. In general, a huge amount of
network packets (big data settings) arrives in a disorderly
manner. In other words, the network packets must be
preprocessed before being handled by a NIDS engine.

During the preprocessing, fields of interest must be
selected and parsed; only then can they be provided to a
feature extraction module. The goal of the feature extraction
module is to extract features; in fact, a vector of network
behaviors is called a features vector. The networking event is
aiming to describe behavior by a feature vector, which can
then be evaluated and classified by an ML algorithm.

Usually, a single event (e.g., a network packet) does not
enable a proper behavior characterization required for feature
extraction because several packets typically comprise a
network communication (message flow). In general, network-
based attacks only differ from normal behavior when several
packets are analyzed together. For instance, a single packet
that occurred during a flood-based DDoS attack, if evaluated
in isolation, might be either a normal client opening a
connection or an attack.

A common practice for a feature’s network extraction is to
summarize a set of packets into a time-window to allow NIDS
detection [8]. In this case, each network event is grouped
according to a selected criterion, e.g., source IP address.

Table 1 shows a typical feature set extracted from the
network data split into time-windows, building a network flow.
In the table, four distinct feature groupings establish how the
network packets are summarized in the time-window for the
feature extraction task. For instance, the Destination to Source
IP Address grouping scheme extracts the listed network
features by summarizing the network packets that occurred in
a time-window according to the destination to source IP
addresses. As a result, for each grouping, 15 features are
extracted; hence, the final feature vector comprises 60 features
(15 for each feature grouping).

TABLE 1
EXTRACTED FEATURE SET, FOR EACH FEATURE GROUPING IN

TIME-WINDOW INTERVALS FROM RAW NETWORK DATA

Features
Grouping

Network Features

So
ur

ce
 I

P
A

dd
re

ss
,

So
ur

ce
 I

P
an

d
D

es
tin

at
io

n
IP

 A
dd

re
ss

es
,

D
es

tin
at

io
n

to
 S

ou
rc

e
IP

 A
dd

re
ss

,
So

ur
ce

 to
 D

es
tin

at
io

n
IP

 A
dd

re
ss

1 Number of Packets
2 Number of Bytes
3 Average Packet Size
4 Percentage of Packets (PSH Flag)
5 Percentage of Packets (SYN and FIN Flags)
6 Percentage of Packets (FIN Flag)
7 Percentage of Packets (SYN Flag)
8 Percentage of Packets (ACK Flag)
9 Percentage of Packets (RST Flag)

10 Percentage of Packets (ICMP Redirect Flag)
11 Percentage of Packets (ICMP Time Exceeded Flag)
12 Percentage of Packets (ICMP Unreachable Flag)
13 Percentage of Packets (ICMP Other Types Flag)
14 Average Packet Size
15 Throughput in Bytes

B. Machine learning for network-based intrusion detection

In general, intrusion detection through ML-based techniques
is performed employing pattern recognition approaches [9],
which have a goal of classifying a given input into a set of
classes.

 In NIDS, pattern recognition can be performed by
classifying given network content as either normal or attack.
The classifier development task is divided into a three-phase
process: training, validation, and test.

 In the training phase, a dataset containing a set of
previously labeled events (e.g., network data content labeled
as either normal or attack), is provided to an ML algorithm
(classifier) to obtain a model. Additionally, a validation
dataset can be used to evaluate the produced model and
perform improvements (if needed) in its input, e.g., select the
best subset of features and adjust the model parameters.

 The evaluation of the resulting model through a test
dataset is performed, and the accuracy rates, such as the rates
of true-positive, true-negative, false-positive, and false-
negative instances, are measured. The accuracy rate is
measured as the ratio of instances correctly classified from the
total number of evaluated instances.

 A true-positive (TP) rate denotes the ratio of attack events
correctly classified, whereas a true-negative (TN) rate denotes
the ratio of normal events correctly classified. In contrast, a
false-positive (FP) rate denotes the ratio of normal events
misclassified as attacks, whereas a false-negative (FN) rate
denotes the ratio of attack events misclassified as benign
events.

 In general, in the literature, authors often aim at decreasing
their system FP rates, considering that a high FP rate renders
the system unreliable to the administrator, which disregards
further system alerts.

A popular approach to improve the obtained system
accuracy is to perform a feature selection technique, for
instance, through a wrapper-based approach. In this case, the
best subset of features is selected according to a given feature
selection goal, e.g., the test dataset's obtained accuracy.

Several techniques have been proposed for the feature
selection task, ranging from random subset selection [16] to
genetic search algorithms [17], which have yielded promising
results. The genetic search feature selection approach
leverages the notion of gene selection to find the best subset
of features.

The idea behind genetic search algorithms is to use a
ranking selection method to emphasize good points and a
niche method to maintain stable subpopulations of good
evolutionary features. Hence, during the feature selection task,
the classifier is used to find the obtained accuracy according
to a given subset of features. At the same time, the genetic
search algorithm emphasizes good subsets for subsequent
feature selection.

C. Network-based intrusion detection in big data settings

Big data scenarios are often characterized in 5 main aspects,
namely 5Vs, which includes Volume, Velocity, Variety,
Veracity, and Value [35]. For instance, consider a monitored
high-speed network environment. In such a case, network data
is generated at high velocity, which produces a vast amount of
volume. The monitored network data may arrive in a variety

of formats, which includes network packets, netflow records,
or even application logs. Finally, the analysis of such data
provides value, for instance, through the identification of an
intrusion, if its veracity is assured.

 In such settings, traditional computing architectures are
unable to cope with the processing demands [36]. Hence, big
data environments require novel and distributed processing
architectures, such as those provided on Hadoop ecosystem
[5].

