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that explore the applications without executing its code. Such
analysis includes examining the source or binary code, or
even evaluating the APK requested permissions. Sophisticated
malware, however, uses code obfuscation techniques to avoid
static analysis detection. On the other hand, the dynamic
analysis relies on monitoring malware behavior by collecting
information during the application execution to examine its
behavior, such as system calls, accessed files or network
traffic [8], [9]. To analyze malware, researchers often perform
dynamic analysis in a simulated or restricted environment,
where sophisticated malware can hide their malicious behavior
to prevent being detected [10]. Furthermore, most dynamic
analysis techniques are not suited for mobile devices. This
is because, in general, such techniques are executed in sim-
ulated environments that do not take into account the mobile
device resource restrained nature. Besides, most malicious
applications use the network to connect with a remote server,
download malicious code or even communicate with a botnet.
Identifying network-based fingerprints of security threats is
challenging since it requires the generation of a dataset of net-
work behavior triggered by real user actions and by malicious
activities during application execution [11].

In light of this, this paper proposes a lightweight network-
based malware detection system to detect malicious An-
droid applications at run time. The proposed system relies
on lightweight machine-learning techniques that run on the
top of Android smartphones without significantly affecting
its performance. We build a realistic dataset that performs
interactions with applications by capturing on-device malware
and goodware APK network usage during a period of time.
Then, a lightweight feature extractor based on static ring buffer
and tailored for Android devices abstracts network traffic
into numerical features inferred directly from TCP/IP packet
header. Finally, two lightweight machine-learning algorithms,
AdaBoost and Random Forest, applied directly to the ring
buffer output, real-time classify the APK traffic behavior. To
reduce false alarms to the user, we create a network malware
score that represents the fraction of packets classified as
malicious during APK execution. The malware score assesses
the APK network behavior risk, and enable to adjust the trade-
off between false-positive and false-negative rates according
to the number of malicious packets. Finally, we develop a

Abstract—Over the last years, mobile devices became target 
of thousands of malicious applications. Since then, several works 
have proposed and evaluated highly accurate machine-learning 
malware detection schemes. However, these schemes are hardly 
used in production, either because of their resource-intensive 
nature for deployment in mobile devices or due to high false 
alarm rates. This paper proposes a lightweight malware detection 
system by means of network behavior analysis. Our system relies 
on lightweight machine-learning techniques to monitor network 
behavior of suspicious applications. To evaluate our proposal, 
we construct a realistic and up-to-date network traffic dataset 
made of 359 goodware and malware applications. The evaluation 
results show that our proposal is able to detect new malware 
variants with accuracy near 90% and false-positive rates below 
3% using only 14 features inferred directly from the TCP/IP 
packet header. In addition, when deployed in a Samsung Galaxy 
S9+, our technique consumes on average less than 5% of CPU, 
even in network peaks of 90 Mb/s.

I. INTRODUCTION

Mobile devices became ubiquitous in the current super-
connected world. The number of smartphones is growing each 
year and is expected to reach six billion marks by 2020 [1]. 
The mobile popularity is also gaining prominence in network 
security, as it paves the way to the development of malicious
software targeting those devices. Malicious mobile applica-
tions (malware) have already surpassed the 25 million mark 
in 2018 [2], with the majority tailored to Android operating 
systems [3], as it comprises 70% of mobile devices [4]. An-
droid malware applications (APK) are often used by hackers 
to gather user sensitive information or even remotely control
user devices for profit purposes. In general, Android malware 
tries to counterfeit a version of benign applications of the 
official Google Play market or unofficial APK markets, such
as APKMirror, APToide or GetAPK, making their detection 
more challenging.

Many approaches have been proposed to characterize mo-
bile application traffic [5] and to detect malicious applications
on mobile devices [6]. The literature divides mobile malware
detection techniques into two approaches: static and dynamic 
analysis [7]. The static approach comprises passive techniques
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prototype of our system that achieves high accuracy in detect-
ing malicious applications without being resource-intensive.
Therefore, the contributions of this paper are fourfold:

• A lightweight network-based malware detection system
suited for energy-restrained devices with near 90% of
accuracy and low false alarm rates and processing de-
mands. Our detection scheme addresses the challenges of
embedding a network packet classification architecture in
energy-restrained devices, such as mobile devices. With
only 14 TCP/IP packet features, our proposal is capable
of classifying correctly more than 90% of malicious
traffic with a false positive rate below 3%, without deeply
inspecting packets;

• A realistic and up-to-date dataset of Android malware
and goodware network behavior comprising 3.36 GB of
stimulated network traffic obtained from 359 Android
applications. The dataset is the first of its kind to specif-
ically monitor Android APKs network behavior in real
mobile devices, without being in a simulated or restricted
environment;

• A fundamental analysis of the capacity of our proposal
detecting malicious traffic from different mobile malware
families and malware variants previously unseen by the
classifier.

