
A Machine Learning Model for Detection of
Docker-based APP Overbooking on Kubernetes

Felipe Ramos∗, Eduardo Viegas∗, Altair Santin∗, Pedro Horchulhack∗, Roger R. dos Santos∗, Allan Espindola∗
∗Graduate Program in Computer Science

Pontifical Catholic University of Parana, Brazil
{felipe.ramos, eduardo.viegas, santin, pedro.horchulhack, robson.roger, allan.espindola}@ppgia.pucpr.br

Abstract—Resource allocation overbooking is an approach
used by cloud providers that allocates more virtual resources than
available on physical hardware, which may imply service quality
degradation. Docker in cloud computing environments is being
increasingly used due to their fast provisioning and deployment,
while the impact of overbooking of resources allocation due
to multi-tenancy remains overlooked. This paper proposes a
machine learning model to detect overbooking in Kubernetes
environments within the docker container. The proposed model
continuously monitors distributed container OS usage and ap-
plication performance metrics. The collected metrics are used as
input to a machine learning model that identifies multi-tenancy
interference incurring in application performance degradation.
Experiments performed on a Kubernetes cluster with a Docker-
based Big Data processing application showed that our proposed
model could detect resource overbooking with up to 98% accu-
racy. This implies an overbooking on a resource of up to 1.2 in
the client’s domain.

Index Terms—Container Orchestration, Docker, Kubernetes,
Machine Learning.

I. INTRODUCTION

Public cloud computing services have become widely used
due to their pay-as-you-go premise [1]. A popular service
model in cloud computing is known as Infrastructure-as-a-
Service (IaaS), wherein the cloud client acquires a configurable
virtual machine (VM) according to its service needs. In
IaaS model, software components are not shared between
tenants, which introduces a processing burden. Recently a
new lightweight multi-tenancy structure has been introduced
to replace traditional hypervisors, namely service container-
ization [2]. In such a case, instead of hosting several VMs
executing their OS, containers can share their host OS libraries
by using a container engine (e.g., Docker) to create isolated
spaces to each container, performed as a traditional process in
the host OS [3].

To increase profits and optimize resource allocation, public
cloud providers often allocate more virtual resources than their
physical hardware counterparts can handle [4]. This situation,
known as overbooking, leverages the fact that the virtual
resources requested by cloud tenants will be in an idle state
most of the time. Therefore, the physical hardware can be
provided to other cloud tenants concurrently. For instance, a
cloud provider may allocate 20 virtual CPU cores to 10 cloud
tenants in a physical machine containing only eight physical
CPU cores.

Resources overbooking may cause quality-of-service (QoS)
degradation to cloud tenants if other clients request their vir-
tual resources concurrently, as there will not be a proper phys-
ical hardware counterpart to handle the processing needs [5].
The hypervisors often employ fairness algorithms to deal
with overbooking, wherein VMs in an idle state receive a
higher hardware usage priority when they request it. However,
overbooking in container orchestration scenario is a very
tricky problem, as multi-tenancy between containers is handled
by the host OS, which treats them as a traditional user-
space process [6]. Despite being a known and widely studied
challenge in VM-based clouds, overbooking of resources in
service containers remain overlooked in the literature [7].

Traditionally, to ensure QoS, public cloud providers estab-
lish Service Level Agreements (SLA) that defines a minimum
expected service quality level. SLA represents a contract,
evaluated by a Service Level Indicator (SLI) that measures if
the established SLA has been fulfilled [8] [9]. However, SLAs
are often related to service uptime, despite hardware provision
guarantees. It is up to the cloud client to ensure that the cloud
provider is provisioning the contracted hardware [10].

The client cannot access the provider host information, but
only its dockerized version within its domain. As a result, the
client does not have access to information such as the number
of concurrent containers being executed in the same physical
hardware, neither their physical hardware usage [4].

This paper proposes a machine learning model to identify
the resource overbooking within a client domain in Kuber-
netes orchestration environments. The proposed model was
implemented in a twofold manner. First, it periodically and
continuously monitors the service container application per-
formance and containerized OS usage metrics. Our approach
assumes that we can detect overbooking-related issues by
analyzing both application performance and its dockerized
OS resource usage counterpart. Second, we treat resource
overbooking detection as a classification task through machine
learning techniques. Therefore, our proposed model can detect
resource overbooking issues in service containers within the
client domain, without host-related data and possible conflict
of interest with the cloud provider.

In summary, the main paper contributions are:
• The evaluation of multi-tenancy impact in dockers ser-

vice. The performed evaluation, first in the literature
according to our best knowledge, with a big data pro-

cessing application as a use-case, shows that overbooking
significantly affects service containers performance.

