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Abstract—Despite the promising results of machine learning
for network-based intrusion detection, current techniques are not
widely deployed in real-world environments. In general, proposed
detection models quickly become obsolete, thus, generating un-
reliable classifications over time. In this paper, we propose a new
reliable model for semi-supervised intrusion detection that uses
a verification technique to provide reliable classifications over
time, even in the absence of model updates. Additionally, we cope
with this verification technique with semi-supervised learning to
autonomously update the underlying machine learning models
without human assistance. Our experiments consider a full year
of real network traffic and demonstrate that our solution main-
tains the accuracy rate over time without model updates while
rejecting only 10.6% of instances on average. Moreover, when
autonomous (non-human-assisted) model updates are performed,
the average rejection rate drops to just 3.2% without affecting
the accuracy of our solution.

Index Terms—Intrusion Detection, Machine Learning, Classi-
fication Reliability, Semi-Supervised Co-Learning.

I. INTRODUCTION

In 2019, network-based attacks occurred 84% more fre-

quently [1], while also significantly increased their bandwidth

consumption, in some cases reaching hundreds of GB/s [2].

For instance, in 2018, GitHub was a target of a Distributed-

Denial-of-Service (DDoS) attack that peaked 1.35 Tb/s [3].

As a consequence, service operators need access to efficient

solutions that enable real-time analysis of malicious content

from these massive network attacks.

Network-based Intrusion Detection Systems (NIDS) [4] is

a commonly employed approach to detect network attacks.

Many recent works have proposed highly accurate behavior-

based intrusion detection schemes, from which most of

them rely on pattern recognition approaches [5]. The usual

methodology in this type of solution is to build a machine

learning (ML) model from an intrusion dataset of expected

behaviors in the system and detect intrusion attempts using

the modeled behavior extracted from this training dataset [5].

Contrarily, the behavior in real-world network environments

changes daily, either due to the integration of new services in

the system or the discovery of new attacks [6]. These behavior

changes in the network traffic make ML models unreliable and

require them to be retrained [7]. The main reason is that the

model is obtained analyzing the behavior of a training dataset

that no longer represents the current network behavior [8]. As

a result, the accuracy rates in production are no longer the

same as the ones obtained during the test phase [6].

Retraining the ML model is not an easily achieved task.

First, new network events must be collected to compose

a new training dataset [4]. Second, these events must be

individually and correctly labeled either as normal traffic or an

intrusion attempt. In addition, the labeling of network events

is usually only achieved through human assistance, which

limits the sample to only a subset of the collected events [9].

After obtaining an up-to-date training dataset, one can finally

retrain the ML model through a computationally expensive

process, measure its accuracy rates, and deploy the new ML

model. As a result, a ML model can even become outdated

before its actual deployment in production [10]. Therefore,

any detection scheme must reliably detect intrusion attempts

for long periods, regardless of the model update frequency [7].

Although important, updating ML models is a task still

overlooked in the literature [11]. In general, authors assume

that periodic model updates will be made in their systems, but

they do not specify how it is done nor take into consideration

the challenges it brings to ML-based NIDS deployment in

production. Therefore, despite the promising reported results,

ML-based NIDS remains mostly a research topic rarely de-

ployed in real-world environments [6].

This gap is an opportunity we address in this paper by

proposing a novel reliable semi-supervised intrusion detection

model able to autonomously withstand long periods without

requiring human assistance or model updates. It is based on

two main insights. First, an autonomous verification technique

assess the reliability of the classification of network traffic over

time. It ensures that only highly confident classifications are

accepted and, consequently, maintains (over time) the accuracy

rates obtained in the testing phase—even without updating

the model. Second, we leverage this verification technique

to cope with a reliable semi-supervised co-learning to enable

autonomous (non-human-assisted) updates of the underlying

ML model. In summary, our main contributions are two-fold:

• We evaluate several state-of-the-art ML-based NIDS us-

ing a one-year-long real network traffic dataset. Our

results attest that current supervised and semi-supervised

ML-based approaches do not cope with the inherent

changes in the network traffic behavior;



• We propose and evaluate a novel reliable semi-supervised

intrusion detection model that withstands long periods

without human assistance. It does not require experts

labeling unknown network traffic (i.e., traffic new to the

ML model) neither requires the ML model to be updated.