• A prototype of our system built on top of a Samsung
Galaxy S9+ showing the feasibility and practical results
achieved by our proposal. We observed that, even in
peaks of 90 Mb, the prototype consumes in average
5% CPU resources. Moreover, as we only use a small
period of time of APK network traffic to provide a
classification result, CPU resources are only demanded at
the beginning of the application, maintaining near 0% of
resource consumption when the proposal is in idle state.

The remainder of this paper is organized as follows.
Section II presents the lightweight network-based malware
detection system and its prototype. Section III details the
construction of our dataset. Section IV evaluates our proposal.
Section V discusses the limitations of our work and corre-
spondent solutions. Section VI discusses related work. Finally,
Section VII concludes the work.

II. A LIGHTWEIGHT NETWORK-BASED MALWARE
DETECTION SYSTEM

We aim to detect malware APKs executed on mobile devices
according to their network behavior over a period of time. Our
premise is that malicious network behavior remains similar
even if attackers modify malware signatures and system call
behavior. Therefore, since the analysis of network packets is
often a processing consuming task, a lightweight detection
system must be designed to enable malware classification in
real mobile devices.

Figure 1 shows the design of the proposed lightweight
network-based malware detection system, which relies on
machine learning to distinguish malware and goodware APKs
according to their network behavior over time. As the system
runs in Android devices, the proposed classification scheme

Figure 1: The Design of the Proposed Lightweight Network-based Malware
Detection System.

must consider the demanded processing to fulfill such a task.
Hence, we analyze the perspective of a mobile device user
who wishes to monitor an APK in the mobile device (1).
Then, the monitored APK runs for a given period of time
(2) while having its generated network packets monitored.
Flow-based features, extracted over time and assigned to each
generated network packet, represents how the APK commu-
nicates with remote servers at the application level. Thus,
a machine learning model classifies each feature vector as
either goodware or malware. As the system classifies network
packets individually, a threshold determining if the APK is
malicious or not must be defined. Thus, our proposed system
relies on the Anomaly Score computation, which measures
the fraction of network packets classified as malicious to all
generated packets (3). The Anomaly Score aims to classify an
APK as malware only if the network data over time has a
fraction of malicious packets greater than a defined threshold.

In general, network-based feature extractors rely on dy-
namic memory allocation to extract statistical features from
the network traffic, without taking into account the energy-
constrained nature of mobile devices. We use an optimized
lightweight feature extractor based on static memory alloca-
tion tailored to execute on Android-based devices [12]. Our
proposal extracts numerical features from the TCP/IP packet
header in a flow-based approach, while composes a feature
vector for each network packet. Numerical features allow to
decrease the processing of feature extraction since they are
simple windowed counters of information that are quickly
inferred from TCP/IP packet header. We are also able to
decrease the demanded processing for the feature extraction
task since we perform classification without the storage of all
network packets occurred during a period of time. A packet-
granularity classification must consider two aspects that may
compromise a lightweight system. First, as we classify each
generated network packet, many false alarms might trigger
during the monitoring period. Second, as we generate more
classification events, an inadequate model selection may incur
in additional processing. Hence, our system addresses both
aspects in a twofold manner: using an Anomaly Score threshold
and a lightweight classifier. The Anomaly Score raises an alarm
only if a significant portion of network packets belonging to
the monitored APK is classified as malware. To reduce the
processing demanded the classification task, we select two
tree-based classifiers suitable for non-linear data, which are
known to scale and have a good trade-off between accuracy
and classification processing time [13].
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Figure 2: Prototype Architecture of the Proposed Lightweight Network-based
Malware Detection System.

A. Anomaly Score

Our proposed system classifies malware in a network packet
granularity to provide a lightweight detection approach. Mul-
tiple packet instances belonging to the same APK need to be
classified, nevertheless, not all of them may be labeled to the
same class. Therefore, the Anomaly Score module establishes
whether a monitored APK is a malware or not according to
the classified events over a period of time and adjusts the
ratio of false-positives and false-negatives during an APK
monitoring. Equation 1 defines the Anomaly Score, where x
is the evaluated network packet outcome and N is the total
number of evaluated network packets of the specific APK.