 For instance, to overcome network-based intrusion
detection challenges in high-speed environments, several
works have proposed distributed and highly scalable intrusion
detection mechanisms [6]. In such a context, the data
capturing mechanism must be able to read the network packets
in an unstructured format from several sources (big data
settings). The feature extraction mechanism must be able to
structure the captured data and extract features in a distributed
fashion. Hence, the usage of time-window intervals for the
feature extraction task becomes challenging [10], because the
data to be processed must be distributed between several
nodes and analyzed according to its common properties, e.g.,
the source IP address (Table 1, Features Grouping). Therefore,
the data summarization for network content classification
poses a significant challenge for feature extraction.

In NIDS, an ML intrusion model is only reliable for a
small period of time, considering that the network traffic
constantly changes even in high-speed networks. However,
after the model lifespan has passed, the classifier continues to
classify events, even with an obsolete model, producing an
unreliable classification. Thus, it becomes necessary to detect
the accuracy decrease to perform the model update task.

The problem is that the administrator does not know when
accuracy decreases. As a result, model updates remain a great
challenge in ML-based NIDS, since they are needed to
perceive the accuracy decrease and repeat the classifier
development process.

Surprisingly, in related works, the focus is on distributing
the ML model into several nodes for throughput increase
purposes [11]. However, the model update task remains to be
addressed as a big challenge for NIDS deployment in big data
settings.

III. RELATED WORKS

The next subsections further describe related works that
address the tasks of Intrusion Detection Through Machine
Learning Techniques and Intrusion Detection for High-speed
Networks.

A. Intrusion Detection Through Machine Learning
Techniques

Network traffic behavior changes over time are often
neglected in the literature in which authors often assume that
periodic model updates are performed, without considering
the cost achieving such a task. For instance, Ambusaidi et al.
[20] propose an ML-based NIDS based on support vector
machine (SVM) and filter-based feature selection. In their
work, the authors show that feature selection can improve
detection accuracy.

 Pajouh et al. [21] apply a feature reduction technique to
decrease the feature set dimensionality, then naïve Bayes and

k-nearest neighbor classifiers are applied in conjunction with
the classification task.

 Wang et al. [22] apply a feature augmentation technique
to increase the feature set dimensionality. In their evaluation,
through an SVM, the authors can improve detection accuracy.

 A feature selection approach was also performed by
Shitharth et al. [23]. In their work, the authors rely on a
wrapper-based feature selection through a cuckoo search
algorithm and a neural network-based classifier for intrusion
detection. Similarly, the authors were able to improve
detection accuracy.

 In our prior work [24], a feature selection technique
through a multi-objective genetic search algorithm was
applied in the context of network-based intrusion detection,
aiming for accuracy improvement and energy consumption
decrease. The evaluation results have shown that a multi-
objective feature selection technique aids in improving
conflicting objectives.

 Feature selection techniques are widely used, aiming for
accuracy improvement. However, their applicability to
improving model lifespan is yet to be known. In addition,
related works generally do not consider the challenges that
model updates introduce to their technique. As a consequence,
the difficulties introduced by performing model updates
render their proposed approach unable to cope with the
evolving behavior of network traffic. To the best of our
knowledge, we are the first to address the model lifespan at
the model building stage.

B. Intrusion Detection for High-speed Networks

Approaches for flow measurement and classification of
massive network activities, in general, rely on pre-stored data.
For instance, in Lee and Lee [25], a Hadoop-based network
traffic monitoring and analysis system is proposed. The
authors performed the network flow extraction by mapping
the network packet files in HDFS. Their proposed approach
was able to reach 14 Gbps in a 200-node cluster. However,
their approach demanded the storage of the network packet
files. In their work, the classification was performed using a
connection threshold established through a set of Hive queries.
Consequently, the queries must be periodically updated due to
the network traffic changes over time.

Fortugne et al. [26] integrated several anomaly detectors
in a big data processing architecture for network traffic
classification. The authors applied a hash function to split the
network data into groups. Each group held an anomaly
detection model that classified network data according to the
obtained anomaly score, using a previously established
threshold. Consequently, their proposed technique did not
address the classification scheme update challenge, and the
model update task was neglected. In addition, their proposal
detection throughput is unfeasible for high-speed network
monitoring in a big data environment.

 Some authors have proposed stream processing techniques
for the measurement of massive network data. For instance, in
Baer et al. [27], a data stream warehouse for network traffic
classification is proposed. The authors relied on time windows
for incremental and continuous execution of their data queries.
In addition, their proposed technique combined an ML
framework for the classification of their exported network
features at each time window. However, their technique relied
on a supervised dataset while failing to consider the scalability

challenge of their ML algorithms and the challenge of
improving the ML model lifespan. A similar approach to the
proposal was taken by Apache Metron [28]. The tool relies on
the Apache Storm [29] processing framework to perform
feature extraction at each time window. However, the tool
demanded the storage of the occurred network activities in the
HBase for post-classification, consequently significantly
decreasing their proposal throughput.

 To the best of our knowledge, our work is the first that
does not require the storage of network events, neither for
feature extraction nor for classification. In addition, we deal
with the evolving behavior of networks in the case of high-
speed networks through a multi-objective feature selection
technique that takes into account the model lifespan at the
model building phase, thus, decreasing the ML model update
periodicity.

IV. LIFESPAN OF TRADITIONAL MACHINE LEARNING

DETECTION TECHNIQUES

Although the need for model updates for NIDS is a known
requirement, the lifespan of current detection models remains
unknown. This section evaluates the accuracy of degradation
and the model lifespan of traditional ML detection techniques.

A. Data description

An important issue to be considered in intrusion modeling
is to have a properly built training and testing dataset. A
dataset used for such a purpose must be made of network data
with real, valid, variable, publicly available, and correctly
labeled events (network packets). However, in general, to
provide such an enriched dataset, one must record real data,
making data sharing unfeasible due to privacy concerns.
Nonetheless, the evaluation of a model lifespan is even more
difficult since data must be recorded for long periods,
increasing the amount of data to be labeled and stored.

Our work has leveraged the measurement and analysis of
the WIDE Internet (MAWI) network traffic archive [12].
More specifically, it has used the MAWI Samplepoint-F, from
the MAWI archive, collected daily for a 15-min-long interval
from a transit link between Japan and the USA, therefore made
of real network traffic.

