A Host-based Intrusion Detection Model Based on
OS Daversity for SCADA

Bruno B. Bulle, Altair O. Santin, Eduardo K. Viegas, Roger R. dos Santos
Graduate Program in Computer Science - Pontifical Catholic University of Parana, Brazil
{bruno.bulle, santin, eduardo.viegas, robson.roger} @ppgia.pucpr.br

Abstract—Supervisory Control and Data Acquisition (SCADA)
systems have been a frequent target of cyberattacks in Industrial
Control Systems (ICS). As such systems are a frequent target of
highly motivated attackers, researchers often resort to intrusion
detection through machine learning techniques to detect new
kinds of threats. However, current research initiatives, in general,
pursue higher detection accuracies, neglecting the detection of
new kind of threats and their proposal detection scope. This
paper proposes a novel, reliable host-based intrusion detection
for SCADA systems through the Operating System (OS) diversity.
Our proposal evaluates, at the OS level, the SCADA commu-
nication over time and, opportunistically, detects, and chooses
the most appropriate OS to be used in intrusion detection for
reliability purposes. Experiments, performed through a variety
of SCADA OSs front-end, shows that OS diversity provides
higher intrusion detection scope, improving detection accuracy
by up to 8 new attack categories. Besides, our proposal can
opportunistically detect the most reliable OS that should be used
for the current environment behavior, improving by up to 8%,
on average, the system accuracy when compared to a single OS
approach, in the best case.

Index Terms—Intrusion Detection, OS Diversity, SCADA, Ma-
chine Learning

I. INTRODUCTION

Industrial Control Systems (ICS) are used for the monitoring
and management of industrial processes, encompassing both
hardware and software components [1]. Over the last years,
modern ICS has become connected to a wide range of com-
ponents, including Supervisory Control and Data Acquisition
(SCADA) systems, Distributed Control Systems (DCS), and
even Programmable Logic Controllers (PLC) [2]. SCADA is
of utmost importance in ICS; it responsible for the collection,
monitoring, and handling of different industrial assets. There-
fore, if an attacker can obtain remote privileged access to the
SCADA server, she may cause significant economic losses or
even the unavailability or destruction of industrial assets [3].
For instance, in 2015, a power plant in Ukraine was a target
of a cyberattack that caused a countrywide blackout, affecting
over 225 thousand clients [1].

The security of SCADA systems must be performed through
a wide range of security mechanisms, including firewalls, air-
gapped infrastructures, and Intrusion Detection Systems (IDS),
used for the monitoring and detection of malicious activities
in an environment [4]. In the last years, several approaches
have been proposed for the detection task in IDS, through
either signature-based or behavior-based techniques [5]. The
prior refers to detection techniques wherein the attack pattern

978-1-7281-5414-5/20/$31.00 ©2020 IEEE

is previously known, thus, can be achieved through signature
matching. However, SCADA is a frequent target of zero-
day attacks, which cannot be detected by signature-based
approaches, taking into account that such attacks will not
have a matching signature. On the other hand, behavior-
based approaches aim at modeling the system behavior for
the detection of attacks, in which, in their majority, authors
rely on machine learning (ML) techniques through pattern
recognition approaches [6]. In such a scheme, a classification
model, obtained through a training dataset, can be used for the
detection of new attacks, as long as they behave similarly to
the modeled threat [7].

Proposed ML approaches for intrusion detection tasks in
general pursue higher detection accuracies, through custom-
tailored ML algorithms, or more complex ML pipelines, e.g.,
further preprocessing tasks [8]. The range of attacks (detection
surface) that can be detected by any ML algorithm is strictly
related to the underlying set of used features. For instance,
an IDS built for Linux Operating Systems (OS) is only able
to detect attacks that affect the extracted feature set from
the Linux OS. Even if a state-of-the-art ML algorithm is
used — if its input features, tightly related to the environment
— are not affected by an attack’s occurrence, the attacker
will be able to evade the detection mechanism [9]. This
situation is even worse in the ICS, considering that attackers
are highly motivated to evade detection mechanisms for-profit
purposes [10] or due espionage activities [11].