Anomaly Score =

∑N
i=0 f(x) =

{
1, if x = malware

0, otherwise

N
(1)

The computation of Anomaly Score allows defining a de-
sired alert threshold. In our scenario, we aim to reduce the
number of false alerts to the user. The reason is simple, a high
number of false alerts will impact the user experience and trust
onto our system and user will be more tempted to discredit
and ignore critical alerts. Then, we set a high Anomaly Score
threshold (evaluated in Section IV). Nonetheless, if we change
objective to minimize false-negatives, we would adjust our
anomaly score threshold accordingly, such that no malware
APK passes unnoticed.

B. Prototype Architecture

The architecture of our implemented system is shown in
Figure 2. The system receives three parameters, the Monitoring
Interface name, the APK name and the Monitoring Time.
The Monitoring Interface defines the network interface to
be monitored (e.g. wlan0). The APK name defines from
which APK the packets must be monitored. Finally, a decision
regarding the APK class (e.g. goodware or malware) occurs
only after the Monitoring Time finishes. Thus, the prototype
contains two main threads, namely Capture Thread and Filter
Thread.

The Capture Thread handles the network packet monitoring,
feature extraction, and classification tasks. This thread is

composed of the following modules: network sniffer, feature
extraction, ring buffer, classifier, and malicious packet counter.
First, the network sniffer reads the network packets from
the Monitoring Interface, using the libpcap1 API. Afterward,
the feature extraction module extracts 21 numerical network
packet features. The features are packet frame length (1), num-
ber of frames and number of bytes, from source to destination
and from destination to source (4), number of frames and
number of bytes with the same port for both directions (4),
and number of packets with PSH, SYN, FIN, ACK, SYN, and
RST flags active for both directions (12). Thereby, the feature
set comprises information gathered directly from the packet
header, such as TCP header flags, connection status, and flow-
based information. In such context, flow-based information
comprises data about the number of packets and bytes in
forward and backward direction over the last four seconds. The
four-second flow time gathering was established empirically.
Then, the extracted feature vector is stored in the ring buffer
module, which holds the last n read samples. The ring buffer
module stores the extracted feature vectors until the APK that
originated them is known.

In contrast, the Filter Thread comprises the Network Filter
module, which periodically executes the netstat32 application.
The Network Filter module defines which network sockets
were opened by the monitored APK. Therefore, by periodi-
cally using such information, the ring buffer module is able to
filter the feature vectors according to the APK that generated
the network packets. Thus, once the output of the network
statistics module is presented, the ring buffer module drops the
samples that unmatched the monitored application flows. The
Network Filter module periodically executes the ring buffer
cleanup in a one-second interval.

Finally, for the classification task, an offline-trained Ma-
chine Learning model is loaded in the system memory. Then,
the samples filtered by the Network Filter module are sent
to the classifier. The classifier predicts the sample values
as a binary classification either goodware or malware. After
the Monitoring Time, the Malware Scorer module establishes
whether the monitored APK is malware or not.

III. TESTBED AND DATASET CREATION

Sophisticated Android malware is capable to detect if it
is being executed in a sandbox environment and to disguise
malicious behavior during the sandbox execution. Also, mal-
ware malicious actions may only be activated when specific
events are triggered on the device, e.g., a user touching a
specific button. Hence, the creation of a realistic Android
malware testbed is a difficult task. As a solution, we create a
realistic dataset by capturing pcap files of real network traffic
of applications executed in a smartphone device, avoiding
simulation and preventing malware disguising techniques. We
aim to improve test coverage and scalability as much as
possible rather than focus on most cases of normal use, then,

1Libpcap: https://www.tcpdump.org/
2Netstat: https://github.com/LipiLee/netstat
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Figure 3: Testbed automation scheme for Android APKs network monitoring.
Each APK is monitored individually through five steps for dataset generation.

we use a tool to stress the installed application and create a
pseudo-random stream of user events into the smartphone.

We built an Android malware testbed using the procedure
shown in Figure 3. The testbed must enable malware and
goodware network usage monitoring in realistic settings for a
long period. To fulfill such requirements and scale, we built an
automation process in which each monitored APK undergo the
following procedures: i) Install and Stimulate. Using Android
Debug Bridge (ADB) tool3, the APK to be monitored is
installed on a real Android device. After the installation,
the APK is stimulated using ADB monkey command, which
sends several pseudo-random events to the APK. Therefore, all
APKs can be installed and stimulated in real Android devices;
ii) Monitor Network. In parallel to the APK stimulation
stage, the network interface (e.g. wlan0) is monitored using
tcpdump4 tool. The tool generates a PCAP file with all network
packets sent and received by the network interface; iii) Monitor
Open Sockets. Also, in parallel to APK stimulation stage,
the monitored APK opened network sockets are logged to
a file using netstat3 tool. This log file is used for filtering
the PCAP file after the monitoring stage, therefore we can
establish which network packets were sent or received by the
monitored APK; iv) Get log files. After a given time window,
the APK stimulation ends and the PCAP and log files are sent
back to the computer; v) Flash Device. Before starting a new
APK monitoring task, the device is fully flashed to remove
any possible interference between each APK monitoring. By
automating the above procedure, we can realistically monitor
APK network usage.

