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Abstract—Convolutional neural networks have been success-
fully applied for video content detection in the last years.
However, such cognitive models usually demand the availability
of several gigabytes of memory and present a low detection
throughput, as a result, they are not feasible for resource-
constrained devices, especially for real-time applications like
video streaming. In this paper, we address real-time video
content detection in resource-constrained devices in a threefold
manner. First, we improve detection throughput by means of a
frame sampling technique. Then, we propose a new evaluation
measure towards proper deployment of convolutional neural
networks in resource-constrained devices. Finally, we address the
accuracy degradation caused by the porting of the convolutional
neural network, applying a lightweight classification verification
technique. The evaluation results, through a real-time demanding
application, show that the proposed approach can detect up to
301 frames/sec, demanding only 9 megabytes of memory while
reaching up to 89.3% of accuracy. Besides, we can increase
the detection throughput by up to 10 times, with no effects
on accuracy, and further increase accuracy without effects on
processing demands.

Index Terms—Neural Networks, Video Content Detection,
Resource Constrained Devices

I. INTRODUCTION

Currently, there are about 3.2 billion of smartphones [1],
with the expectation to reach the 3.8 billion mark in 2021 [2].
Smartphones are considered processing-constrained devices,
therefore the processing tasks that were typically designed
for energy-powered devices must be ported to resource-
constrained ones, for instance, real-time pornography content
detection in videos [3].

Video content detection in real-time is a costly processing
task, which, in general, demands a significant portion of the

device processing capacity [4]. Over the last years, video con-
tent detection has been achieved by machine learning means,
more specifically through Convolutional Neural Networks
(CNN) [5]. CNN has been widely used in image processing
tasks due to its high reported accuracy rates [6]. However,
they were not originally designed for processing-constrained
devices, in contrast, they are often memory and processing
demanding [7]. On the other hand, for video processing tasks,
a CNN architecture must evaluate each frame individually.
As a result, to perform online video content detection for
instance, in general, it is needed to process up to 23 frames/sec.
Therefore, perform real-time video processing (e.g. in video
streaming applications) through typical CNN architectures at
processing-constrained devices becomes a challenging task. In
such context, a CNN architecture must be designed taking into
account the device processing capacity [8]. In other words,
besides providing a high accuracy rate, the CNN architecture
must provide high detection throughput, with low memory
demands. However, in the literature, in general, such factors
are often provided individually [9].

The CNN can be implemented through different topol-
ogy configurations, i.e. architectures, which are structured
by layers. The number of used layers and their disposal
impact the CNN complexity. In general, in the literature, to
increase detection accuracy, authors often increase the CNN
architecture size, by adding more layers [10]. As a result,
popular proposed architectures may need up to 16 Gigabytes
of memory, while processing only 4.26 frames/sec in a high-
end GPU [11] [12].

In recent years, several authors have proposed CNN ar-
chitectures suited for processing-constrained devices [13]. In
general, authors aim at decreasing the proposed CNN ar-
chitecture memory demand, while having minimal accuracy
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impact [14]. However, a smaller CNN architecture does not
necessarily increase the detection throughput. This because
each CNN layer type introduces a related processing demand,
consequently, besides aiming lower memory demands one
must also evaluate the detection throughput [15]. However,
surprisingly, for increasing the processing throughput, authors
often only aim at decreasing the CNN memory size, without
taking into account the layers specificity or the application-
specific requirements [16].

Therefore, real-time video content detection in resource-
constrained devices remains an open challenge. Resource-
constrained devices such as smartphones do not have enough
memory available for run the state-of-the-art CNN architec-
tures [17]. In addition, when applying a CNN architecture
fitted for mobile devices, the detection throughput is often not
given proper care. Nonetheless, the accuracy impact caused
by porting the CNN architecture to such devices may render
the CNN application unfeasible. Therefore, for proper CNN
usage in resource-constrained devices, it becomes imperative
that proposed techniques address CNN modifications in terms
of memory, detection throughput, and accuracy.

This paper presents a threefold approach towards real-
time video content detection for resource-constrained devices.
First, we address the challenge of decreasing the memory
needs of typical CNN architectures while also considering the
detection throughput. Our experiments show that lower CNN
memory demands do not necessarily increase the processing
throughput. Consequently, our proposed technique address,
besides accuracy, both memory and detection throughput at
CNN architecture building phase. Second, we apply a frame
sampling technique that increases the detection throughput by
up to 10 times, with little or no effect on accuracy. Finally,
to address the accuracy impact of CNN porting to resource-
constrained devices, we present a classification verification
technique. The proposed approach is able to increase the
detection accuracy with no side-effect on processing neither
throughput nor memory.