This paper proposes a novel and reliable host-based intru-
sion detection model for SCADA systems that leverage OS
diversity to increase the scope and accuracy of intrusion detec-
tion in a twofold implementation manner. First, our model con-
tinuously monitors host-based features for unreliable activities
— that are not known to the underlying classification model,
and the used OS. Second, our model leverages OS diversity
for further increasing the detection surface, thus, increasing the
system accuracy. The proposal insight is that higher detection
accuracy can be achieved through OS diversity, rather than
custom tailoring traditional ML classifiers.

In summary, the paper’s contributions are:

« A publicly available and realistic testbed for the building
of diverse IDS for SCADA. The built dataset is composed
of over 100 legitimate clients and 19 different attack
categories;

o Evaluation of traditional ML techniques for intrusion
detection in SCADA. Our proposal results indicate that

691

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

OS diversity can significantly improve detection accuracy
for several attack categories;

¢ A novel, reliable intrusion detection model for SCADA
based on OS diversity. Our proposed model can leverage
OS diversity for increasing the overall system accuracy,
while also detecting new attack categories to the under-
lying ML model;

II. BACKGROUND
A. Supervisory Control and Data Acquisition

SCADA must be able to perform the collection and ac-
tuation on industrial assets through communication protocols
such as MODBUS, DNP3, PROFINET, PROFIBUS, and OPC,
in a master/slave scheme [10]. SCADA systems are high
availability services, and its maintenance, for update purposes,
for instance, becomes a challenge. SCADA security mech-
anisms must be as reliable as possible, taking into account
that they must ensure the security of potentially outdated
systems that are often the target of skilled and highly motivated
attackers. SCADA system is commonly used in Smart Grid, an
evolution of traditional energy systems has as its objective the
generation, transmission, and distribution of electricity more
autonomously and efficiently [12]

B. Host-based Intrusion Detection

In general, intrusion detection is achieved by four sequential
modules, namely data acquisition, feature extraction, detec-
tion, and alert. The data acquisition module extracts the
environment data for further inspection, e.g., the OS usage
metrics such as used memory, number of processes, and
connected users. Feature extraction module extracts behavioral
features from the collected data, e.g., the number of the new
process, and connected users in a given time window. Finally,
the classification module applies a detection algorithm for the
identification of intrusion attempts, e.g., a Machine Learning
(ML) model classifies a given event as either normal or attack.
The alert module then reports events classified attack.

The ML model is built from a training dataset, through a ML
algorithm that extracts a behavioral model from such data. The
ML model reliability relies on the input data used for training
purposes, as well as the set of extracted features. In other
words, if an attack does not affect the extracted feature values,
or behaves similarly to the normal behavior, the ML model will
misclassify it. Misclassification of events is typically measured
through false-positive (FP) and false-negative (FN) rates. The
FP rate denotes the ratio of normal events misclassified as an
attack, while the FN rate denotes the ratio of attack events
misclassified as normal.

III. RELATED WORKS

Authors often pursue Byzantine Fault Tolerance (BFT)
to provide dependability and security in SCADA. However,
SCADA is a highly complex system that can not be easily
replicated as a state machine for BFT purposes. Nogueira et
al. [13] have identified the properties that make the building
of a BFT SCADA a challenge, which includes multiple

entry points, multi-threading, non-deterministic timestamps,
and asynchronous messages. As a result, the building of a
SCADA applying system diversity is also an open challenge.
The reason is its states must be replicated through the diverse
platforms, for instance, OS and several server applications.
Consequently, SCADA security is often pursued through tra-
ditional security mechanisms, such as firewalls and intrusion
detection.

Intrusion detection for SCADA is, in general, performed
through behavior-based approaches, applying a pattern recog-
nition ML scheme. For instance, Shitharth S. et al. [14] pro-
pose a network-based intrusion detection scheme for SCADA
applying neural networks and feature selection for network
traffic classification. Their approach can improve detection
accuracy through feature selection. However, their system
accuracy is tightly coupled with the underlying feature set,
while the detection of new attacks is not evaluated.