Two groups of APK were assembled in our testbed: good-
ware and malware. For the goodware group, we developed
a script to download real APKs from the Google Play Store
using the gplayclitool5. Google Play Store uses Google Play
Protect and therefore, the downloaded APKs are deemed as
goodware. We select and download the 500 most popular
APKs from Google Play Store for the goodware group. On
the other hand, for the malware group, samples from Android
Malware Dataset [14] were used as our baseline dataset.
Android Malware Dataset (AMD) comprises 24,553 malware
samples divided into 71 malware families. In a preliminary
analysis, we restrict our malware scope to the families that
are known to generate malicious network traffic. Each selected
APK sample, from both groups, was executed for a period

3ADB: https://developer.android.com/studio/command-line/adb
4Tcpdump: https://www.tcpdump.org/
5GPlayCli: https://github.com/matlink/gplaycli

Table I: Network data used for the experiments according to each type of
selected APK after filtering APKs that generated less than 500 packets.

Family # APKs Size # Packets
Goodware 266 376 M 620437
FakeAngry 2 467 K 3674
FakeAV 3 4.32 M 13530
FakeDoc 6 1.41 M 5223
GingerMaster 6 10.90 M 15485
GoldDream 3 5.34 M 9695
Ksapp 6 401 K 5370
MMarketplay 3 3.26 M 20359
MobileTX 12 6.89 M 32387
Mseg 33 3.29 G 3629321
Mtk 8 1.64 M 9262
Nandrobox 3 437 K 5188
Vmvol 6 33.89 M 60031
Winge 2 719 K 3886
Total 359 3.36 G 3813411

of time using the five-step procedure. We follow the malware
traffic characterization performed by Chen et al., which used a
capture time of 500 seconds [15]. By this time of the process,
we captured 7.17 GB of network data from 787 APKs, in
which 395 are goodware and 392 are malware. Because our
dynamic analysis is focused on network malicious traffic, the
next step is filtering samples that did not generate enough
network traffic by a defined threshold. We define 500 packets
as the minimum to include the APK sample in the final
dataset. This is necessary to provide substantial data to train
the machine-learning models. After the filtering process, the
final dataset comprises 3.36 GB of network data from 359
APKs among 13 malware families. Table I summarizes the
network traffic distribution of the final dataset.

IV. EVALUATION AND DISCUSSION

Our evaluation aims to answer three research questions:
i) Does network traffic from malware and goodware differ
significantly to enable APK classification?; ii) Is it possible
to detect unknown malware variants by the means of network
traffic classification?; and iii) What is the processing trade-off
of network traffic classification in Android devices?

A. Model Building

As previously discussed, our prototype loads in-memory
machine learning models built offline. The model building is
a processing consuming task, which demands dedicated hard-
ware to execute. Hence, we define as lightweight, models that
classify fast enough to be done at runtime, regardless of the
processing cost of the offline training. As the proposed system
is agnostic of the learning technique employed, our goal is
not to select or develop the lightest machine-learning models.
Instead, our goal is to evaluate the feasibility of achieving
lightweight detection with machine-learning models deployed
in real-devices, and on near real-world conditions. Then, we
select two classifiers that have a good trade-off between
accuracy and classification time, Random Forest (RF) and
AdaBoost. These classifiers are also adopted by researchers
because of their if-then-else format and their efficiency for
packet classification and intrusion detection, making them
suitable for resource-constrained devices [16].
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Figure 4: Accuracy of packet classification of the Random Forest and
AdaBoost classifier trained with each malware family separately. The dashed
line indicates a 80% accuracy threshold.

To answer question i), both classifiers were trained multiple
times using an one-vs-one approach, each time individually
for a different malware family. This evaluation step aims to
establish which malware families are feasible to be detected
using network traffic features, since some existent malware
families simply does not generate malicious traffic. The one-
vs-one training produced 26 model generation processes.
The classifiers were built using scikit-learn6 v0.20.1 tool.
In addition, to assess the capability of detecting malware
variants previously unseen by the classifier, we exclusively
split the APKs of the same family between training and test
groups. In other words, we guarantee the same APK network
traffic packets is not present in both training and test sets
simultaneously.