The used archive enables proper evaluation of model
lifespan and accuracy degradation, using five years of network
traffic ranging from 2012 to 2016. The built dataset comprises
over 20 TB of data from ~300 billion network packets. To
automatically label the input records, i.e., tag events as either
normal or attack, an unsupervised ML technique from
MAWILab [13] was employed.

MAWILab employs several unsupervised machine
learning algorithms to find anomalies in MAWI data, which
do not demand individual event labels. The anomalies found
are tagged as an attack, whereas the remaining data is assumed
to be normal. The feature extraction algorithm (explained in
Section V) groups events in a 15-second time-window interval,
while extracting the feature set shown in Table 1.

B. Accuracy behavior over time

The first evaluation aims at assessing the ML model
accuracy over time through the built dataset. Due to the
imbalanced nature of the dataset (only ~2% of instances are
samples of attack), a random under-sampling without
replacement was performed in the training data. Hence, the

data distribution used for training purposes is equally
distributed between the classes.

The total amount of data, ~20 TB, is used for evaluation
purposes. To properly evaluate the network traffic behavior
and the change impact on the ML model, the classifier is
trained through the first dataset month (January 2012) and
then evaluated throughout the remaining five years without
model updates.

Four widely used ML algorithms in big data settings were
evaluated: random forest (RF), decision tree (DT), boosting
and bagging. The selected set of ML algorithms were defined
due to the vast amount of data in the used dataset, which
renders more complex training and classification ML
techniques unfeasible for real-time classification of network
traffic.

The RF, boosting, and bagging algorithms were each built
with 100 decision trees as their base learners. The DT
classifier was implemented through the C4.5 algorithm, with
a confidence factor of 0.25. The classifiers were built with and
without feature selection.

The wrapper-based genetic search algorithm was used as
a feature selection method, with a mutation probability of 3.3%
and a crossover probability of 60%, executed with 100
generations with 100 populations each. The feature selection
algorithm used the accuracy as a fitting parameter, as
measured through the validation dataset, a common approach
in the literature. The classifiers were built on top of Weka API
version 3.8 [34] and were evaluated in a distributed manner
through Apache Flink framework version 1.8.1 [31]. The
classifiers were evaluated based on their TP and TN rates,

being the ratios of attacks and normal events correctly
classified, respectively.

It is important to note that as the system considers a two-
class scenario, the FP and FN rates can be measured as the
opposite of the TN and TP rates, respectively. Consequently,
a low TN rate denotes a high FP rate, while a low TP rate
denotes a high FN rate.

Figure 1 shows the accuracy behavior of the evaluated
classifiers with and without feature selection. It is notable that
when model updates are not performed, the model accuracy
decreases for all the evaluated classifiers, with or without
feature selection being made.

Surprisingly, significant decreases can be found within a
few months after training. For instance, the RF classifier TP
rate decreased by 11% in the first month following the training
phase. Be that as it may, the accuracy continues to decrease as
time passes, reaching only 19% for the RF, in the worst TP
rate in November 2015, i.e., a 61% decrease from the rate
obtained at the test phase, in January 2012.

The TN rate does not significantly decrease over time; in
contrast, it even improves in May 2013 for the majority of the
evaluated classifiers. Such accuracy behavior variation, a
significant decrease in the TP rate, and a slight decrease or
improvement in the TN rate shows that the built model is no
longer reliable. The accuracy rates obtained at the test phase
(January 2012) can no longer rely on only months after a
training period.

It is worth noting that feature selection does not positively
impact ML model accuracy over time (Figure 1-e to 1-h)

FIGURE 1
ACCURACY BEHAVIOR OF SEVERAL ML ALGORITHMS WITH AND WITHOUT FEATURE SELECTION OVER A 5-YEAR RANGE.

(a) Random Forest without feature
selection

(b) Decision Tree without feature
selection

(c) Boosting without feature
selection

(d) Bagging without feature
selection

(e) Random Forest with feature
selection

(f) Decision Tree with feature
selection

(g) Boosting with feature selection

(h) Bagging with feature selection

compared to its counterpart using all features (no feature
selection). We further investigate the accuracy tradeoff in
Figure 2, which shows the RF accuracy over time with and
without the traditional feature selection being made. It is
possible to note that traditional feature selection has little or
no impact on the final ML model lifespan, which, in general,
improves the TP rate by only 0.1% over the evaluated five
years of our built dataset.

Finally, we also investigate the relation between model
lifespan and average accuracy to better understand the impact
of model update periodicity in the ML model. We evaluated
the accuracy behavior according to the model update
periodicity in 2016, as obtained through the RF classifier with
all features.

The goal of the evaluation is to confirm if the accuracy
decrease over time (shown in Figure 1) is related to the
model's age. In other words, to confirm if the network traffic
behavior is causing the accuracy decrease. Figure 3 shows the
relation between the model update periodicity (model lifespan)
and the average accuracy in 2016 for the RF classifier. A direct
relation is notable between model update periodicity and
model accuracy for up to 21 days of the model lifespan. That
means it is possible to increase the system accuracy if model
updates are performed regularly every 3 weeks or more. In
addition, if a higher accuracy rate is desired, one must update
the ML model more often. For instance, a daily updated model
can reach ~91% accuracy, almost a 5% accuracy increase
when compared to a weekly updated model.

C. Discussion

 Over the last few years, proposed ML-based intrusion
detection schemes have disregarded the challenge of network
traffic changes over time. This built dataset is a breakthrough
toward the proper evaluation of ML-based intrusion detection
schemes. To the best of our knowledge, it is the first dataset
made of real network traffic, previously labeled, publicly
available, and comprising many years of network traffic
behavior.

 The evaluation performed through our built dataset has
shown that current ML-based intrusion detection schemes are
unable to cope with the evolving behavior of network traffic,
even when feature selection is made.

 Current approaches significantly decrease their accuracy
within weeks after the training period (Figure 1). Therefore,
ML-based schemes must be updated regularly, making their
applicability in real-world environments more challenging.