Leandros A. M. et al. [15] aims higher detection rates for
intrusion detection in SCADA through an ensemble classifier
coupled with feature selection. The authors were able to
improve detection accuracy, but the detection of new attacks
is not evaluated, and only a single subset of features is used
for training and selection purposes.

Jiexin Z. et al. [16] proposed an intrusion detection scheme
through telemetry and periodicity features analyzers. Their ap-
proach can increase detection accuracy through the evaluation
of several subsets of features. The detection of new attacks is
not evaluated. Besides, their approach relies on a single attack
entry point, the SCADA server.

Rocio L. P. et al. [17] performed several preprocessing
techniques and for a set of ML classification models to
improve accuracy. The authors were able to improve detection
accuracy through feature normalization and feature subset
selection, while the detection of new attacks was not evaluated.

To the best of our knowledge, our work is the first approach
that aims to reliable intrusion detection in SCADA applying
OS diversity. Security through OS diversity is known and
easy to replicate aspects that can be used for higher intrusion
detection rates in SCADA [18].

IV. A RELIABLE HOST-BASED INTRUSION DETECTION
MODEL FOR SCADA

In this section, we present the novel reliable host-based
intrusion detection model for SCADA systems through OS di-
versity means. It consists of two main steps, namely OS Behav-
ior Classification and OS Pool-Selector, that aim to improve
SCADA security through OS diversity, further increasing the
intrusion detection capability to detect new attacks.

The proposal, shown in Figure 1, considers a set of diverse
OSs, which acts as the SCADA front-end. During execution,
a single front-end is continuously used by the OS Behavior
Classification module, e.g., a Windows OS acting as the
SCADA front-end.

As our proposal considers host-based intrusion detection,
an event can be represented as a set of OS-related usage
metrics in a given time-window analysis, e.g., CPU usage in

692

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

Front-end OS
Change |~

r—————— L
OS Evaluator |

| |
| |
| | Pool-Selector | |
| |
|
|

-
| Behavior Classification |
|

|
|
|
|
I
|
g) |
| T |
a3 \: Classification |
L o2 |
0S Pool Selector :>j } : Feature Extraction :
Tl |
il Data Acquistion I
I |
] | SO — ¢—J
Network Traffic 1

< - [PooCo000000000s o e
SCADA | 0S
Client I SCADA Front-end N |}
| 1

Fig. 1. Proposed reliable host-based intrusion detection model for SCADA
through OS diversity.

the last 10-s interval. The time window is classified by an ML
model for finding anomalous/intrusion behavior. The event to
be classified is sent by the OS Pool-Selector module, which
evaluates the current environment behavior for selecting the
most reliable OS.

The OS Pool-Selector module, in turn, aims at defining
whether the currently used OS SCADA front-end can be
reliably used for the detection of further intrusion attempts.
The module applies an evaluator for the identification of
unreliable (new to the ML model) behavior; for instance, it
may evaluate the ML classification confidence for the current
classified event.

Unreliable behavior is assumed to be intrusion attempts that
can not be detected by the current SCADA OS front-end; thus,
other OS must be used. Therefore, the system conservatively
changes the SCADA OS front-end when unreliable events are
detected in order to improve the overall system accuracy and
reliability. The next subsections further detail the OS Behavior
Classification and OS Pool-Selector modules.

A. OS Behavior Classification

Our assumption is that OS diversity is able to provide more
accurate, more reliable and a higher detection scope. In other
words, OS diversity improves the detection of other categories
of attacks.

Running an intrusion detection mechanism that relies on
SCADA diversity is not easy task. Our proposal is based on
a SCADA front-end mechanism to facilitate the achievement
of diversity. The proposal insight is that intrusion detection
through diversity means can be achieved at the front-end
level, instead of requiring the deployment of several OS with
replicated SCADA servers. The rationale is SCADA front-
end OS will also evaluate the network packets throughout the
client/server communication; thus, the OS usage metrics will
also be affected when the SCADA is under attack.