Since benign packets are more voluminous than malicious
packets (Table I), we balance the dataset using random under-
sampling for the majority class. Moreover, the train and test
dataset were split considering the number of APKs of each
malware family. Thus, we split approximately 75% of APKs of
a given family for training and the remaining 25% for testing.

Figure 4 shows packet classification accuracy using all
features with Random Forest and AdaBoost models when we
train them separately by malware families, using the one-vs-
one approach. For each one of the 26 family-trained models,
we repeated model generation process 20 times varying the
random seed of the under-sampling each iteration, and we
show results with a confidence interval of 95%. This experi-
ment presented an accuracy above 80% for 6 and 7 families
with Random Forest and AdaBoost respectively, out of 13
malware families. We observed that for six malware families
on both classifiers, the accuracy was above 80% with a false
positive rate below 5%. The best six families were FakeAV,
FakeDoC, Ksapp, MobileTX, Mseg, and Nandrobox.

Concerning feature selection, Figure 5 shows results ob-
tained using Recursive Feature Elimination with Cross-
Validation (RFECV). In RFECV, the best feature subset is
searched using a greedy optimization approach. We use 10-
fold cross-validation for each subset of features and the
Random Forest algorithm to evaluate the feature subsets.

6Scikit-learn: https://scikit-learn.org/

(a) 0.81 of accuracy is
achieved with 14 features.

(b) Feature Importance.

Figure 5: Recursive Feature Elimination using Random Forest model with
10-fold cross validation. The dash line indicates that 14 features are enough
to get 81% of accuracy of packet classification.

Figure 5a presents the results of the RFECV. We observe
that only 14 features out of 21 are enough to achieve 81%
of accuracy for malicious packets classification. Figure 5b
illustrates the feature importance given by the RFECV method.
The dashed line separates the 14 most important features
selected by the algorithm. These results support that 6 out
of 13 malware families can be detected by the means of
network traffic behavior analysis. We conclude our finding for
research question i) that goodware and malware does differ
significantly for specific classes of malware, while for others
it does not significantly present malware traffic behavior to
deviate from goodware behavior. Since our proposal relies
on network behavior analysis, we henceforth restrict our final
model to the 6 best families.

The Random Forest and AdaBoost algorithms contain dif-
ferent parameters to be tuned and finding the optimal solution
in an exhaustive task. Thus, as a last step in the model building
process, we aim to tune the hyper-parameter values to the
dimensions of our experiment, i.e., to the number of instances,
number of features, class distribution, and feature importance.
We use a random grid search algorithm to select the best set
of parameters of number of trees and maximum depth for
Random Forest and number of trees and learning rate for
AdaBoost. We perform three-fold cross validation with 4000
total combinations with 100 random iterations in an Octa-core
2.63 GHz Xeon 5600 Server, with 32 GB RAM, running on
Ubuntu bionic 18.04.1. The three most relevant cases that
presented the best-balanced accuracy results were achieved
with a maximum depth of 10, and number of trees varying
between 10 and 30, which we select 30. Similarly, for the
AdaBoost model, the number of trees was selected as 50 and
the learning rate as 1. Since hyper-parameter optimization
is responsible for only a small fraction of the final model ac-
curacy, after we tailor parameters to address our classification
problem, it is not necessary to repeat this process every model
training, unless a major experiment change occurs, such as a
concept-drift on the dataset. We emphasize the results achieved
in this step are not generalizable, and this procedure should
be independently executed for other experiment conditions.
Moreover, the entire model building process occurs on the
cloud and only after the final model is generated, i.e., the

699Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:35:31 UTC from IEEE Xplore.  Restrictions apply. 



(a) No feature selection. (b) 14 best features by RFECV.

Figure 6: ROC curve for Random Forest and AdaBoost classifiers, as we vary
the malware score threshold for both scenarios without feature selection and
using only the 14 best features selected by RFECV technique.

(a) Random Forest. (b) Random Forest with RFECV.

Figure 7: Histogram of goodware and malware APKs separated by different
ranges of malware scores for the Random Forest algorithm.

parameters and the tree-based structures, model is ported to
the smartphone.

B. Final model evaluation and trade-offs

The model-building phase consisted of evaluating the classi-
fier performance at the granularity of packet classification. The
final model to the user, however, should return the APK class.
Therefore, we evaluate the performance of APK classification
for the entire dataset to answer question ii).