• The proposition and evaluation of a machine learning
model to detect resource issues overbooking in service
containers within the client domain. Our proposed model
can detect overbooking of resources with up to 98% of
accuracy.

The remainder of this paper is organized as follows. Sec-
tion II discusses dockerization and multi-tenancy aspects.
Section III presents related works on multi-tenancy identi-
fication. Section IV shows an evaluation of multi-tenancy
impact on docker services. Section V introduces our proposed
model, while Section VI describes the implemented prototype.
Section VII evaluates, and Section VIII draws conclusions.

II. PRELIMINARIES

A. Containers

Containers are significantly more lightweight than tradi-
tional VMs, as they share their host OS libraries [3]. They are
executed in a user-space process in the host OS, wherein the
container engine must ensure isolation between both contain-
ers and host. For instance, in Linux OSes, a popular approach
to containerization relies on the Docker engine, which provides
container isolation through namespaces [11].

Each namespace creates an abstraction to the running pro-
cess (container). The processes inside a namespace have a
different and isolated host resource view. Namespaces are
often implemented through kernel APIs, enabling the container
engine to create resources ”clone”. For instance, mounting a
virtual file system for the container storage, create a process ID
(PID) for a container execution, and a network bridge for the
container network traffic [12]. As a result, containers do not
rely on hypervisors for multi-tenancy but rather are executed
as a user-space process in the host OS. However, process
scheduling in OS does not take into account the multi-tenancy
aspects inherent in containers.

Traditional hypervisors often employ fairness algorithms
for VMs resource scheduling, such as disk, network, and
CPU utilization [4]. Consequently, the container performance
may significantly degrade in a multi-tenancy setting, as other
tenants (containers) may exhaust the physical hardware. It is
essential to take into account that scheduling algorithms were
not designed to handle multi-tenancy. Besides, as executed as
a user-space process, a single container may spawn other child
processes, which are scheduled as another process by the host
OS, further degrading performance for other containers [12].

B. Container Orchestration

Container engines such as Docker are responsible for de-
ploying and managing containers in a single host. Thus a
container orchestration framework must be used to provide
scalability through several nodes. Kubernetes is one of the
most used orchestration engines, which manages the schedul-
ing and deployment of containers in a physical cluster [12].
Kubernetes cluster comprises several workers, which are used
to deploy containers, and a master node, which performs the

proper cluster management. The containers’ deployment is ac-
complished through a Pod configuration file, which describes
the service cluster configuration, e.g., a Pod file containing
front-end, back-end, and database containers. The Pod file is
used as input to the Kubernetes master, which handles the
proper container deployment between its available Kubernetes
workers.

Multi-tenancy aspects within a single Kubernetes worker
are handled by the container engine itself, e.g., Docker.
Kubernetes provides performance configuration for container
deployment, which is achieved by setting lower and upper
bounds for CPU and memory usage, which are then set as
a container property when it is deployed, then handled by
the host OS. Notably, proper overbooking of resources is not
managed in Kubernetes, as the orchestration engine is only
responsible for scheduling container deployment among sev-
eral workers. The orchestration engine may deploy a heavily
resource-demanding container in a Kubernetes worker without
considering their resource usage, which may significantly
degrade the performance of other already deployed containers
in the selected worker.

III. RELATED WORKS

In general, research effort is conducted on providing ap-
proaches for performing overbooking of resources without the
cloud client QoS degradation at the cloud computing provider
perspective.

For instance, F. Caglar et al. [13] proposes a machine
learning technique to predict future cloud tenant resource
usage for better overbooking of resources. The authors can
increase the physical hardware usage in IaaS clouds, hence,
increase the cloud provider profits without incurring client
QoS issues. On the other hand, D. Hoeflin et al. [5] proposes
an analytical model to improve physical hardware resource
usage on IaaS.

L. Tomás et al. [14] proposes a new cloud provider con-
figuration to enable the mapping of critical client services to
physical CPU cores for performance improvements. Ideally,
identifying overbooking of resources should be made at the
client-side due to conflict of interests. For instance, a machine
learning technique for identifying overbooking was proposed
by C. Vicentini et al. [4]. The author’s approach performs peri-
odic benchmarks within the client VM to identify performance
deviations with a classification technique.

An opportunistic offloading technique was proposed by X.
Sun et al. [15] wherein a set of client services were migrated
to the cloud if response time is not critical.

S. Venkateswaran2019 et al. [16] proposes a bare-metal VM
placement SLA to provide performance guarantees. On the
other hand, E. Truyen et al. [7] proposes a new SLA model
for service containers, which does not take into account the
overbooking of resources.