Nevertheless, it is prepared to update the ML model

autonomously, maintaining its accuracy over time.

II. PRELIMINARIES

A. Machine Learning for Network-based Intrusion Detection

The development of highly accurate ML-based NIDS has

been an active research topic in recent years [12]. In general,

proposed techniques are composed of four sequential modules:

Data Acquisition, Feature Extraction, Classification, and Alert.

First, the data acquisition module collects network events to be

classified—e.g., network packets. Then, the feature extraction

module extracts behavioral features from the collected events

and builds a feature vector that will be used for classification.

For instance, in NIDS, events are often summarized through

network flows, which comprises the exchanged data from

hosts over the network in a time window. After the feature

extraction, the resulting feature vector is forwarded to the

classification module, which applies a ML model to establish

the network flow class—e.g., normal or intrusion. Finally,

when an intrusion attempt is detected, the alert module triggers

the respective alert.

Therefore, the classification task is achieved by applying a

ML model to classify a feature vector, which represents the

current network behavior. ML models are built using training

datasets, which contain a set of network flows comprising the

expect network environment behavior from both normal and

attack events. Therefore, the training dataset must have been

correctly labeled to allow the ML algorithm to infer a behavior

from the collected data. However, labeling network events is

a challenging task that usually requires human-assistance [9].

Nonetheless, as the classification is achieved through the

behavior analysis, the used ML model may misclassify some

instances, e.g., when a network attack mimics normal events.

Therefore, in the testing phase, the ML model accuracy

rates are measured, such as the True Positive (TP) and True

Negative (TN) rates. TP denotes the ratio of intrusion attempts

correctly classified as attacks, whereas TN denotes the ratio

of regular events correctly classified as normal activities.

B. Semi-supervised Machine Learning

In general, ML in NIDS is applied in a supervised learning

setting, where authors often assume the availability of properly

labeled network traffic [12]. However, the settings of real

network environments rarely are labeled, which translates into

only a small subset of events’ labels being previously known.

With this constraint in mind, a reliable ML-based NIDS must

be able to operate in a semi-supervised setting [9]. In doing so,

both training and update tasks must be performed with only a

subset of event labels.

In the literature, there are several approaches to achieve

such a goal. One of the most popular approaches to increase

the number of labeled events (i.e., self-labeling) relies upon

co-learning techniques, which apply a set of ML models to

label events for other models [9]. From the many co-learning

techniques that have been proposed, Tri-Training [13] provides

promising accuracy results. It relies on three classifiers for

both classification and labeling tasks. The former is achieved

by a simple majority voting, whereas the latter is performed

for each classifier. The event label is assigned according to

the majority voting of the other two classifiers. Although

widely used in several fields, self-labeling techniques have

their applicability to be verified on the evolving behavior of

network traffic classification.

III. A YEAR OF NETWORK TRAFFIC ANOMALIES

In this section, we describe a new dataset based on real

network traffic [7] and use it to evaluate the accuracy of

common supervised and semi-supervised techniques.

A. A year of network traffic anomalies: MAWIFlow dataset

One of the biggest challenges in building and evaluating ML

algorithms for NIDS is the lack of a properly built training

dataset. Such a dataset should be composed of network data

with events (i.e., network packets) that are real, valid, variable,

publicly available, and correctly labeled. One must record

real data to provide such an enriched dataset, which renders

unfeasible sharing it due to privacy concerns. Additionally,

evaluating a model lifespan is even more difficult since data

must be recorded for long periods.

We use the MAWI network traffic [14] to overcome the

mentioned challenges. More specifically, we used the MAWI

Samplepoint-F in MAWI archive, which is a dataset made of

real network traffic from a transit link between Japan and the

USA collected for a 15-min-long interval daily. We selected

the network traffic of the whole year of 2016, which allows

one to evaluate models’ lifespan and accuracy degradation.

The resulting dataset contains more than 5TB of network data

composed of 60 billion of network packets.

An unsupervised ML technique from MAWILab [15] was

employed to automatically label the events—i.e., tag them

as either normal or attack. MAWILab executes several un-

supervised (i.e., no need for event labels) machine learning

algorithms to find anomalies in MAWI data. These anomalies

are labeled as attacks, while the remaining data is assumed

to be normal events. The feature extraction module [7] groups

events in intervals of 15 seconds and extracts 22 features from

the work of Orunada et al. [16].