The OS Behavior Classification module is performed con-
tinuously by the current OS in execution as the SCADA front-
end (SCADA Front-end N, Figure 1). The module is executed
through the data acquisition stage, which periodically collects

0s SCADA Client (Workload)
Pool-Selector

————————— =
|

r _________ il
| Behavior Classification |

Behavior Classification

r i |
: ! | '
| Il
| [: [mert(soarpy) || |![Alert(soarpy) || |
|| Evaluator : | : — | : — (I
I'| (skLearn, | | II Classification (skLearn) || II Classification (skLearn) || |
|
| LT | : | | Feature Extraction | : I| Feature Extraction | : :
| Rp——————— | Spp————
| l | |
: : | | System Monitor | | Sysstat I |
0! Windows Linux l
| Pool- il |
| Selector I | Windows Front-end Linux Front-end |
: (s0APpy) ||
| |

SCADA (SCADABR)

Fig. 2. Prototype architecture of the reliable host-based intrusion detection
model for SCADA.

the OS usage metrics in a given period. Therefore, the module
goal is to classify the current OS usage metrics (features’
value), in a time window, as either normal or attack (intrusion).

The collected OS usage metrics values are used to com-
pound a feature vector, which is then evaluated by the classi-
fication module. The final classification output and the feature
vector is forwarded for the OS Pool-Selector module, for
further inspection.

By using such an approach, our proposal can provide diverse
OS metrics for the identification of attacks occurring in the
SCADA server. Each OS front-end holds its ML model, built
according to its OS metrics, achieving diversity in intrusion
detection. Moreover, no additional changes are required to the
SCADA server for the deployment of our proposal.

B. OS Pool-Selector

The OS Pool-Selector module goal is to define if the current
SCADA front-end OS can detect the current environment
behavior reliably. In other words, the module’s goal is to
establish which front-end OS must be currently used.

The module receives as input the current event classified by
the OS Behavior Classification for further evaluation. Then, it
evaluates if the classified event was reliably detected by the
current front-end OS, defining whether the event is unknown
to the underlying ML model or not, for instance, by evaluating
the ML model classification confidence.

If a reliable event is found, the behavior is assumed to be
known to the underlying ML model, and the current front-
end OS remains unchanged. On the other hand, the module
switches the current front-end OS in execution if an unreliable
event is found (Front-end OS Change, Figure 1).

As a result, our proposal can continuously assess the current
reliability of the SCADA front-end OS. Therefore, through
the continuous evaluation of the current front-end performed
classifications, the module establishes the most fitted front-end
OS to be used for the current environment behavior, increasing
the proposal reliability through diversity in intrusion detection.

693

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

V. PROTOTYPE

A proposal prototype was implemented and deployed in a
distributed environment, as shown in Figure 2. The SCADA
server was deployed through ScadaBR version 1.0CE. The
proposed front-end mechanism was deployed on top of an
Ubuntu virtual machine, which mirrors the network traffic —
for this proof of concept (PoC), we did not switch the current
OS, but consider both for comparison reasons. The SCADA
clients access the SCADA server through the Ubuntu address,
which then mirrors the request to the proper currently used
front-end as defined by the OS Pool Selector module.

In the SCADA front-end, two OSs were used, a Windows
10 and an Ubuntu Linux 20.04. Both OSs were deployed as a
virtual machine with four virtual cores and 8 GB of memory.
The Windows and Linux OS metrics were collected through
System Monitor and Sysstat, respectively. In total, 22 metrics
are collected in Windows and 39 in Linux. The collected
features are related to the OS usage statistics such as CPU
usage time, number of processes, number of network packets
sent/received, among others.