To the best of our knowledge, we are the first to address in
the service containerization context, identifying overbooking
of resources that may incur QoS degradation from the client
perspective.

IV. PROBLEM STATEMENT

In recent years, several traditionally deployed services in
IaaS clouds have migrated to dockerized solutions. Simultane-
ously, the performance impact due to overbooking of resources
in container-based environments remains overlooked in the
literature.

This section investigates the impact of multi-tenancy and re-
source overbooking on dockerized applications’ performance.
We deployed a Big Data processing task in a distributed and
dockerized manner through Kubernetes for the analyses. Also,
it is described the deployed testbed and the performance issues
experienced due to overbooking.

A. Testbed

To evaluate the performance degradation due to resources
overbooking, we deploy a distributed container orchestra-
tion environment through Kubernetes v.1.19 and Docker
v.19.03.13. Four physical machines compose the testbed,
wherein one node is used for the Kubernetes master, and three
nodes as Kubernetes workers. The nodes are equipped with an
8-core Intel i7 CPU, 16GB of memory, interconnected through
a gigabit network, with an Ubuntu OS v. 18.04.

As an application use-case, we consider a containerized
distributed Apache Spark v.3.0.0 cluster [17], composed of
1 Apache master container and 3 Apache spark worker con-
tainers, the workers are configured to use 2 CPU cores. The
application container cluster is deployed through a Kubernetes
Pod. Two Apache Spark jobs [18] were evaluated, as described
below:

• CPU-bound Job: Distributed containerized Apache Spark
job that computes PI number up to a 10,000nd digit
precision. Processing demand is strictly CPU-bound.

• Resource-bound Job: Distributed containerized Apache
Spark job that continuously computes word occurrences
in a 500MB file. Processing demand is both CPU, disk,
and network bounded.

To create an overbooking of resource situation for each job
execution, we also vary the number of concurrent Kubernetes
tenants (containers). To achieve such a goal, before the eval-
uated Apache Spark jobs are deployed and executed, we also
submit a Kubernetes Pod that instantiates containers to run
single-threaded CPU benchmarks through the sysbench tool.
The number of deployed tenants in the concurrent Kubernetes
Pod varies throughout the testbed execution, creating a con-
trolled resource overbooking throughout the evaluation.

B. The impact of multi-tenancy in containers

Figure 1 shows the job processing time for each evaluated
Apache Spark job according to the overbooking ratio. It is
possible to note the job processing time degradation, i.e.,
performance, on both evaluated jobs when a 0.75 overbooking
ratio is surpassed, with further impact if the provider performs
a 1.0 rate of overbooking. For instance, in a 2.0 overbooking
ratio, the CPU-bound job increases its job processing time
by 75%, while the Resource-bound job increases it by 196%.
Noteworthy, only a 0.1 increase in the overbooking ratio

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Overbooking Ratio

CPU-Bound Job

(a) CPU-bound Job.

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Overbooking Ratio

Resource-Bound Job

(b) Resource-bound Job.

Fig. 1: Performance impact on evaluated containerized Apache
Spark jobs under overbooking of resources settings. The
overbooking ratio is computed as the relation between the
number of deployed containers and the available physical CPU
cores in each Kubernetes node.

incurs, on average, on 11%, and 14% of job processing
time increase for both CPU-bound and Resource-bound jobs,
respectively.

As a result, the overbooking of resources in containerized
applications significantly degrades application performance.
However, from a client perspective, s/he cannot establish the
issue root-cause, as in its dockerized domain, the resource
overbooking is not visible.

V. ML MODELLING FOR DETECTING DOCKER-BASED APP
OVERBOOKING ONTO KUBERNETS

This section presents the novel machine learning model to
detect resource overbooking within the client domain in con-
tainer orchestration environments. It is composed of two main
steps, namely Containerized Monitoring and SLI Deviation
Detection, as shown in Figure 2. The model’s implementation
in a classifier aims to monitor both application and container
OS (docker) metrics to identify multi-tenancy issues caused
due to the overbooking of resources.

The proposal considers a container orchestration service
wherein a provider tenant (client) wishes to monitor her
application for provider resources overbooking in real-time.
In such a context, the client cannot access the provider
infrastructure settings, including the Docker or the container
host OS. The monitoring can only be performed within the
client container domain by monitoring its applications and OS.
The monitoring task aims to find SLI deviations in real-time,
for instance, a service provider that cannot provide the proper
CPU time for the container client. Our proposal considers
the identification of SLI deviations as a supervised machine
learning task. Therefore, a set of dockerized metrics, such as
OS resources usage and dockerized application performance
metrics, is used as input for a machine learning classifier that
detects SLI deviations.