Figure 6 presents the receiver operating characteristic (ROC)
curve for both algorithms in the APK classification for the
entire dataset as we vary the Malware Score threshold. For
both classifiers, we compare two feature sets, all 21 numerical
features and the best 14 features selected through RFECV
technique. With no feature selection, AdaBoost showed a
better Area Under Curve (AUC), indicating an overall better
classification performance. When RFECV feature selection
is applied, instead, Random Forest achieves similar AUC
(0.738) but with fewer features to process. As discussed on
Section II-A, we aim to reduce the number of false malware
alerts. Figure 6 shows that Anomaly Score threshold near
0.75 achieves the best trade-off between false-positive and
true-positive for all scenarios evaluated, according to our
classification goal. Then, we select an operating point for a
0.75 malware score threshold, i.e., we classify the APK as
malicious if 75% of packets are classified as malicious during
the monitoring period.

Figure 7 and Figure 8 depict the separation between mal-
ware and goodware obtained in both classifiers using the
selected operating point (OP). We note that only a small

(a) AdaBoost. (b) AdaBoost with RFECV.

Figure 8: Histogram of goodware and malware APKs separated by different
ranges of malware scores for the AdaBoost algorithm.

portion of goodware APKs was misclassified as malware. On
the selected OP, the best accuracy for APK classification was
91.46%, for both AdaBoost and Random Forest algorithms
when no feature selection is applied. By selecting the best 14
features, however, the accuracy remained similar, 90.24% for
the Random Forest and 89.33% for AdaBoost. For all sce-
narios evaluated, the false positive rate of APK classification
remained under 3%, and, specifically for the Random Forest
with no feature selection, this rate was 0.07%. We highlight
that such results were achieved using one general machine-
learning model for all selected families. A unique model to
detect multiple malware families and their variants with few
false alarms, instead of multiple models tailored per family, is
a desirable property for lightweight detection.

The aforementioned results of our system show that detect-
ing malware variants by means of network features is feasible
in terms of classification performance. While the classification
performance per packet achieves around 80% accuracy, when
we apply the Anomaly Score, we are able to classify an APK
between malware or goodware with near 90% of accuracy.
The machine-learning algorithms were able to recognize pat-
terns on the network behavior that distinguish well malware
applications from goodware applications. Literature has shown
that many Android applications did not implement adequate
standards for secure network communications and precarious
implementations are prevalent in malware APK [17]. More-
over, malware variants from the same malware family shares
similar part of codes and communication patterns, which are
possible to be detected through network analysis [18]. Thus,
we shown our system was able to detect high-level character-
istics of malware APK using a combination of features such as
the number of bytes, number of each flags of TCP, number of
frames, frame length, and number of bytes transmitted in both
directions in a certain period of time. Moreover, the resultant
feature set is lightweight to extract because it can be inferred
directly from header of TCP/IP packets, with almost no feature
processing, and demonstrates that a lightweight network-based
malware detection system is feasible for resource constrained-
devices. Moreover, as we split APK between train and test
sets in a way that data from the same APK is not present
in both sets simultaneously for the same iteration, the system
was capable of detect variant of malware previously unseen.

700Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:35:31 UTC from IEEE Xplore.  Restrictions apply. 



Table II: Performance analysis of the prototype implementation monitoring two different applications.
APK Type Mal. Score # Captured Pkt. # APK Pkt. # Susp. Pkt. Avg. CPU Used[%]

Grammar handbook Malware 83.06% 4182 1447 1202 8.82
Google Play Goodware 0% 2489 2440 0 4.14

C. Performance Evaluation

To answer question iii), we implemented our prototype
in a Samsung Galaxy S9+ with the Qualcomm SDM845
Snapdragon 845 chipset and 6GB of RAM. The only practical
requirement for the prototype runs and extracts features from
wireless card data is to use rooted devices, although this would
not be required for a final deployment embedded natively in
the Android. We use SimplePerf7, a native profiling tool for
Android that reports statistics about CPU performance and OS
resource usage, to gather statistics of our prototype implemen-
tation. Thus, we measure only the resources consumed by our
malware detection system, and not by the monitored APK.