B. Accuracy behavior of ML-based NIDS over time

We evaluate the accuracy behavior of ML-based NIDS, both

with supervised and semi-supervised ML techniques. Three

supervised techniques were selected: Random Forest [17],

Adaboost [18], and Decision Tree [19]. The semi-supervised

technique was evaluated through the Tri-Training [13] algo-

rithm using the three mentioned supervised classifiers.

Random Forest and Adaboost use a base-learner of 100

decision trees, while the Decision Tree is implemented through
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(a) Random Forest (RF)
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(b) AdaBoost (Ada)
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(c) Decision Tree (DT)
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(d) Tri-Training

Fig. 1. Accuracy behavior of traditional machine learning

techniques on the MAWIFlow dataset. The Random Forest, Ad-

aBoost and Decision Tree classifiers are not updated through-

out time. The Tri-Training is updated monthly, according to

the labels obtained by its self-assigned labeling technique.

the C4.5 algorithm with a confidence factor value of 0.25.

We used the first week of January as the training dataset for

the supervised techniques and evaluated them throughout the

year without model updates. In the semi-supervised model,

we updated the model monthly according to the self-assigned

label, as obtained through the Tri-Training algorithm. The

majority of the events are normal due to the imbalanced

nature of the dataset. We conducted a stratification procedure

in the training dataset to balance the classes occurrences and

implemented the classifiers using the Weka API [20].

Figure 1 shows the accuracy obtained with the supervised

and semi-supervised techniques over time. The first noticeable

result is the significant accuracy degradation of all evaluated

approaches. More specifically, the evaluated techniques signif-

icantly decrease the TP rates as soon as a few weeks after the

training. For instance, the supervised Random Forest classifier

decreased the TP rate by 8.75% in the month following

the training, while reached a TP rate of only 49.44% in

November (a significant decrease of 34.44% from its TP rate

in January). Nevertheless, the semi-supervised approach, even

with monthly updates, has decreased its accuracy rates. Simi-

larly to supervised approaches, the traditional semi-supervised

technique decreased the TP rate by 7.08% a month after the

training, while reached its worst TP rate also in November.

The evaluation through the MAWIFlow dataset indicates

that traditional ML-based techniques, supervised or semi-

supervised ones, are unable to cope with the inherent changes

of network traffic behavior over time. However, periodic model

updates are unfeasible because they depend on updated models

that may take several days or weeks to become available for

Network Event

Classifier NClassifier NClassifier N

Classifier NClassifier NVerifier N

Pool Verifier

Class Assign

Event Class

reject

accept

Label Assign

Model Retrain

Model 
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Fig. 2. Proposed reliable semi-supervised intrusion detection

model.

deployment. Additionally, the dependency on correct event

labels to update the model hardens the challenge of dealing

with changes in the network traffic behavior over time.

IV. A RELIABLE SEMI-SUPERVISED INTRUSION

DETECTION MODEL

In this section, we present a novel semi-supervised and

reliable intrusion detection model to address the evolving

behavior of the network traffic mentioned above. It consists

of two main steps (verification and reliable semi-supervised

update, as shown in Figure 2) and aims to maintain (or even

improve) the accuracy measurements obtained during the test

phase, without human assistance.

The proposal considers a semi-supervised intrusion detec-

tion model composed of a pool of classifiers—for instance,

the Tri-training algorithm. Classification starts with a to-be-

classified network event that is forwarded to a pool of classi-

fiers, where each classifier produces a (algorithm-dependent)

classification confidence value. For instance, a Random Forest

classifier computes this value based on the ratio of base-

learners that classified the instance as belonging to a given

class. The set of obtained classification confidence values are

forwarded to the verifier module, which filters out values from

classifiers that have not met a minimum threshold. Conse-

quently, only highly confident classifications are accepted.

The pool verifier attests that the classified event has been

accepted by at least a predefined number of classifiers, and

this classification is accepted or rejected by the class assign

module. Accepted classifications have high confidence values,

which means they are more likely to be correctly classified

since the pool of classifiers is more confident in their assigned

labels. Contrarily, rejected instances are potentially misclas-

sified events, since the used classifiers are uncertain on the

assigned label. The system conservatively rejects potentially

misclassified instances instead of accepting them.