 The periodic model has a direct impact on model accuracy
over time (Figure 3). However, the model update task is a
challenging process, particularly in big data settings. The data
to be used must be stored and labeled, and only then can the
training be performed. The training task is, in general, a highly
computationally expensive process, which can demand days
or even weeks of analysis of TB-scale data.

 To enable the reliable usage of proposed intrusion
detection schemes, the building of ML models with longer
lifespans becomes imperative. Therefore, ML-based
techniques must be able to withstand long periods without
model updates. In other words, techniques must be able to
remain reliable, even after a long period since the last model
retraining.

 It is important to note that such characteristics are often
not given proper care. In general, proposed techniques are
evaluated concerning their attained accuracy rate during the
test phase, without taking into account the challenges that the
changes in network traffic behavior over time pose to their
proposed scheme.

V. LONG-LASTING INTRUSION DETECTION ARCHITECTURE

FOR BIG DATA ENVIRONMENTS

In order to address the evolving behavior of network traffic
over time while also performing the intrusion in near real-time
in big data environments, we propose a Long-Lasting
Intrusion Detection Model. The proposed model is
implemented in a twofold manner.

First, we address the ML model lifespan through a multi-
objective feature selection technique. The proposal insight is
to take into account the model lifespan at the feature selection
stage, aiming to increase the model lifespan with no
significant side-effect on accuracy.

The proposal leverages a multi-objective feature selection
technique with two main goals: accuracy and model lifespan.
The accuracy objective aims to improve the model accuracy
in a test dataset, which is the common approach used in the
literature. In contrast, the model lifespan objective is to

FIGURE 3
MODEL LIFESPAN (UPDATE PERIODICITY) AND AVERAGE

ACCURACY FOR AN RF CLASSIFIER IN 2016

FIGURE 2
RF ACCURACY TRADEOFF OVER TIME WITH AND WITHOUT

FEATURE SELECTION

decrease the model update periodicity, and it takes into
account the impact of the selected subset of features on model
lifespan. As a consequence, the proposed model building
technique can increase the model lifespan while maintaining
or even improving the system accuracy.

Second, we propose a distributed intrusion detection
architecture comprising both batch and stream processing
environments. The goal is to perform near real-time intrusion
detection through stream processing techniques while also
provide updated ML models through the batch processing
environment. In other words, the stream processing enables
our architecture to detect intrusion attempts in big data
environments in near real-time, whereas the batch processing
environment periodically provides an updated ML model for
the stream processing side.

The main aspects addressed by the proposed long-lasting
intrusion detection architecture for big data settings are shown
in Figure 4. The next subsections describe each stage in detail.

A. Architecture data flow

The proposed architecture acquires network data from
monitored network devices (Figure 4, Network Device), such
as routers, switches, servers, and other network hardware or
devices exposed to network attacks.

The network data comprises network events of interest,
such as network packets, netflow records, or network logs.
Afterward, the Data Ingestion module (Figure 4) acts as a
middleware between the proposed architecture and the
network devices. Its goal is to handle the communication
between the various monitored devices and ensure the proper
handling of messages, providing a single interface between
the unstructured data and the proposed architecture.

As the data is acquired, the Data Preprocessing module
(Figure 4, Data Preprocessing) reads it in near real-time for
both the Real-time Intrusion Detection and Offline Intrusion
Model Update modules.

In the Real-time Intrusion Detection module, the ingested
data is forwarded for further processing in near real-time. The
data is sequentially distributed and processed by the Feature
Extraction, Detection, and Alert modules (Figure 4).

The ingested data can also be used for model update
purposes and is forwarded to the Offline Intrusion Model
Update module. In this case, the collected data is stored in the
Distributed File System until the model update periodicity has
passed, triggering the model update procedure. In turn, the
procedure is run by the Data Preprocessing, Dataset
Labeling, and Model Building modules (Figure 4), which,
when a new model is built, update the Detection module.

B. Real-time Intrusion Detection

Despite the need for an ML model that properly classifies
network events, the alarms must be generated on time, aiming
to enable the proper handling of intrusion attempts while also
helping reduce the damage when an attack is occurring.
Therefore, ingested data must be classified as soon as possible
by the Real-time Intrusion Detection module, which aims to
detect network attacks in near real-time. The module is
deployed as a stream processing big data architecture. The
processing flow is performed as an acyclic graph flow. Each
module is deployed in several processing worker nodes. Thus,
the processing flow becomes scalable, providing a higher
detection throughput.

During the processing flow, data arrives for preprocessing
and is processed until it can be properly handled. The
processing flow consists of the following tasks: Data
Preprocessing, Feature Extraction, Detection, and Alert
modules, each replicated in several workers' nodes (Figure 4).

The Data Preprocessing module receives unstructured
input data from monitored devices and properly structures
them for further processing. In other words, the module
receives data in a variety of formats (e.g., network packets,
logs, NetFlow records) and structures them into a single,
known format.

As soon as data is structured, it is forwarded to both the
Feature Extraction and Offline Intrusion Model Update
modules. In the former, the real-time processing flow is
continued for proper classification and reporting. In
contrast, in the latter, data is stored until the model lifespan
has passed and a model update is required.

For the classification, feature extraction must be
performed. The structured data is forwarded to the Feature
Extraction module grouped according to its properties. For
instance, the data with the same source IP address is forwarded

FIGURE 4
LONG-LASTING INTRUSION DETECTION ARCHITECTURE FOR BIG DATA SETTINGS

to the same feature extraction worker node for proper data
value summarization.

Data summarization is performed according to the features
grouping (Table 1, Features Grouping). Nevertheless, data
must be grouped in time-intervals. Therefore, the feature
extraction exports the extracted feature set following a time-
interval rule.

Finally, after the proper feature extraction, the
classification can be performed in near real-time. Each
Detection module holds a separate ML model. The goal is to
increase detection throughput, considering that, in general,
detection is orders of magnitude faster than training.