The features are summarized within a time-interval to
compound a feature vector. For our evaluation, a 10-s window
interval was used. The collected feature set is then classified by
the ML algorithms as implemented through the SkLearn API
version 0.23. The classified event and its features are sent to
the OS Pool-Selector module through the SOAPpy web service
API version 0.9.8. The OS Pool-Selector module evaluates
the received event through SkLearn. If an unreliable event
is found, the front-end updates the network traffic rules to
forward further requests to another OS, transparently changing
the SCADA OS for attack detection.

VI. EVALUATION

The present evaluation focuses on answering three research
questions: (Q1) Does OS diversity aids at improving system
detection accuracy? (Q2) Does the proposed model improve
the overall detection accuracy? (Q3) What is the front-end
frequency change over time?

The next subsections describe how do we build the model
and testbed, and how does it perform when facing new
SCADA targeted attacks.

A. Testbed

Our proposal relies on a set of a different OS to provide
reliability to SCADA. However, the majority of SCADA
related intrusion datasets in the literature are outdated, unre-
alistic, and specific to a single testbed setting. Therefore, for
the proper evaluation of our proposal, we have assembled a
testbed containing diverse and realistic behavior from SCADA
production environments.

In our testbed, a SCADA server is deployed through the
SCADABR version 1.0CE, with several popular services typi-
cally reported in the literature [19]. The built testbed comprises
two possible behaviors, namely normal and attack.

TABLE I
WINDOWS AND LINUX OS FRONT-END TESTBED DATA.
Testbed
Windows Linux
Behavior Net. Exec. Net. Exec.
(Tool) Pkt. | Time (m) Pkt. | Time (m)
Normal (Workload) 5.1B 5760 5.1B 5760
Auth Crawler (Acunetix) 77k 313 77k 311
Nonauth Crawler (Acunetix) | 128k 184 129k 182
SQL Injection (Acunetix) 13k 212 13k 210
XSS (Acunetix) 6k 1028 6k 1027
Code Injection (Arachni) 17k 392 17k 391
DoSAllRegisters (Smod) 58k 153 58k 152
Get Functions (Smod) 2k 133 2k 133
Scanner (ModFuzzer) 0.4k 4 0.4k 4
DumpScan (ModFuzzer) 1k 4 1k 4
Portscan (Nmap) 140k 33 140k 33
Modbus Scan (PLCScan) 3k 22 3k 21
Basic scan (Nessus) 45k 52 45k 52
Advanced scan (Nessus) 35k 33 36k 34
Default scan (Nexpose) 150k 56 151k 56
Advanced scan (Nexpose) 38k 86 39k 87
SQL Injection (Arachni) 4k 70 4k 69
Fuzzing (Smod) 320k 20 320k 20
Scanner (Smod) 2k 113 3k 112
DoSAlICoils (Smod) 296k 164 296k 160

The normal behavior is generated by 100 client machines
that continuously use HTTP, HTTPS, SSH, SMTP, and MOD-
BUS protocol communication with the SCADA server. Each
normal service communication varies the client throughput
(35%, 70%, and 100% gigabit throughput), request frequency
(Osec to 4sec), and requested content (1000 possible service
content for each protocol).

Each used protocol was generated through well-known
workload tools, while the ScadaBR server properly reply each
received request. As a result, it mimics the highly variable
behavior of legitimate SCADA clients in real-world environ-
ments.

For the attack behavior generation, several well-known and
publicly available tools were used, taking into account the
commonly observed attacks in both web applications and
SCADA servers, considering that SCADA is, in general,
exposed to the Internet. In total, 19 attacker machines period-
ically generate application and network-level attacks targeted
to the SCADA server. Similarly, the attack behavior varied
attack frequency and throughput.

The testbed used the same settings and tools used for
prototype development (Figure 2). Therefore, two testbed
executions were performed for the proper data collection of
OS diversity. One execution used a Windows OS as a front-
end for both normal and attacker machines, and the other uses
the Linux OS as front-end.

Table I shows the amount of generated network packets and
execution time for each attack in our testbed for both Windows
and Linux scenarios, where each execution lasted 96 hours. It
is important to note that, as implemented by our prototype
(described in section V), one instance for classification is
generated at every 10-s time interval for both Windows and
Linux OS front-ends.