The remainder of this paper is organized as follows: Section
2 describes the work background on video content detection
and CNN. Section 3 presents the proposed approach towards
real-time video content detection in resource-constrained de-
vices. Section 4 evaluates the proposed technique, while
Section 5 presents a summary of related works. Finally, we
conclude the work in Section 6.

II. BACKGROUND

In this section, we set the background for video content
detection. More specifically, we first introduce the video
content detection process, then, we further describe the process
through a CNN-based classification task.

A. Video Content Detection

Video content detection is typically achieved by three se-
quential modules, namely frame extraction, frame classifica-
tion, and frame label assignment, as shown in Fig. 1 (Video
Content Detection). First, in frame extraction, the video is

split into a set of frames. The number of frames is defined
according to the video coding process. For instance, in general,
a video is made of 23.97 frames/sec [18]. Then, each extracted
frame is individually classified during the frame classification
process. During this phase, a label is assigned for each given
frame by means of a classification technique, e.g. applying a
CNN. Finally, according to the assigned label, the frame label
assignment performs a pre-established process, e.g. alert the
user.

To perform real-time video content classification, the frames
must be classified at video content speed. In other words,
the detection process must have a detection throughput higher
than the video frame rate (e.g. higher than 23.97 frames/sec).
However, besides having to classify each frame individually,
resource-constrained devices like smartphones perform other
tasks in parallel, such as playing the video, or execute other
applications in the background. Consequently, the video con-
tent detection task must be able to use as few as possible
the available resources. The demanded execution by the video
content classification task is mainly caused by the frame
classification module. This because the module must evaluate
each extracted video frame to properly label them. To this
end, the module relies on a classification technique, such as
applying a convolutional neural network.

B. Convolutional Neural Network

The architecture of a CNN is inspired by the human visual
cortex. Such a deep neural network has been successfully
applied to solve different problems in the field of Pattern
Recognition. As shown in Fig. 1, CNN is made of layers with
different purposes, as follows:

• Input layer: it receives an image with a specific resolution
depending on the CNN architecture. The input image is
represented as a matrix of pixels with dimensions (width
x height x depth), where depth is the number of color
channels in the image.

• Convolutional layer (ConvLayer): it convolves a set of
learnable kernels over the image to generate different
feature maps. The first convolutional layers of a CNN
extract low-level features from the input image which
are minor details usually related to contour and color in-
formation. The subsequent ConvLayers extract on top of
that low-level information, middle and high-level features
representing major details related to the shape of the ob-
jects in the image. Such different feature levels extracted
using the ConvLayers provide a complete understanding
of the whole image being processed. One may find CNN
architectures with different number of ConvLayers in the
literature.

• Pooling layer: it applies a non-linear function on portions
of the image covered by a kernel with a predefined
size. The main motivation is dimensionality reduction,
decreasing the number of features while reducing the
chance of overfitting. To this end, the kernel is convolved
over the image, while a non-linear function returns a
value based on Max or Avg Pooling. The former returns
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Fig. 1. Typical video content detection process.

the maximum value of the portion of the image covered
by the kernel, while the later returns the average of all
values.

• Normalization layer: it standardizes the inputs of a layer
to accelerate the learning process.

• ReLU layer: it is an activation function that computes the
output of a neuron. ReLU stands for rectified linear unit
and it is the most used activation function for CNNs. The
reason is that it can avoid that the gradient becomes zero,
i.e. the well-known gradient vanishing problem. Formally,
it is defined as y = max(0,x).

• Dropout layer: it plays an important role in reducing the
chance of overfitting by dropping out some units of the
CNN during training. In other words, it avoids the co-
dependency of neurons during training.

• Fully Connected layer (FC): it is responsible to classify
the image. To this end, the feature maps extracted by the
convolutional part of the CNN are converted to a flattened
structure (vector). The flattened structure goes through the
FC part of the CNN to predict a score for each problem
class.

• Output layer: it predicts a probability for each class.
It is worth to mention that the computational cost of the CNN
model (memory and processing time) is usually directly related
to the number of layers on it. Consequently, to apply CNN-
based solutions on resource-constrained devices, one must find
a compromise between computational cost and accuracy.