During a network traffic peak, our prototype must prove
resilience to high rate of packet capture, feature extraction,
filtering, and classification steps simultaneously. Therefore, we
analyze prototype not only at normal execution, but under the
stress condition of the peak of network processing. Figure 9
presents the CPU consumption of our prototype with two dif-
ferent APKs using the Random Forest classifier. The Grammar
Handbook (Figure 9b), which is a malware that simulates a
grammar book with a high rate of network packet generation,
and the native application of Google Play Store (Figure 9a),
representing the goodware class. We select these applications
for time analysis for two main reasons: they provide peaks of
network traffic near Internet bandwidth of our testbed, at the
same time they comprise opposite cases of packet classification
decision. Google Play packets were always correctly classified
as benign, while fake Grammar Handbook have it most packets
classified as malicious, achieving a malware score above the
threshold, and thus, a final decision for the APK as malicious.
We note that prototype CPU consumption is directly affected
by the generated network traffic. This effect, however, was
negligible even during the network traffic peaks for both
applications. In the worst case, while running our monitoring
tool during Google Play downloading an application, CPU
consumption remained less than 10% at its peak, with an
average of 5%. The number of packets transmitted by both
applications is detailed in Table II. Thence, our proposed
lightweight network-based malware detection system is fea-
sible for execution in Android devices, with low processing
overhead. Moreover, as our technique only demands a small-
time window to define the APK class, which in our testbed
is defined as 500 seconds interval for APK monitoring, the
processing of our model can be even reduced by optimizing
this time constant on further research. Therefore, even for
network traffic peaks in the moment an application starts, our
system were able to maintain low CPU consumption due to
the lightweight nature of our detection system.

7SimplePerf: https://developer.android.com/ndk/guides/simpleperf

(a) Google Play (Goodware). (b) Grammar Handbook (Malware).

Figure 9: Prototype CPU consumption running on top of a Samsung S9+ and
captured packets for the Google Play APK (Goodware) and the Grammar
Handbook malware APK. Network events were triggered with user interac-
tivity in both cases. Each time period represents a 10-second interval.

V. LIMITATIONS

Despite achieving substantial results in detecting malicious
applications using only network-layer features, we pinpoint
limitations of our work, which can serve as motivation for
further research on detecting mobile malware regarding net-
work analysis. First, as the dataset generated by our team was
based on real APK monitoring, we have faced issues due to
amount of time needed to generated data for all APKs, and
as consequence, testbed incidents, such as loss of Internet
connectivity or drops in Wi-Fi signal during the experiments
forced us to repeat the whole experiment many times to
guarantee validation of dataset. One way to circumvent this is
increasing the parallelism of data generation by augmenting
the number of devices collecting data. This would allow
our testbed to generate twice or more data than before in
the same time period and allow to increase the amount
of APKs collected. Second, we defined our time period of
classification as the first 500 seconds of the APK execution.
Some malware, however, can circumvent detection by only
triggering malicious behavior after the 500 seconds mark. In
our work, we filtered APKs that did not generated enough data
based on a threshold of number of packets and we might have
discarded some malware data with this approach. Therefore,
optimizations on the capture time period could be performed
to increase malware APK traffic. Moreover, a sophisticated
malware can be programmed to only badly behaves in a certain
period of the day, and thus, further experiments capturing
data in different periods of the day should be considered.
Other limitation is because when dealing with real data, data
labeling is a challenging task. As a preliminary premise of
this work, traffic generated by a malicious APK was entirely
considered as malicious traffic. However, we observed that
this is not always true. We deeply inspected the network
traffic generated by malicious APK and we observed portions
of benign traffic (from google APIs and third-party servers
owned by the application) that are mixed with the untrusted
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Table III: Comparison of our proposal with state-of-art research.
Related Work Analysis Method Network Features Machine Learning Android Impl. Real Traffic Lightweight
Andromaly [10] Static + Dynamic × X × × ×
Stream [19] Dynamic × X × X ×
ProfileDroid [20] Static + Dynamic X(with APK features) × X X ×
Yu et al. [21] Dynamic × X X X ×
Shafiq et al. [22] Dynamic × × × X ×
Comar et al. [23] Dynamic X X × X(ISP traces) ×
DroidSec [24] Static + Dynamic × X X X ×
Aresu et al. [25] Dynamic X(with appl. layer features) X X(emulated) × ×
Arora et al. [26] Dynamic X X X(emulated) X ×
Chen et al. [27] Dynamic X X X × ×
Wang et al. [28] Dynamic X(with APK features) X(detection on cloud) X X X
This proposal Dynamic X X X X X

traffic that is transmitted by the malware APK. This might
introduce wrongly labeled data into the classifier training
and also impacts the classification accuracy when dealing
with benign APKs. A possible solution to circumvent this is,
instead of labeling all malware APK traffic as malicious, filter
only when destination or origin is different from well-known
servers, such as Google servers, or the proprietary server of the
application. Despite, we observed most of traffic generated by
the malicious APKs used in this research were originated or
destined to untrusted sources, i.e., to IP addresses that did not
represent well-known domains. Therefore, this limitation did
not have significant impact on the research findings and also
does not affect the lightweight nature of proposed schemes.