By replicating the model across multiple workers, it is
possible to achieve a higher detection throughput than when
using a single distributed model. After the proper detection of
a network intrusion attempt, the alarm is forwarded to an Alert
module. That module, in turn, sends the event to a reporting
engine that provides the detailed detection report to the end-
user. In this case, it is typically made of a graphical dashboard,
data analytics engines, and other tools for better
comprehension of the found intrusion attempt.

C. Offline Intrusion Model Update

In general, the ML training phase demands a great amount of
time to properly learn behavior from the input event samples.
In addition, in big data settings, the demanded time and
required processing infrastructure for training significantly
increase. The processing infrastructure for training involves
ML algorithms, parameter optimization, feature selection, and
model testing. Besides the execution of the IDS in near real-
time, the ML model must be periodically updated offline.
Consequently, the Offline Intrusion Model Update module is
deployed as a batch processing architecture. The processing
flow is executed sequentially and divided among several
processing worker nodes.

Initially, the preprocessed data produced in near real-time
by the stream processing side is stored in the Distributed File
System to enable further processing. Afterward, at the end of
each model lifespan, the model update process is performed.

The model lifespan must be established according to the
administrator's discretion. For instance, one may use a lower
model lifespan as an attempt to increase system accuracy.
Others may use a higher model lifespan to decrease the
processing costs. Therefore, the model lifespan must be
established considering such tradeoff, as shown in Figure 3,
through a traditional model building technique.

When the model update process takes place, the first
performed task is in the Dataset Preprocessing module, which
performs the feature set extraction and addresses incomplete
data and outliers [29]. The preprocessed data is then handled
by the Dataset Labeling module since, due to the vast amount
of data, labeling cannot be performed by an expert; therefore,
an automatic process must be performed. For instance, an
unsupervised ML algorithm [30] can be used to identify
anomalies.

As soon as data is preprocessed and correctly labeled, it is
handled by the Model Building module that selects the
appropriate feature set, customizes parameters, and trains and
tests the model. Finally, at the end of the training phase, the
new and updated model is forwarded to the Real-Time

Intrusion Detection module, more specifically, the Detection
module.

The model is then replicated in several worker nodes,
improving the system throughput, i.e., maintaining the
obtained system accuracy during the test phase in production
deployment.

D. Building models with longer lifespans

In the state-of-art, current model building techniques do not
take into account the model lifespan at the training phase. That
happens mainly because proposals in the literature do not have
a properly built training dataset that spans for long periods (see
Section III). In contrast, our architecture evaluates the model
lifespan and takes it into account during the feature selection
task. However, to provide a high detection accuracy, during
feature selection, the model lifespan is coupled with detection
accuracy in a multi-objective feature selection process.

The model building process is performed through a multi-
objective feature selection technique with two objectives,
namely accuracy and model lifespan. The objectives are
computed through Eq. 1 and Eq. 2, in which N denotes the
number of evaluated events, TP the number of true positives,
and TN the number of true negatives.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
 (1)

𝑚𝑜𝑑𝑒𝑙 𝑙𝑖𝑓𝑒𝑠𝑝𝑎𝑛 =
𝑇𝑃 + 𝑇𝑁

𝑁
 (2)

The accuracy goal is computed using Eq. 1. In this case,
the goal is to improve the detection accuracy in a specific
period (period i). For instance, improve detection accuracy in
the period from the 1st day to the 15th day of January 2012. On
the other hand, the model lifespan goal is computed through
Eq. 2. It aims at improving detection accuracy in the period
following the accuracy computation period (period i + 1). For
instance, improve detection accuracy in the period between
the 15th to 30th day of January 2012. In other words, the
accuracy goal improves detection accuracy in a specific
period in time, whereas the model lifespan goal improves
detection accuracy in the period following training time,
aiming to improve model lifespan.

Our model building technique trains the model using the
first half period of the training dataset and evaluates the model
using the second half of that period. For instance, in a dataset
comprising 30 days of network data, the first 15 days are used
for training and accuracy computation (Eq. 1), whereas the
remaining 15 days are used for model lifespan evaluation (Eq.
2).

The accuracy obtained in the last days is used as a model
lifespan measure. However, to measure accuracy, the model
is built and evaluated using five years. Consequently, the
produced model contains information over the whole training
period and has a higher expected model lifespan because we
considered both model accuracy and expected lifespan during
the feature selection task.

The built model is expected to last longer while also
providing a higher detection accuracy. One must note that
detection accuracy may present a conflicting objective to
model lifespan. For instance, one may increase model
accuracy by overfitting it for a specific period, and as a
consequence, decreasing the model accuracy after such period,

i.e., model lifespan. Therefore, the selected accuracy and
model lifespan tradeoff must be selected according to the
administrator's needs.

E. Discussion

Current approaches for network-based IDSs are not able to
cope with the network traffic behavior changes over time
(Section III) and high-speed networks. In fact, in general, the
model lifespan is not even evaluated. As a consequence, when
ML-based techniques are deployed in production
environments, the ML model quickly becomes outdated, and
a new model must be built, which demands expert intervention
and wastes time.

 The proposal takes into account both model accuracy and
model lifespan. It achieves its goal by considering a specific
period for evaluating the current model accuracy and the
following period for evaluating the model lifespan. As a result,
by considering the model lifespan during the model building
stage, we can improve the expected model lifetime, decreasing
the needed periodicity for model updates.

To overcome the challenge of ML-based IDSs in high-
speed networks, we propose a twofold architecture, composed
of real-time intrusion detection and offline intrusion model
updates. The former handles IDSs in near real-time through a
distributed stream processing architecture. The latter handles
the periodic model updates, employing the aforementioned
multi-objective feature selection approach to provide ML
models with longer lifespans. Therefore, in summary, the
proposed architecture performs intrusion detection in near
real-time while also handling model updates aiming for a
higher model lifespan.

VI. PROTOTYPE

A proposal prototype was implemented and deployed in a
distributed environment, as shown in Figure 5. The prototype
is implemented on top of Apache Flink [31] processing
framework, version 1.8.1, due to its capability to operate in
both batch and stream processing conditions.