III. REAL-TIME VIDEO CONTENT DETECTION IN
RESOURCE-CONSTRAINED DEVICES

To achieve real-time video content detection in resource-
constrained devices our proposed technique is threefold: frame
sampling, real-time lightweight CNN, and a verifier as shown
in Fig. 2. The goal is to increase detection throughput, decrease
memory demands, and maintain or even improve detection
accuracy. The frame sampling technique aims at decreasing
the number of frames that are going to be classified. To this
end, the proposed approach samples the video frames as they
are occurring, consequently decreasing processing demands.

Then, the real-time lightweight CNN classifies the selected
frames. The CNN, in turn, is built taking into account the
accuracy, memory, and detection throughput rates.

Our proposal compounds the CNN architecture according to
the layers processing and memory demands, while also taking
into account the obtained accuracy. Thus, verifier module
aims at improving the system accuracy with no additional
processing demands. To this end, it applies classification
output verification according to the CNN confidence values.

The next subsections describe in detail these three modules,
including the proposed CNN building phase and the verifier
module.

A. Frame Sampling

As described previously, a video is made by a sequence
of frames (Section 2.1), for instance, 23.97 frames/sec. In
general, video content detection approaches in the literature
evaluate all frames, regardless of the application requirements.
However, a video streaming application does not require the
evaluation of all video frames, but only a subset of video
frames can be evaluated, such as those which the frame content
changes significantly, thus, reducing the processing demands.

In light of this, the frame sampling module samples the
video frames which are going to be evaluated. Consequently,
the processing demands can be significantly decreased, as not
all frames will need to be evaluated by the classification ap-
proach. In order to select the video frames, the frame sampling
can be implemented proactively or reactively. In the prior, the
video frames are selected according to their content change.
For instance, they can be evaluated only with respect to the
KeyFrames from MPEG encoded videos [19]. In contrast,
the reactive approach selects the video frames regardless of
their content. For instance, select and evaluate after every N
video frames. Hence, each frame selection technique must be
selected according to the application demands and is context-
specific.

Therefore, the frame sampling approach can significantly
decrease the processing demands but introducing a detection
delay and possible frame losses. In the prior, the user will only
be alerted after a period of time, concerning to the prior frame
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Fig. 2. Proposed real-time video content detection architecture for processing constrained devices.

occurrence. For instance, after N-1 frames have passed. In the
former, the detection technique may lose some video frames,
thus, not alerting the user. However, it is important to note
that, in general, video content detection searches for content
that occurs for several frames. For instance, a video content
detection designed for finding X-rated content in videos, in
such a case, that kind of frames occurs in several sequential
frames, rather than in a single frame, hence, the proposed
approach can properly leverage the frame sampling technique.

B. Real-Time Lightweight CNN

In general, CNN architectures are evaluated with respect to
either accuracy, memory or throughput measures. Hence, in
general, authors often perform CNN architecture modifications
to improve a specific measure, e.g. accuracy, while impacting
other measures, e.g. memory. However, for proper resource-
constrained devices deployment, CNN architectures must pro-
vide high accuracies, with low memory requirements and a
high detection throughput. Therefore, accuracy, memory and
detection throughput must be evaluated together at the CNN
building phase. As a result, the CNN architectures, i.e. the
layers disposal, should be evaluated according to the target
device resource availability and requirements. Consequently,
the built CNN architecture will then be able to provide a real-
time lightweight CNN proper for resource-constrained devices
deployment.

In this work, we propose a novel CNN performance measure
namely lightweight. The lightweight measure is computed
as the sum of the normalized values of memory, detection
throughput, and accuracy. The computation process takes into
account the set of evaluated CNN architectures, and normalizes
all obtained values, e.g. applying a Z-score normalization.
Consequently, each performance measure has the same weight
in the lightweight measure computation.

As a result, the lightweight measure comprises the set of
desired CNN properties for proper deployment in resource-
constrained devices. Therefore, the proposed lightweight mea-
sure enables one to properly evaluate CNN architectures for
real-time CNN-based detection.

C. Verifier

In general, to achieve low memory demands and higher
detection throughput, CNN architectures are modified and a
tradeoff with accuracy is evidenced. However, accuracy degra-
dation may render some applications unfeasible for deploy-
ment, even for resource-constrained devices. Consequently,
despite decreasing the memory demands and increasing the

detection throughput, the accuracy rates should remain similar,
or even improve, to those obtained with the default CNN layer
disposal. On the other hand, to increase detection accuracy,
in general, one must perform more data processing, hence,
decreasing detection throughput.