VI. RELATED WORK

Detecting malicious applications in energy-restrained de-
vices is a challenging task. Andromaly is one of the first ap-
proaches to perform host-based anomaly detection in energy-
constrained devices [10]. The authors combined dynamic and
static analysis to obtain 88 features from the operating system,
call, messaging services, screen, hardware, among others.
Although this work uses an extensive feature set, results of
Andromaly are restricted since the authors affirm that at the
date of the article there was not enough malware for mobile de-
vices. On the other hand, STREAM employs machine learning
algorithms to dynamically classify malware [19]. The authors
extracted features from CPU, memory, and binder processes,
however, network access was disabled during the malware
execution. Similarly, Wei et al. proposed ProfileDroid [20],
a multi-layer detection system for Android Apps. The authors
combine four layers of features, including app specification,
user interaction, operating system, and network. Nevertheless,
the authors disregard malicious application detection. Yu et
al. employed a machine-learning dynamic analysis of system
calls to detect Android malware [21], while Shafiq et al.
construct a graph from application systems calls and use
graph-level feature extraction to detect malware [22]. The
authors, however, do not focus on lightweight detection and
do not evaluate device performance.

Comar et al. proposes a machine-learning-based framework
to detect malware with features from layers 3 and 4. The
authors use a network operator dataset, which does not rep-
resent mobile application traces [23]. Yuan et al. proposes
an ML-based method with 200 features extracted from both

static and dynamic analysis of Android apps for malware
detection [24]. The authors achieved high accuracy using a
deep-learning model, but they do not provide a lightweight
solution, as features are computationally expensive to obtain.
Aresu et al. analyzed HTTP traffic to detect mobile bot-
nets [25]. According to the authors, 70% of mobile traffic
uses the HTTP protocol. The authors created malware clus-
ters using features from GET/POST requests, URL length,
among others. The approaches, however, lacks implementation
of the detection technique in real Android devices. In the
aforementioned works, dataset creation relies on a sandbox
or Android emulator to scale data generation. Sophisticated
malware, however, is aware of such emulated environment
and can inhibit its malicious behavior. Arora and Peddoju
proposed an algorithm to reduce the number of features while
maximizing the accuracy [26]. The algorithm was validated in
Samsung smartphones. Chen et al. addressed the problem of
malware traffic imbalance by using oversampling techniques
with several machine learning algorithms [27]. The authors
created a testbed to collect mirrored network traffic on a
gateway from a smartphone and a traffic generator machine.
Wang et al. proposed a lightweight malware detection apply-
ing machine learning to network analysis [28]. The authors
combine network-layer with application-layer features in a
tree-based model. Our system, instead, achieves similar per-
formance using only network-layer features. The authors also
claims lightweight because network traffic of the access point
is mirrored to a separated cloud infrastructure, where the data
processing occurs. Hence, no practical device-level lightweight
technique is employed. Furthermore, their scenario restricts
the detection system to a specific location where the solution
is deployed. The authors also do not evaluate performance
regarding different malware families.

We summarize the comparison of our proposal with state-
of-art in Table III. To the best of our knowledge, our work
is the first to address malware classification with lightweight
techniques for network traffic analysis in real Android devices.
Moreover, we evaluate our technique using a realistic malware
dataset generated on top of Android devices, implement and
compare the performance trade-offs of our proposed system
and provided a fundamental analysis on network-based mal-
ware classification regarding different malware families and
variants.
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VII. CONCLUSION

Malware detection is a resource-intensive task. While static
analysis has drawbacks on efficacy regarding code obfuscation,
the literature of dynamic analysis has not taken into account
the restrained-resource nature of mobile devices. Therefore,
this paper proposed a lightweight network-based Android
malware detection system using dynamic analysis. To become
lightweight, a feature extractor using a static ring buffer
collects only numerical features from the TCP/IP packet
header. Then, we apply lightweight machine-learning models,
previously trained, to the ring buffer output. Moreover, we
implement a prototype of our system in a Samsung Galaxy
S9+ with two machine-learning algorithms, Random Forest
and AdaBoost. Then, we construct a realistic and up-to-date
dataset, comprising network traffic from 359 applications.
Results show that both algorithms achieve a good trade-off
between classification and performance. Furthermore, we an-
alyzed the capability of our model detecting malware families
and malware variants previously unseen by the classifier. With
only 14 TCP/IP packet features, our prototype was able to
correctly classify more than 90% of APKs with a false positive
rate under 3%, without deep packet inspection. Finally, by
analyzing two applications that produces lots of packets, our
prototype consumed less than 10% of CPU resources even in
peaks of 90 Mb. As future work, we will optimize the minimal
traffic volume needed to correctly classify an application and
scale processing evaluation to a high number of applications.
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