694

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

101

0.8

0.6

True Positive Rate
o
S

0.2 1
--- Random Forest

Extra Tree
—--- Gradient Boosting

0.0

T T T T
0.4 0.6 0.8 1.0
False Positive Rate

0.2

Fig. 3. ROC curve for three classifiers in Windows OS test data. It is possible
to note similar results despite using different machine learning algorithms.

B. Model Building

The built datasets were used for the building of two OS-
related ML classification models, for Windows and Linux OSs.
The testbed data was split into train, test, and validation data.
The train and test datasets were composed by 50% of the total
normal events, and 5 out of 19 attack categories (Advanced
scan (Nexpose), SQL Injection (Arachni), Fuzzing (Smod),
Scanner (Smod), and DoSAIllCoils (Smod), Table I), wherein
70% of such data was used for training and the remaining 30%
for testing.

The remaining 50% of normal traffic and 14 attack cat-
egories are used for the final ML model validation. By
applying such an approach, we can reproduce the production
environment behavior, wherein the ML model will encounter
new (unknown) attack behavior. The evaluated classification
models were implemented through the SKLearn API version
0.23.

Three widely used classification models were evaluated, a
Random Forest and a Gradient Boosting both with 100 deci-
sion trees as their base learners and an Extra Tree classifier.
The classifiers were trained through train and test datasets,
while the final accuracy is reported through the validation
dataset. A random undersampling without a replacement algo-
rithm was applied in the training data to remove the unbalance
between the classes.

C. On OS Diversity for Reliable Intrusion Detection

The first experiment relates to question Q1 and evaluates
the classifier performance for the classification of new attack
categories through different OS feature sets. Figure 3 shows
the Receiver Operating Characteristics (ROC) curve for the
three evaluated ML models in the Windows OS test dataset.
It is possible to note that the evaluated classifiers presented
similar accuracy rates concerning their underlying OS feature
sets; thus, ML classification accuracies are strictly dependent
on the used feature set.

TABLE II
CLASSIFICATION PERFORMANCE WITH RANDOM FOREST CLASSIFIER
OBTAINED BY WINDOWS, LINUX AND OUR PROPOSAL.

Accuracy (%)
Behavior Proposal
(Tool) Windows | Linux | Worst Best
Normal (Workload) 91.40 98.79 91.40 98.79
Auth Crawler (Acunetix) 85.00 100.00 | 93.76 100.00
Nonauth Crawler (Acunetix) 86.74 83.00 86.72 86.74
SQL Injection (Acunetix) 84.66 100.00 | 93.66 100.00
XSS (Acunetix) 83.74 77.98 83.73 83.74
Code Injection (Arachni) 90.03 83.50 90.01 90.03
DoSAllRegisters (Smod) 84.05 96.83 92.07 96.83
Get Functions (Smod) 85.71 100.00 | 94.67 100.00
Scanner (ModFuzzer) 93.75 75.00 93.74 93.75
DumpScan (ModFuzzer) 94.11 54.54 94.07 94.11
Portscan (nmap) 88.41 98.03 98.01 98.03
Modbus Scan (PLCScan) 81.19 55.29 81.13 81.19
Basic scan (Nessus) 72.16 82.48 81.61 82.48
Advanced scan (Nessus) 79.05 95.65 93.85 95.65
Default scan (Nexpose) 70.74 90.15 90.10 90.15
Avg. System Accuracy 84.72 86.08 90.57 92.77

To evaluate the OS diversity impact on classification accu-
racy, we have compared the reported accuracy on Windows,
and Linux feature sets regarding the validation dataset. Recall-
ing that the validation dataset is made of new attack categories
behavior, i.e., behavior not used at the training phase.

Table II (Windows and Linux columns) shows the obtained
accuracy for the Random Forest classifier for each attack
category and OS feature set. Differently from the previous
analysis, the classification performance varies significantly
according to the used OS feature set. It is possible to note
that the Linux classifier outperforms the Windows approach
for the detection of normal behavior.