In the verifier module, we propose verify the CNN output
confidence values. The verifier module accepts or not a
CNN classification according to the CNN output confidence
value. In other words, the verifier module checks whether the
confidence value is higher than a given threshold value. Con-
sequently, only high confidence classifications are accepted,
thus, increasing the system accuracy in a lightweight manner.
This because for each classification, only a simple threshold
verification must be performed without requiring any addi-
tional computation (or CNN modification). Such a threshold
value was experimentally defined considering different verifier
operation points (error-reject tradeoff) as shown in Section IV.

Therefore, when applying the verifier module, the user can
ensure that only highly confident frames were accepted and
classified. As a result, false alarms can be reduced while
processing demands remain low.

D. Discussion
The proposed real-time video content detection architecture

for resource-constrained devices leverages the application set-
tings in which a video content detection technique is typically
employed. In general, such approaches are used in real-time
applications, such as video streaming platforms. Consequently,
we provide real-time detection in a threefold manner. First, the
frame sampling selects only a subset of the video frames for
evaluation. This approach significantly reduces the processing
demands, as not all video frames are evaluated. Second,
for providing a real-time lightweight CNN, we propose a
novel performance measure technique namely lightweight. The
measure takes into account the memory, detection throughput
and accuracy for selecting the best CNN architecture for
deployment. Finally, the verifier module accepts only highly
confident classification, hence, increasing system accuracy
with little or no performance impact. Therefore, the proposed
approach, differently from related works, addresses real-time
video content detection taking into account the resource-
constrained nature of the devices in which it is going to be
deployed.

IV. EXPERIMENTAL EVALUATION

We present our proposal analysis by answering 3 research
questions (RQ). For each research question, we present the
evaluation criteria and the obtained results.
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For evaluation purposes, we consider a scenario in which
a resource-constrained device user aims to detect in real-
time pornographic content in videos. We applied the well-
known Pornography2k dataset [20], a dataset comprising 2
thousand videos, in which 1 thousand are pornographic and
the remaining normal. For both video classes, the dataset
comprises persons from different ethnicities and races in
different activities. The default frame sampling periodicity is
set at 0.3 frames/sec., similar to related works [21]. At total,
the dataset is made of 1,376,037 video frames, extracted from
1,000 pornographic videos and 1,000 normal ones. For evalu-
ation purposes the dataset was split into three parts: training,
validation, and testing - each part comprising a proportion of
60%, 20% and 20%, respectively, for both pornography and
normal videos. Consequently, each dataset comprises different
videos, either normal or pornographic.

The CNN architectures are implemented and evaluated
through Caffe [22] deep learning framework. Each architecture
is trained through the training dataset and evaluated using the
testing dataset. The final results are shown using the testing
samples. Besides, each evaluated CNN architecture is trained
for 50,000 epochs, with the learning rate set individually, by
finding the best CNN parameters empirically [23]. Similar to
related works, all input layers are composed by a 256x256
matrix size [24]. The CNNs were built in an Ubuntu 16.04
desktop equipped with an Intel i7, 16GB of memory, and
an Nvidia Titan X GPU. The model which obtained the best
results on validation dataset is used for evaluation on testing
dataset.

A. RQ1: Does lightweight measure aid CNN building for
resource-constrained devices deployment?

This RQ aims at evaluating whether the usage of the
proposed lightweight measure (see Section 3.2) at the CNN
architecture building phase can improve current state-of-
the-art CNN architectures. To this end, the Caffenet [25]
CNN architecture layout was tailored concerning the obtained
lightweight measure. The goal is to create a custom-tailored
CNN architecture which is built according to the lightweight
measure. To achieve such a goal, the Caffenet architecture was
split into 8 parts, each one made of specific layers as shown
in Fig. 1. The CNN layers were grouped respecting their
purposes; hence, each group performs a sequence of operations
typically found in a CNN architecture. Consequently, the CNN
size can be decreased by removing specific groups without
damage the CNN architecture. The goal is to perform typical
modifications made towards lightweight CNN architectures.
In addition, the input and output layers are always used in
the CNN architecture, while the other layer inside the groups
1 to 6 can be used or not. Due to data skewness, for the
lightweight measure computation, each measure, accuracy,
frames/sec (FPS), and throughput, was normalized using the
Z-score normalization process [26].