Rejected instances are used by two components to up-

date the models. First, the label assign module determines

the proper event label according to the pool of classifiers,

where each classifier receives the event according to the label

assigned by the other classifiers. Then, the model retrain

periodically and autonomously updates the pool of classifiers.

The next descriptions detail the verification and update

stages of our proposal.

A. Verification

The goal of the verifier and pool verifier modules is to

ensure that only highly confident classifications are accepted

over time. Instances that are classified with highly confident

values are known to the underlying classification models,

which means they can be accepted without increasing the error

rates. Additionally, such an assumption provides a reliable

classification even in the lack of model updates since changes

in the network behavior will affect the classifier confidence

values and will be rejected by our model. Consequently, our

system maintains its reliability even if the ML models are not

updated over time, despite resulting in a higher rejection rate.

Our proposal leverages the confidence values of the un-

derlying classifiers to evaluate the instance classification cor-

rectness. The verifier module rejects or accepts classifications

based on predefined threshold values for each classifier, which

are computed during the training to reach the desired level of

reliability. Classifications accepted by the verifier are used by

the pool verifier to establish whether it is reliable or not, based

on the outcome of the pool of classifiers. The pool verifier

accepts the evaluated instance if a majority of the classifiers

have accepted their classifications, which also determines the

assigned event label.

B. Reliable Semi-supervised Update

Classification verification helps to maintain system relia-

bility over time. However, the lack of model updates would

increase the proposal rejection rates. In addition, we seek to

avoid the need for human intervention in this task, using

our semi-supervised technique to leverage the verification

module in the automatic labeling task. The update procedure

receives the set of rejected instances as input, which means

that instances that did not meet the confidence thresholds

contribute to this step.

When a classifier rejects an instance, the label assign

module tags the instance according to a majority vote of the

other accepted classifications in the remaining classifiers. This

self-labeled instance is stored until a periodic model update

takes place (e.g., once a month). The model retrain component

inserts all stored self-labeled instances to the initial training

dataset, and a new pool of classifiers takes place.

C. Discussion

The proposed model addresses many challenges faced (and

neglected) by ML-based NIDS in production. In real-world

scenarios, the model update is not an easy task to accomplish,

which requires the classification scheme to be reliable even

with outdated models. Our proposal relies upon a verification

technique (Section IV-A) to ensure that our scheme rejects

potentially misclassified instances. Nonetheless, our proposal

overcomes the update challenge through a reliable semi-

supervised update technique (Section IV-B). Coping the update

technique with the verification one allows our system to

maintain (or even improve) the classification accuracy despite

event rejections. Consequently, we provide ML model updates

without human assistance while maintaining system reliability

over time.

V. EVALUATION

The present evaluation focuses on answering the following

four research questions: (Q1) Does the verification technique

enable the proper assessment of the classification reliabil-

ity? (Q2) Does the verification technique provide a reliable

classification over time, even in the absence of model up-

dates? (Q3) Can the proposed reliable semi-supervised update

technique execute model updates without human assistance?

(Q4) What are the tradeoffs between the model update peri-

odicity, accuracy, and rejection rates?

The next items describe how do we build the model and

how does it perform when facing the MAWIFlow dataset.

A. Model Building

In this section, we build the proposed reliable semi-

supervised intrusion detection model using the Tri-Training

algorithm and its co-learning technique. We use the same three

classifiers evaluated in Section III-B (i.e., Random Forest,

Adaboost, and Decision Tree) as our proposal individual

models (classifier, Figure 2). Each classifier is built using

the first week of January of the MAWIFlow dataset and is

evaluated throughout the year.

B. Verification of ML Model Classifications

The first experiment relates to Question Q1 and evaluates

each classifier verification technique and finds the optimal

rejection threshold for each one. We apply the Class-Related-

Threshold (CRT) [21] technique on each classifier using the

second week of January of our dataset. We find two thresholds:

one used to accept or reject normal classified events and an-

other one for events classified as attacks. Figure 3 presents the

relation between rejection and error rates for each classifier.

A direct correlation between the rejection and the error rates

is observed, which means that the verifier improves system

reliability even without model updates.

The second experiment relates to Question Q2 and applies

the verification technique over the whole MAWIFlow dataset.