Concerning the classification of new attack categories, the
Windows-related ML model can provide higher detection
accuracies for six attack categories, while the Linux-related
model achieves higher detection rates for eight attack cate-
gories. Therefore, OS diversity for intrusion detection aids in
improving the overall intrusion detection rate for new attacks.

The second experiment relates to question ()2 and aims
at evaluating the OS Pool-Selector approach for accuracy
improvement through OS diversity. We implemented a Class-
Related-Threshold (CRT) approach for establishing whether
the current OS in use should be maintained or changed. In
other words, the proposal evaluator (Evaluator, Figure 1)
maintains or switches the current OS according to its ML
model classification confidence value. For instance, the Ran-
dom Forest classifier outputs a confidence value according to
the ratio of individual trees that assigned the event assigned
label. In this PoC, we do not need to switch the current OS,
because the traffic is mirrored.

The OS switch frequency must be performed according to
the administrator discretion; for our tests, we have selected a
0.9 confidence value threshold. Thus, performed classifications
with less than 0.9 confidence value trigger a different OS front-
end classification mechanism.

Table II (Proposal columns) shows the obtained accuracy

695

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

using our proposal, considering both the worst and best
scenarios while proactively switching the current OS front-
end according to its classification confidence.

The worst scenario is found when the current OS in usage
provides the lowest detection accuracy for the current attack;
the average system accuracy on 84.72%. Hence, the used
CRT approach ensures the accuracy level through the defined
threshold (0.9 for our experiments). On the other hand, the best
scenario is found when the current OS provides the highest
detection accuracy for the current attack, the average system
accuracy on 92.77%.

It is possible to note that our proposal is always able to
outperform in about 6% the OS that obtained the lowest
accuracy (worst scenario, Avg. system Acurracy = 90.57 -
84.72 = 5.85%), either Linux or Windows. Similarly, it is also
possible to reach the same level of the best accuracy rates
to those obtained from the best OS according to the current
classified attack category (best scenario, Avg. system Acurracy
= 92.77 - 84.72 = 8.05%). In other words, the proposal can
leverage the accuracy improvement obtained from OS diversity
to proactively identify and switch the current used OS to
increase the overall attack classification accuracy, as shown
in Table II (Avg. System Accuracy).

The third and final question Q)3 is regarding the OS change
frequency in our model. Such property is highly dependent
on current environment behavior. For instance, consider the
Auth Crawler (Acunetix) attack category, shown in Table II.
If the Windows OS is currently being used as a front-end,
the proposal will change it as soon as it classifies an event
with less than 0.9 confidence. Afterward, the Linux OS will
not be switched, taking into account that it will always
perform reliable classifications (100% accuracy, as shown in
Table II). On the other hand, considering the Nonauth Crawler
(Acunetix) attack, regardless of the OS being used, several
changes might occur. It is because both OSs may perform
unreliable classifications, as observed through their obtained
accuracy rates (~85%). One may use the OS frequency switch
as an indication that a new attack is occurring, while low
accuracy is being achieved for its classification, demanding
further administrator investigation

VII. CONCLUSION AND FUTURE WORK

Our proposal is able to achieve higher accuracy rates
through OS diversity in intrusion detection and the continuous
evaluation of the system reliability, while not affecting or
requiring changes in the SCADA system, operating transpar-
ently. The performed evaluations have shown that feature set
diversity, through OS diversity, aids at improving the detection
of the new attack behavior. Moreover, our proposal was able to
proactively identify and switch the current OS that should be
used to provide reliability while detecting new attack behavior.

As future work, we will deploy our proposed model in
Software-Defined Networks for higher transparency, leverage
higher OS diversity, and perform the detection through an
ensemble of OS diversity feature sets.

ACKNOWLEDGMENT

This work was partially supported by the CNPq (National
Council for Scientific and Technological Development) grant
315322/2018-7.