Table I shows the obtained accuracy, memory requirements,
detection throughput, and lightweight measure when the group
layers are added or removed. It is possible to note a significant

TABLE I
LIGHTWEIGHT MEASURES OF CNN-BASED VIDEO CONTENT DETECTION

TECHNIQUES.

Caffenet CNN
Architecture Layout Acc. FPS Mem. Lightweight

Groups (MB) Measure
1 2 3 4 5 6
X X X X X X 88.03 63.97 217 -0.41

X X X X X 89.97 81.37 746 -0.38
X X X X 88.92 91.54 743 -0.88

X X X 89.16 98.57 741 -0.68
X X 84.51 68.25 1200 -4.54

X 84.48 73.01 1100 -4.30
X X X X X 89.47 197.21 153 1.59
X X X X 89.30 301.69 9 2.64
X X X 88.33 304.70 7.8 2.12
X X 88.37 343.62 5.2 2.46
X 87.08 423.30 1.7 2.38

memory, accuracy, and throughput tradeoff, when layers are
removed or added. The best lightweight measure CNN was
obtained using groups 1, 2, 3 and 4. It was able to reach
89.30% of accuracy, with only 0.67% accuracy tradeoff to the
most accurate CNN, while demanding only 1.21% of memory
and achieving 270% more detection throughput. When com-
paring to the fastest CNN, it presented 123 fewer frames/sec
detection throughput, while achieving 2.22% higher accuracy
and requiring only 7.3 MB more memory.

Consequently, it is possible to note that the lightweight
measure aids the CNN deployment for resource-constrained
devices. The proposed measure enables to find the optimal
CNN architecture, which improves the set of desired prop-
erties, accuracy, detection throughput, and memory usage,
enabling the proper deployment of the CNN architecture for
resource-constrained devices.

B. RQ2: Does frame sampling technique impact model accu-
racy?

This RQ aims at evaluating the model accuracy tradeoff
caused by decreasing the number of frames used for training
and evaluation purposes, which, as a result, improves detection
throughput (see Section 3.1). To this end, the frame samples
are chosen reactively for both training and evaluation. In other
words, video frames are selected at specific time intervals,
instead of choosing specific frames, such as KeyFrames. The
reason is that the frame sampling aims at increasing the
detection throughput. Therefore, choosing the frames reac-
tively enables to further decrease the demanded processing.
Consequently, the CNN architectures are trained and evaluated
with respect to a chosen frame sampling periodicity.

Fig. 3 shows the relation between CaffeNet CNN accuracy,
more specifically true-negative and true-positive rates, and
frame sampling interval. It is possible to note that increasing
the frame sampling interval introduces no significant effect
on model accuracy. For instance, when using a 1.5-second
frame sampling detection delay, as frames will be evaluated
in higher time intervals. Thus, the frame sampling periodicity
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Fig. 3. CaffeNet CNN architecture accuracy and frame sampling tradeoff.

Fig. 4. CaffeNet CNN error-reject tradeoff applying verifier module with 1.5
second frame sampling interval.

must be selected according to the administrator needs, consid-
ering the applications-specific requirements, and the resource-
constrained device capacity.

C. RQ3: Does verification technique aid at improving model
accuracy?

This RQ aims at evaluating the verifier module improvement
on accuracy (see Section 3.3). To this end, the CaffeNet CNN
architecture with 1.5-second frame sampling interval was used
(Fig. 3, Verifier Operation Point). Then, the CNN confidence
values were used as a measure of confidence in frame classifi-
cation. Consequently, the verifier module establishes whether
the frame outcome should be accepted or not taking into
account the confidence values. To find the verifier module
operation points, the CRT [27] approach was used, which
relies in class-specific thresholds for confidence computation.

TABLE II
CAFFENET ACCURACY IMPROVEMENT THROUGH THE PROPOSED

VERIFIER MODULE.

Operation Point Accuracy True-Positive (%) True-Negative
No Verifier 88.03 88.99 85.79

10% Rejection 91.01 91.97 88.81
30% Rejection 95.93 97.54 92.47
50% Rejection 97.66 99.42 94.02

Fig. 4 shows the CaffeNet CNN error-rate and rejection rate
tradeoff. It is possible to note a direct relationship between the
rejection and error rates. In other words, when increasing the
rejection rate, one is able to decrease the system error rate,
hence, further improving the system accuracy. Therefore, the
verification module aids the CNN-based classification system
to increase the obtained accuracy, with low or no processing
demands, as the verification module only applies a simple
threshold for the classification verification.