We select individual operation points (i.e., class thresholds)

for each classifier. Operation points are selected when a 10%

error rate is achieved in the second week of January (see

operation point in Figure 3). Figure 4 presents the accuracy

and rejection rates throughout the whole MAWIFlow dataset

of our model with the verification technique and no model

updates. A first observation is that the rejection rate increases
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Fig. 4. Proposed reliable semi-supervised intrusion detection

model with verifier, without periodic model updates.

over time (reaching 28.26% in November), which is a side-

effect caused by the lack of model updates. Nonetheless,

the verifier approach is able to maintain the accuracy rates

while rejecting in average 10.6% of instances. However, the

main result is the indication that the verifier maintains (or

even improve) accuracy rates throughout the year, even in the

absence of model updates.

C. Reliable Semi-supervised Updates

The third experiment relates to Question Q3 and evaluates

the impact of monthly model updates on accuracy and rejec-

tion rates. These updates are autonomous and occur through

the label assign module (see Figure 2). Figure 5 presents

the accuracy and rejection rates of the proposed model over

time, considering the verifier module is applied with monthly

updates. The monthly updates incurred a significant reduction

in the rejection rate, decreasing it from 10.6% to only 3.2%.

However, the accuracy rate has not significantly improved,

which shows that the verification technique maintains the

system reliability regardless of the presence of model updates.

Finally, the fourth experiment relates to Question Q4 and

measures the relation between model update periodicity, ac-

curacy, and rejection rates over time. Figure 6 presents the
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balance between these three properties. The more frequent the

model updates, the lower the rejection rate is. However, the

accuracy rate does not significantly varies, which corroborates

the hypothesis that the proposed verification technique does

not require model updates to provide reliability over time.

D. Discussion

The proposed semi-supervised intrusion detection model

overcomes the challenges that changes in network traffic

behavior bring to ML-based NIDS. The fact that only high

confidence events are accepted by our model results in the

proposed verification technique being able to maintain system

reliability even in the absence of model updates. Additionally,

our approach provides reliable semi-supervised model updates

by leveraging the verification technique, which significantly

the rejection rate with no side-effects on accuracy. In summary,

the proposed model provides a reliable ML-based NIDS clas-

sification since it performs reliable classifications over time

and provide updated ML models autonomously, i.e., without

human intervention.



VI. RELATED WORK

Over the last years, several works have proposed highly ac-

curate ML-based NIDS for network traffic classification [12].

However, despite their promising results, their actual deploy-

ment in real-world environments remains scarce [6]. It is

essential to overcome the task of updating the underlying ML

models [7] to overcome this practical gap in ML-based NIDS.

Published related works usually assume that model updates

are executed periodically [7]. For instance, Xu et al. [22] pro-

posed a semi-supervised intrusion detection model that applies

a one-class support-vector-machine to detect network anoma-

lies. However, their approach demands human-assistance for

the model update task. Zhou et al. [23] uses a multi-view

technique for self-labeling classification. However, they do not

specify how the model update is performed.

Another common assumption in the literature is the avail-

ability of event labels for the update task. For instance, Correa

et al. [24] applied supervised stream learning techniques for

the intrusion detection task. They incrementally update the

underlying ML model with the new instance. However, they

assume that the correct event instance label is available, which

is not always true in production environments. The verification

of the classification output has been extensively applied in

other fields, such as Optical Character Recognition (OCR),

fault detection, and medical diagnosis analysis. Surprisingly,

its applicability in intrusion detection remains scarce. In a

previous work [25], we used a single classifier to verify the

detection of unknown behavior of network traffic. It detects

behaviors similar to those in the training dataset to overcome

the flaws of building a proper intrusion dataset.

To best of our knowledge, this is the first proposal to address

the reliability of model classifications and updates without

requiring human assistance. We provide autonomously updated

classification models that maintain reliability over time.

VII. CONCLUSIONS

Several recent works have been addressing network-based

intrusion detection through machine learning techniques. De-

spite their promising results, they left open a gap in trans-

ferring their solutions to deployments in production. We have

proposed a novel reliable semi-supervised intrusion detection

model to overcome the challenge of network traffic behavior

changing over time. We apply a verification technique to eval-

uate the reliability of ML model classifications and deal with

semi-supervised machine learning to autonomously update the

underlying ML models. The results of the proposal indicate

that the solution maintains the reliability of the system along

of time and provides updated classification models without

human intervention.
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