On the stream processing side, the prototype takes as input
network packet headers from the MAWI archive [12], those
stored in HDFS [32] version 3.2.1. The network packet
headers are continuously read and sent to an Apache Kafka
[33] topic, version 2.3.1, which acts as the proposal data
ingestion mechanism (Figure 3). Meanwhile, the Data
Preprocessing module reads the Apache Kafka topic and
further processes it, forwarding it to the Feature Extraction,
and then the Detection modules.

The proposal time-window mechanism was implemented
for the feature extraction task using the native Apache Flink
windowing mechanism (default: 15 seconds). The feature
grouping (Table 1) was realized using the Apache Flink
KeySelector interface. Finally, the Detection module executes
the underlying machine learning algorithm through the Weka
API [34].

On the batch processing side, a batch job is periodically
invoked, according to a given model lifespan periodicity. In
such a situation, the Data Preprocessing module reads the raw
network data stored on the HDFS, performs the feature
extraction, and forwards the feature vector to the Dataset
Labeling module. That module, in turn, labels the feature
vectors according to the MA WILab [26] label files, which are

provided in an XML format. Finally, the labeled feature
vectors are used to build a new model.

The proposed multi-objective feature selection is
performed through the NSGA-II [15] genetic search algorithm
that computes the desired objectives, according to Eq. 1 and
Eq. 2, and outputs an updated model. The final built model is
then written to a file and read by the Detection module, which
is performed in near real-time.

The proposal's parallelism operators were set according to
the number of workers nodes used in our experimental
evaluation.

VII. EVALUATION

The evaluation of our proposal was performed in two steps.
First, we evaluated the technique for multi-objective feature
selection that aims for a higher model lifespan. Second, we
evaluated the scalability.

The performed evaluations aim at answering four research
questions: i) What is the accuracy and model lifespan tradeoff?
ii) How good is our long-lasting model building technique at
improving model lifespan? iii) How often must the model be
updated to provide reliability? iv) Is the proposed architecture
processing throughput scalable?

A. Accuracy and Model Lifespan

The first evaluation comprises the accuracy and model
lifespan improvement. To evaluate our proposed model, only
the RF classifier was used, through the dataset introduced in
Section III, as the other evaluated classifiers presented similar
results. Similarly, the same set of parameters from Section III
were used. Thus, the RF used 100 decision trees as its base-
learner.

For building models with longer lifespans, the multi-
objective feature selection algorithm NSGA-II was used [15];
at each model update, 100 generations with 100 populations,
a mutation probability of 3.3%, and a crossover probability of
60% are used to find the best subset of features. A C++
program was implemented on top of the NSGA-II algorithm.
The batch program is invoked by our prototype (detailed in

FIGURE 5
PROPOSAL PROTOTYPE ARCHITECTURE

Section VI) periodically. At each execution, the program
selects a subset of features, as computed by the NSGA-II
algorithm, builds an ML model through Weka API [34], and
computes both accuracy (Eq. 1) and model lifespan (Eq. 2).

During model updates, the last past 30 days are used for
model building. To evaluate the model accuracy (Eq. 1), only
the first 15 days are used for training, while the remaining are
used for the evaluation of the model li fespan (Eq. 2). For
instance, if the model is updated in the last day of January
2012, the data that occurred between the 1st and 15th days are
used for training, and data from the 16th to 30th are used for
feature selection/testing.

For comparison purposes, the NSGA-II was also executed
using a single-objective, in this case, accuracy, which is the
traditional method used in the literature, using only the
computation process from Eq. 1.

The evaluations were performed using an RF classifier
with 100 decision trees as its base-learner. At each model
update, a random undersampling without replacement
procedure is performed due to the imbalanced nature of the
dataset.

To answer the question (i), the first evaluation aimed at
establishing the tradeoff between model lifespan and
accuracy. Figure 6 shows the multi-objective tradeoff, for
monthly model updates, between both feature selection

objectives taking into account three periods (January 2012,
January 2013, and January 2014); similar results were found
at each model update.

It is possible to note a clear tradeoff between accuracy and
model lifespan. For instance, in January 2012, one is able to
increase model lifespan by 10% with a 10% accuracy tradeoff
(Figure 5-a, Lifespan Error Rate versus Test Dataset Error
Rate). Therefore, to increase the model lifespan, although not
significant, an increase in error rate must be tolerated.

When used in production, one must evaluate whether a
higher frequency of model updates is needed or if the
accuracy may be decreased but with a lower model update
frequency.

To answer the question (ii), we evaluate the relation
between model update frequency and accuracy over five
years. To achieve such a goal at each model update, we select
the average operation point when both objectives are close to
zero, obtained from the NSGA-II, and build a new RF model.

The comparison between our proposed technique and the
traditional feature selection approach is shown in Figure 7. It
is notable that our multi-objective feature selection technique
significantly improves the model lifespan and accuracy
tradeoff when compared to traditional approaches (single
objective, using only accuracy as the objective). For example,
our model building technique was able to provide 90%
accuracy with a model lifespan of three weeks, whereas the
single selection approach only maintained the same accuracy
with a model lifespan of one week, illustrating a model
lifespan improvement of two weeks.

Therefore, our approach was able to build models with
improved lifespans when compared to a traditional building
technique. For instance, considering a two-week model
lifespan, our technique experiences only a 1% accuracy
decrease, while the accuracy of the traditional approach drops
by 5%. Thus, the accuracy drops when model updates are
performed less frequently is not as significant as in the
traditional approach. That behavior can be observed for up to
six weeks of model lifespan, which only degrades the system
accuracy by 4% when compared to a weekly updated model.