REFERENCES

[1] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack
on the ukrainian power grid,” Document, Mar. 2016. [Online]. Available:
https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf

[2] K. Stouffer, J. Falco, and K. Scarfone, “Guide to industrial control
systems (ICS) security,” Tech. Rep., Jun. 2011.

[3] V. Abreu, A. O. Santin, E. K. Viegas, and V. V. Cogo, “Identity and
access management for IoT in smart grid,” in Advanced Information
Networking and Applications. Springer International Publishing, 2020,
pp. 1215-1226.

[4] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn,
“Guide to industrial control systems (ICS) security,” Tech. Rep., Jun.
2015. [Online]. Available: https://doi.org/10.6028/nist.sp.800-82r2

[5] E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “Facing the
unknown: A stream learning intrusion detection system for reliable
model updates,” in Advanced Information Networking and Applications.
Springer International Publishing, 2020, pp. 898-909.

[6] E. Kakihata, H. Sapia, R. Oikawa, D. Pereira, J. Papa, V. Alburquerque,
and F. Silva, “Intrusion detection system based on flows using machine
learning algorithms,” IEEE Latin America Transactions, vol. 15, no. 10,
pp. 1988-1993, Oct. 2017.

[7]1 E. Viegas, A. O. Santin, A. Franca, R. Jasinski, V. A. Pedroni, and L. S.
Oliveira, “Towards an energy-efficient anomaly-based intrusion detec-
tion engine for embedded systems,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 163-177, Jan. 2017.

[8] C. Vicentini, A. Santin, E. Viegas, and V. Abreu, “A machine learning
auditing model for detection of multi-tenancy issues within tenant
domain,” in 2018 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID). 1EEE, May 2018.

[9]1 E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “A reliable
semi-supervised intrusion detection model: One year of network traffic
anomalies,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC). 1EEE, Jun. 2020.

[10] A. Zimba, Z. Wang, and H. Chen, “Multi-stage crypto ransomware
attacks: A new emerging cyber threat to critical infrastructure and
industrial control systems,” ICT Express, vol. 4, no. 1, pp. 14-18, Mar.
2018.

[11] Danish Saleem and C. Carter, “Certification procedures for data and
communications security of distributed energy resources,” 2019.

[12] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid — the new
and improved power grid: A survey,” I[EEE Communications Surveys
& Tutorials, vol. 14, no. 4, pp. 944-980, 2012.

[13] A. Nogueira, M. Garcia, A. Bessani, and N. Neves, “On the challenges of
building a BFT SCADA,” in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 1EEE, Jun.
2018.

[14] S. S and P. W. D, “An enhanced optimization based algorithm for
intrusion detection in SCADA network,” Computers & Security, vol. 70,
pp. 16-26, Sep. 2017.

[15] L. A. Maglaras, J. Jiang, and T. J. Cruz, “Combining ensemble methods
and social network metrics for improving accuracy of OCSVM on
intrusion detection in SCADA systems,” Journal of Information Security
and Applications, vol. 30, pp. 15-26, Oct. 2016.

[16] J. Zhang, S. Gan, X. Liu, and P. Zhu, “Intrusion detection in SCADA
systems by traffic periodicity and telemetry analysis,” in 2016 IEEE
Symposium on Computers and Communication (ISCC). 1EEE, Jun.
2016.

[17] R. L. Perez, F. Adamsky, R. Soua, and T. Engel, “Machine learning
for reliable network attack detection in SCADA systems,” in 2018
17th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications (TrustCom). 1EEE, Aug. 2018.

[18] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Analysis
of operating system diversity for intrusion tolerance,” Software: Practice
and Experience, vol. 44, no. 6, pp. 735-770, Jan. 2013.

[19] S. Ghosh and S. Sampalli, “A survey of security in SCADA networks:
Current issues and future challenges,” IEEE Access, vol. 7, pp. 135 812—
135831, 2019.

696

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on December 10,2020 at 17:36:19 UTC from IEEE Xplore. Restrictions apply.