Table II further details the accuracy improvement of the
verification module by applying the operation points marked in
Fig. 4. It is possible to note a significant accuracy improvement
with only 10% rejection rate, improving 2.98% and 3.02% the
true-positive and true-negative rates respectively. In addition,
by further increasing the rejection rate, for instance with a 30%
rejection rate, the true-positive and true-negative rates further
increases by 8.55% and 6.68%, respectively.

Therefore, the proposed verification technique enables to
significantly improve detection accuracies with no significant
processing tradeoffs. An application applying such a technique
is able to verify whether the outcome of a lightweight CNN
can be reliably accepted, hence, decreasing the ratio of false-
positives, further increasing user reliability on the detection
scheme.

D. Discussion

The design of a CNN-based detection scheme for resource-
constrained devices must consider the tradeoffs that such
porting introduces. The evaluation results have shown that
the proposed lightweight measure aids the proper assess-
ment of the introduced tradeoffs between memory, detection
throughput, and accuracy. By leveraging such a measure, the
administrator is able to properly establish which CNN archi-
tecture should be deployed in production. Nonetheless, the
evaluation of the proposed frame sampling technique, in order
to further increase the detection throughput, has shown that
less frames can be used for evaluation and training purposes.
Consequently, the administrator is able to significantly increase
detection throughput, with little effect on accuracy. Finally, the
evaluation of the proposed verification module has shown that
one is able to employ the CNN confidence values as a measure
of reliability to accept the lightweight CNN classification
outcome. Hence, by using simple classification thresholds, the
administrator can improve the detection accuracy.

Therefore, the evaluation results have shown that the pro-
posed real-time video content detection architecture for pro-
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cessing constrained devices is able to significantly improve
detection throughput, accuracy, and memory demands.

V. RELATED WORKS

In general, proposed CNN architectures aim at either ac-
curacy improvement, memory usage reduction or detection
throughput increase. However, little or no effort has been
conducted on Caffenet was made based on Alexnet, more
specifically. It was built by a wrong Alexnet implementation.
However, it is widely used in the literature as it presents rea-
sonable better results than Alexnet architecture [28]. Finally,
another widely used architecture was proposed by Szegedy et
al., namely GoogleNet [29], also known as Inception, made
by 22 layers. GoogleNet assumes that an optimal local sparse
structure can be approximated and covered by available and
ready densely components.

On the other hand, due to the memory limitations of
mobile devices, several new CNN architectures were proposed
towards smaller architectures [16]. For instance, Mobilenet
[30], proposed by Google, applies separable in-depth convolu-
tional functions to significantly decrease the number of used
parameters, hence, decreasing the memory needs. Similarly,
another CNN architecture, namely Squeezenet [31], also aims
at decreasing the memory needs by decreasing the number of
needed CNN parameters. Finally, ShuffleNet [32] decreases its
memory size by applying two operations, the point to point
convolutional and channel exchange, aiming at decreasing
memory and processing needs while also maintaining the
accuracy.

Despite presenting low memory needs, the detection
throughput has also been chased by related works. For in-
stance, YOLO [33] architecture, aimed at detecting image
objects, is able to process in real-time, reaching up to 45
frames/sec. Similarly, in Fast R-CNN [34] architecture an
object recognition approach is proposed by applying region-
based convolutional networks. An enhancement is proposed
by Faster R-CNN [35], which predicts the object boundaries
according to its image position.

TABLE III
LIGHTWEIGHT MEASURES OF CNN-BASED VIDEO CONTENT DETECTION

TECHNIQUES.

CNN Architecture Accuracy Throughput Memory
(frames/sec) (MB)

Alexnet 87.56 61.12 217
Caffenet 87.97 63.97 217

GoogleNet 91.51 18.29 48
Mobilenet 88.98 18.53 8.7
PVANet 83.88 10.79 292
Resnet 88.64 22.50 90

Shufflenet 86.76 37.82 3.5
Squeezenet 87.27 31.91 2.9

VGG 91.20 4.26 269
Proposed Approach 89.30 301.69 9.0

Table III shows the proposed approach performance with
respect to the related works using the model which obtained

the best lightweight measure (Table I). Our technique signifi-
cantly improves memory demands, and detection throughput,
even when compared to CNN architectures designed for such
task, with little or no accuracy impact. Besides, we are able to
improve further detection accuracy by applying the verifier
module, and detection throughput by applying the frame
sampling technique.