It is notable that current approaches, which only consider
accuracy at the test period, significantly decrease the model

FIGURE 6
MULTI-OBJECTIVE FEATURE SELECTION TRADEOFF BETWEEN MODEL LIFESPAN AND MODEL ACCURACY FOR THE THREE FIRST

YEARS IN THE BUILT DATASET

(a) January 2012 (b) January 2013 (c) January 2014

FIGURE 7
MODEL LIFESPAN AND ACCURACY THROUGHOUT TIME

lifespan impacting the system accuracy. In contrast, when
considering the model lifespan during feature selection, one
can increase the model lifespan for up to six weeks (Figure 7,
proposed technique model lifespan of eight weeks versus
traditional technique model lifespan of two weeks).

We have also evaluated the obtained accuracy through the
proposed multi-objective technique throughout the five years.
Figure 8 shows the accuracy of the proposed approach when
monthly model updates are performed (Figure 6, model
lifespan of four weeks). It is notable that our proposed
approach can maintain its accuracy over time (~90%), a
significant improvement from the traditional approach that
experiences a significant decrease in accuracy only weeks
after the training period.

To answer the question (iii), one must consider the desired
accuracy rates, given the model accuracy decreases over time
for network attack classification. Therefore, one must always
take into account the ‘age’ of the classification model when
performing IDSs. In other words, higher accuracy over time
demands higher model update frequency. For instance, to
reach 90% accuracy, one must perform model updates every
three weeks, whereas to reach 84%, the model can be updated
once every eight weeks (Figure 7).

The improvement in the relation between model lifespan
and accuracy provided by our multi-objective feature
selection technique significantly improves the ML-based IDS
deployment in the production environment. That is because
the system administrator is now able to properly establish the
model lifespan and improve it when model updates cannot be
performed frequently.

B. Scalability

To answer question (iv), the architecture throughput was
evaluated during deployment using our 11-node cluster. The
classification throughput was evaluated according to the Real-
time Intrusion Detection module, considering that the model
update task is typically performed offline. The architecture
was deployed using 11 nodes, each with a 2-core CPU, 8 GB

of memory, and an Ubuntu 18.04 OS. Out of the 11 nodes, ten
were used as worker nodes (Figure 5, Task Manager) while
the remaining node was responsible for the infrastructure
management, acting as the master node (Figure 5, Job
Manager). For each evaluation, the architecture was executed
for 30 minutes, while its throughput was measured according
to the network packet ingestion rate (Figure 5, Data Ingestion
to Data Preprocessing)

Figure 9 shows the proposal scalability when varying the
number of used worker nodes to perform near real-time
intrusion detection. It is notable that our proposed approach
can increase its throughput according to the number of
available worker nodes. For instance, when deployed in a 10-
worker node cluster, our proposal can reach up to 10.75 Gbps
detection throughput, as opposed to a 5.67 Gbps detection
throughput when deployed in a 5-worker node cluster.

In summary, each added worker node increases our
architecture detection throughput by 1.07 Gbps on average,
showing that when deployed in a distributed processing
environment, our approach can scale-up its detection
throughput, thus being feasible for high-speed networks.

VIII. CONCLUSION AND FUTURE WORK

In recent years, the state-of-the-art of the model update task in
ML-based IDSs has been neglected by the research
community. In this work, we have tackled the problem of ML
model's lifespan in big data environments.

 We have experimentally shown, through five years of real
network data, that current and widely used techniques
available in the literature significantly lose accuracy over time,
within weeks following the training time. As a consequence,
ML-based intrusion detection techniques presented models
with low lifespans, unable to cope with the inherent changes
of network traffic behavior over time.

Our work proposed and evaluated a novel long-lasting
intrusion detection architecture for big data environments. The
proposed architecture, implemented in a twofold processing
model: batch and streaming, was able to provide near real-
time scalable intrusion detection while also solving the
problem of low lifespans of intrusion detection models.
Concerning proposal scalability, we showed that our
architecture could be deployed in big data settings while
demanding significantly fewer model updates over time.

FIGURE 8
RF ACCURACY THROUGHOUT 5 YEARS WITH MONTHLY
UPDATES AND MULTI-OBJECTIVE FEATURE SELECTION

FIGURE 9
PROPOSAL SCALABILITY ACCORDING TO THE NUMBER OF

USED WORKER NODES

As future work, we will consider the improvement of the
intrusion detection models' lifespan by combining hybrid
detection architecture, coupling batch techniques, and stream
learning techniques.

The used dataset throughout the paper experiments,
namely MAWIFlow, is publicly available for download in
https://secplab.ppgia.pucpr.br/mawiflow.

ACKNOWLEDGMENT

This work was partially sponsored by Coordination for the
Improvement of Higher Education Personnel (CAPES), grant
99999.008512/2014-0, and the Brazilian National Council for
Scientific and Technological Development (CNPq) for their
partial financial support (grant nº 430972/2018-0).

REFERENCES

[1] Cisco, “Cisco Visual Networking IDSex: Forecast and Trends, 2017–
2022”, VNI Global Fixed and Mobile Internet Traffic Forecasts, 2019.

[2] R. Sommer and V. Paxson, “Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection,” 2010 IEEE Symp.
Secur. Priv., vol. 0, no. May, pp. 305–316, 2010.

[3] C. Gates and C. Taylor, “Challenging the Anomaly Detection
Paradigm: A Provocative Discussion,” Proc. 2006 Work. New Secur.
Paradig., pp. 21–29, 2007.

[4] S. Xu, Y. Qian, and R. Q. Hu, “Data-Driven Network Intelligence for
Anomaly Detection,” IEEE Netw., vol. 33, no. 3, pp. 88–95, 2019.

[5] E. Viegas, A. Santin, A. Bessani, and N. Neves, “BigFlow: Real-time
and reliable anomaly-based intrusion detection for high-speed
networks,” Futur. Gener. Comput. Syst., vol. 93, pp. 473–485, 2019.

[6] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and
Big Heterogeneous Data: a Survey,” J. Big Data, vol. 2, no. 1, pp. 1–
41, 2015.

[7] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio
Hashem, E. Ahmed, and M. Imran, “Real-time big data processing for
anomaly detection: A Survey,” Int. J. Inf. Manage., vol. 45, no.
February 2018, pp. 289–307, 2019.