VI. CONCLUSIONS AND FUTURE WORK

This paper has addressed the challenge of designing a CNN-
based classification scheme for resource-constrained devices.
To fulfill such a challenging task, our proposed architecture
takes into account the desired properties from a lightweight
CNN-based classification approach. In other words, we couple
the memory requirements, detection throughput and accuracy
during the CNN building and evaluation tasks. First, we
introduce a lightweight measure which aids the administrator
to properly establish the best CNN for resource-constrained
devices. Then, by employing our frame sampling technique,
we have shown that one is able to significantly improve
detection throughput with little or no effect on accuracy.
Finally, our verification module further improves the accuracy
of the designed lightweight CNN, by applying a simple
classification threshold according to the classification outcome.
Consequently, our proposed approach significantly improved
accuracy, memory demands, and detection throughput. For
future work, we are going to port and evaluate the proposed
approach performance in embedded devices. In addition, we
plan to evaluate the proposed technique in other areas, such
as image object recognition.
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Infantil), a special division for pornography crackdown of
Federal Police of Brazil for the support to the project.

REFERENCES

[1] ”How Many Phones Are In The World? 1 Billion More
Mobile Connections Than People Worldwide: 2019.”
https://www.bankmycell.com/blog/how-manyphones- are-in-the-world.
Accessed: jan. 2020.

[2] ”Number of smartphone users worldwide from 2016 to 2021”
https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/. Accessed: jan. 2020.

[3] S. Y. Nikouei, Y. Chen, S. Song, R. Xu, B. Y. Choi and T. R. Faughnan,
”Real-time human detection as an edge service enabled by a lightweight
CNN”. Proceedings - 2018 IEEE International Conference on Edge
Computing, EDGE 2018 - Part of the 2018 IEEE World Congress on
Services, Sep. 2018, 125–129.

[4] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D.
Rueckert, and Z. Wang, ”Real-Time Single Image and Video Super-
Resolution Using an Efficient Sub-Pixel Convolutional Neural Net-
work”. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Decem, 2016, 1874–1883.
DOI:https://doi.org/10.1109/CVPR.2016.207.

[5] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
F. F. Li, ”Large-scale video classification with convolutional neural
networks”. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Sep. 2014, 1725–1732.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:35:57 UTC from IEEE Xplore.  Restrictions apply. 



[6] A. Krizhevsky, I. Sutskever and G. E. Hinton, ”ImageNet classification
with deep convolutional neural networks”. Communications of the ACM.
60, May 2017, 84–90. DOI:https://doi.org/10.1145/3065386.

[7] A. Plieninger, ”Deep Learning Neural Networks on Mobile Platforms”,
2015.

[8] H. Ye, Z. Wu, R. Zhao, X. Wang, Y. Jiang and X. Xue, ”Evaluating
Two-Stream CNN for Video Classification Categories and Subject
Descriptors”, 2015, 435–442.

[9] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X.
Wang, L. Wang, G. Wang, J. Cai and T. Chen, ”Recent Advances in
Convolutional Neural Networks”, Dec. 2015.

[10] K. Simonyan and A. Zisserman, ”Very Deep Convolutional Networks
for Large-Scale Image Recognition”, Sep. 2014, 1–14.

[11] M. Imani, D. Peroni, Y. Kim, A. Rahimi and T. Rosing, ”Efficient neural
network acceleration on GPGPU using content addressable memory”.
Proceedings of the 2017 Design, Automation and Test in Europe, 2017,
1026–1031. DOI:https://doi.org/10.23919/DATE.2017.7927141.

[12] H. Park, D. Kim, J. Ahn and S. Yoo, ”Zero and data
reuse-aware fast convolution for deep neural networks on
GPU”. 2016 International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS, 2016, 1–10.
DOI:https://doi.org/10.1145/2968456.2968476.

[13] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and C. C. Chen,
”MobileNetV2: Inverted Residuals and Linear Bottlenecks”. Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Dec. 2018, 4510–4520.

[14] A. Lavin and S. Gray, ”Fast Algorithms for Convolutional Neural
Networks”. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016, 4013–4021.

[15] J. Wu, C. Leng, Y. Wang, Q. Hu and J. Cheng, ”Quantized convolutional
neural networks for mobile devices. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition”,
Decem, 2016, 4820–4828. DOI:https://doi.org/10.1109/CVPR.2016.521.