[8] A. Baer et al., “DBStream: A holistic approach to large-scale network
traffic monitoring and analysis,” Comput. Networks, vol. 107, pp. 5–
19, 2016.

[9] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine
Learning Methods for Cyber Security Intrusion Detection,” IEEE
Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[10] M. A. Faisal, Z. Aung, J. R. Williams, and A. Sanchez, “Data Stream-
based Intrusion Detection System for Advanced Metering
Infrastructure in Smart Grid : A Feasibility Study,” IEEE Syst. J. (in
Press., vol. 9, no. April, pp. 1–14, 2013.

[11] X. Meng et al., “MLlib: Machine Learning in Apache Spark,” Journal
of Machine Learning Research. vol. 17, pp. 1–7, 2015.

[12] “MAWI Working Group Traffic Archive.” [Online]. Available:
http://mawi.wide.ad.jp/mawi/samplepoint-F/. Last Access: June 1,
2020.

[13] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab:
Combining Diverse Anomaly Detectors for Automated Anomaly
Labeling and Performance Benchmarking,” Proc. 6th Int. Conf. - Co-
NEXT ’10, pp. 1–12, 2010.

[14] P. Carbone et al., “Apache Flink: Stream and Batch Processing in a
Single Engine,” Bulletin of the IEEE. vol. 36, 2015.

[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182–197, 2002.

[16] G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 16–28, 2014.

[17] P. Hajela and C. Y. Lin, “Structural Optimization Genetic search
strategies in multicriterion optimal design,” Structural Optimization,
vol. 4, pp. 99–107, 1992

[18] J. Peng, K. K. R. Choo, and H. Ashman, “User profiling in intrusion
detection: A review,” J. Netw. Comput. Appl., vol. 72, pp. 14–27,
2016.

[19] C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Syst. Appl., vol. 36, no. 10, pp.
11994–12000, 2009.

[20] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,”
IEEE Trans. Comput., vol. 65, no. 10, pp. 2986–2998, 2016.

[21] H. H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, and K. K. R.
Choo, “A Two-Layer Dimension Reduction and Two-Tier
Classification Model for Anomaly-Based Intrusion Detection in IoT
Backbone Networks,” IEEE Trans. Emerg. Top. Comput., vol. 7, no.
2, pp. 314–323, 2019.

[22] H. Wang, J. Gu, and S. Wang, “An effective intrusion detection
framework based on SVM with feature augmentation,” Knowledge-
Based Syst., vol. 136, pp. 130–139, 2017.

[23] S. Shitharth and D. Prince Winston, “An enhanced optimization based
algorithm for intrusion detection in SCADA network,” Comput.
Secur., vol. 70, pp. 16–26, 2017.

[24] E. Viegas, A. O. Santin, A. Franca, R. Jasinski, V. A. Pedroni, and L.
S. Oliveira, “Towards an energy-efficient anomaly-based intrusion
detection engine for embedded systems,” IEEE Trans. Comput., vol.
66, no. 1, 2017.

[25] Y. Y. Lee and Y. Y. Lee, "Toward scalable internet traffic
measurement and analysis with Hadoop," SIGCOMM Comput.
Commun. Rev., vol. 43, no. 1, pp. 5-13, 2012.

[26] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, "MAWILab:
Combining Diverse Anomaly Detectors for Automated Anomaly
Labeling and Performance Benchmarking," Proc. 6th Int. Conf. - Co-
NEXT '10, pp. 1-12, 2010.

[27] A. Bar, A. Finamore, P. Casas, L. Golab, and M. Mellia, "Large-scale
network traffic monitoring with DBStream, a system for rolling big
data analysis," 2014 IEEE Int. Conf. Big Data (Big Data), pp. 165-170,
2014.

[28] Apache Metron. [Online]. Available: http://metron.apache.org/.

[29] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier Detection for
Temporal Data: A Survey,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 9, pp. 2250–2267, 2014.

[30] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” Commun. Surv.
Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[31] Apache Flink. [Online]. Available: https://flink.apache.org/.

[32] HDFS Architecture Guide. [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html. Last Access:
June 1, 2020.

[33] Apache Kafka [Online]. Available: https://kafka.apache.org/. Last
Access: June 1, 2020.

[34] WEKA [Online]. Available: https://www.cs.waikato.ac.nz/ml/weka/.
Last Access: June 1, 2020.

[35] H. Hu, Y. Wen, T. S. Chua, and X. Li, “Toward scalable systems for
big data analytics: A technology tutorial,” IEEE Access, vol. 2, pp.
652–687, 2014.

[36] W. L. Chang, and N. Grady. “NIST Big Data Interoperability
Framework: Volume 1, Definitions” NIST Special Publication (NIST-
SP). Report n. 1500-1r2, pp 1-53, 2019.

Eduardo Viegas received the BS degree in
computer science in 2013, the MSC degree in
computer science in 2016 from PUCPR, and the
PhD degree from PUCPR in 2018. He is an
associate professor of Graduate Program in
Computer Science (PPGIa). His research interests
include machine learning, network analytics and
computer security.

Altair Olivo Santin received the B.S degree in
Computer Engineering from Pontifical
Catholic University of Paraná in 1992, the MSc
degree in Electrical Engineering and Industrial
Computer from the Technological Federal
University of Paraná in 1996, and the PhD
degree in Electrical Engineering from Federal
University of Santa Catarina – Brazil, in 2004.
He is full professor of Computer Science at
Pontifical Catholic University of Paraná. His
research interests in Computer Security include
usage and access control models and
mechanisms for distributed systems, Web
Services and Cloud Computing Security,
Intrusion Detection Systems and Digital

forensics. Prof. Santin is member of the IEEE, ACM, and the Brazilian
Computer Society.

Vilmar Abreu Jr received the BS degree in
computer science in 2011, the MSC degree in
computer science in 2016 from PUCPR, and the
PhD degree from PUCPR in 2019. His research
interests include cloud computing, system
security, and access control.

.