[16] D. Anisimov and T. Khanova, ”Towards lightweight convolutional neural
networks for object detection”. 2017 14th IEEE International Conference
on Advanced Video and Signal Based Surveillance, AVSS, Oct. 2017.

[17] N. Liu, L. Wan, Y. Zhang, T. Zhou, H. Huo and T. Fang, ”Exploiting
Convolutional Neural Networks With Deeply Local Description for
Remote Sensing Image Classification”. IEEE Access. 6, Jan. 2018,
11215–11227. DOI:https://doi.org/10.1109/ACCESS.2018.2798799.

[18] Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu and S. Yoshimura. ”A
psychophysical study of improvements in motion-image quality by using
high frame rates”. Journal of the Society for Information Display. 15,
1, 2007, 61. DOI:https://doi.org/10.1889/1.2451560.

[19] M. Perez, S. Avila, D. Moreira, D. Moraes, V. Testoni, E. Valle, S. Gold-
enstein and A. Rocha, ”Video pornography detection through deep learn-
ing techniques and motion information. Neurocomputing”. 230, Mar.
2017, 279–293. DOI:https://doi.org/10.1016/j.neucom.2016.12.017.

[20] D. Moreira, S. Avila, M. Perez, D. Moraes, V. Testoni, E. Valle, S.
Goldenstein and A. Rocha, ”Pornography classification: The hidden
clues in video space–time. Forensic Science International”. 268, Nov.
2016, 46–61. DOI:https://doi.org/10.1016/j.forsciint.2016.09.010.

[21] J. Y. H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga
and G. Toderici, ”Beyond short snippets: Deep networks for video
classification”, 2015.

[22] ”Caffe - Deep Learning Framework: 2019”.
https://caffe.berkeleyvision.org/. Accessed: 2019-09-12.

[23] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao and
S. Yan, ”CNN: Single-label to Multi-label”. 6, 1, 2014, 1–14.
DOI:https://doi.org/10.1109/TPAMI.2015.2491929.

[24] K. Nogueira, O. A. B. Penatti and J. A. Santos, ”Towards
better exploiting convolutional neural networks for remote
sensing scene classification”. Pattern Recognition, 2017.
DOI:https://doi.org/10.1016/j.patcog.2016.07.001.

[25] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama and T. Darrell, ”Caffe: Convolutional Architecture for Fast
Feature Embedding”. arXiv preprint arXiv:1408.5093, 2014.

[26] A. Jain, K. Nandakumar and A. Ross, ”Score normalization
in multimodal biometric systems”. Pattern Recognition, 2005.
DOI:https://doi.org/10.1016/j.patcog.2005.01.012.

[27] G. Fumera, F. Roli and G. Giacinto, ”Rapid and Brief Communication
Reject option with multiple thresholds”. 33, 2000, 2099–2101.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, T. Darrell and U. C. B. Eecs, Jia - Caffe - Convolutional
Method for Fast Feature Embedding, 2014.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, ”Going deeper with convolutions”.
Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Oct. 2015, 1–9.

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto and H. Adam, ”MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”, Apr. 2017.

[31] F. N. Iandola, S. Han, M. W, Moskewicz, K. Ashraf, W. J. Dally and K.
Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size, Feb. 2016.

[32] X. Zhang, X. Zhou, M. Lin and J. Sun, ”ShuffleNet: An Extremely Effi-
cient Convolutional Neural Network for Mobile Devices”. Proceedings
of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Dec. 2018, 6848–6856.

[33] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ”You only look once:
Unified, real-time object detection”. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. De-
cem, 2016, 779–788. DOI:https://doi.org/10.1109/CVPR.2016.91.

[34] R. Girshick, ”Fast R-CNN”. Proceedings of the IEEE Interna-
tional Conference on Computer Vision. Inter, 2015, 1440–1448.
DOI:https://doi.org/10.1109/ICCV.2015.169.

[35] S. Ren, K. He, R. Girshick and J. Sun, ”Faster R-CNN: Towards
Real - Time Object Detection with Region Proposal Networks”. IEEE
Transactions on Pattern Analysis and Machine Intelligence. 39, 6 ,2017,
1137–1149. DOI:https://doi.org/10.1109/TPAMI.2016.2577031.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:35:57 UTC from IEEE Xplore.  Restrictions apply. 