The next subsections further describes the proposed model,
including the Containerized Monitoring and SLI Deviation
Detection modules.

A. Containerized Monitoring

Monitoring performance issues within containerized appli-
cations is a challenging task. The docker does not have access

Fig. 2: The proposed machine learning model for detection of
overbooking of resources within the client domain.

to host-related metrics, e.g., CPU steal-time in Linux, that
measures the amount of requested CPU time the hypervisor
could not handle to the VM. In contrast, a dockerized app
only has access to its OS-related (containerized OS) and
application-related (containerized processes) metrics.

The Containerized Monitoring module goal is to contin-
uously monitor both containerized OS and app performance
metrics. Our approach’s rationale is to use both containerized
OS and application performance metrics to detect performance
issues within the docker domain. The assumption is that
a machine learning classifier can be applied to detect SLI
deviations by analyzing the containerized OS usage metrics
and application performance metrics. In a multi-tenant inter-
ference scenario, the OS usage metrics will be high, while the
application will perform poorly. Therefore, it can be detected
through the analysis of its features by a machine learning
algorithm.

The Containerized Monitoring module is composed by two
entities, namely APP Collector and OS Collector. The prior
periodically and continuously extracts application performance
metrics within the docker environment, e.g., extract features
related to the number of clients that the application has
successfully processed within a time interval. On the other
hand, the OS Collector periodically and continuously extracts
the containerized OS usage metrics, e.g., the usage percentage
of the dockerized CPU. As a result, the Containerized Mon-
itoring extracts two sets of features regarding the application
performance and OS usage, both within the tenant domain.

B. SLI Deviation Detection

The detection of SLI deviations caused by resource over-
booking interference within the containerized (client) environ-
ment is challenging. Our proposal considers the identification
of multi-tenancy issues as a supervised machine learning
classification task to address such a challenge.

The classification procedure is executed periodically and
continuously in a client domain environment (SLI Deviation
Detection, Figure 2). The client domain is executed outside
the provider domain. Therefore, it does not seem prone to
conflict of interest with the provider. The classification starts
with a Metric Collector module that collects both APP Metrics
and OS Metrics from the Containerized Monitoring module
(Section V-A) from a set of containers being executed in the
provider domain. The metrics are collected periodically at
each predefined time interval, e.g., every 5-seconds. The set of
collected metrics from each docker is forwarded to a Feature
Builder module, whose goal is to compound a feature vector
for classification. A set of feature vectors are built, in which
each vector comprises both APP Metrics and OS Metrics for
a single container.

The set of built feature vectors are forwarded to a SLI
Classification module, which executes a machine learning
classifier to classify each given feature vector as an over-
book or normal scenario. Overbook classified scenarios are
containers currently experiencing multi-tenancy interference
due to provider overbooking of resources. As a result, the
proposed model can identify multi-tenancy interference within
the container environment.

C. Discussion

Identifying resources overbooking interference within the
client domain is challenging, especially in containerized en-
vironments that have been overlooked in the literature. Our
proposal treats resource overbooking detection as a classifica-
tion problem through machine learning techniques to address
such a challenge. The classification task receives as input
both containerized application performance and containerized
OS usage metrics. As a result, it can detect, for instance, an
application performing poorly. Simultaneously, the container-
ized OS is heavily used, an indication of a possible multi-
tenancy interference in a resource overbooking scenario. The
proposal can also be implemented within the client domain,
thus addressing possible conflict of interests with the cloud
provider.

VI. PROTOTYPE

A proposal prototype was implemented as a distributed
processing application executed in a container orchestration
environment, as shown in Figure 3. The prototype was im-
plemented in the same testbed evaluated previously (Sec-
tion IV), through Kubernetes and a client application executing
an Apache Spark cluster, composed of three Apache Spark
workers and one Apache Spark master. Each client container
executes both APP Metrics Collector and OS Metrics Col-
lector. The prior collects five application-related performance
features from the Apache Spark monitoring API, while the
former collects eight containerized OS-related features with
the PSutil v.5.7.2 python API.

The collected set of features from both collectors are listed
in Table I. The features are collected from each container in a

Fig. 3: Implemented prototype of the proposed machine learn-
ing model for detection of overbooking of resources within
client domain.

TABLE I: Extracted set of features from the containerized
monitoring module every 5-second time interval.

Feature Set Extracted Features
APP Metrics JVM CPU Usage, Shuffle Writes, Shuffle

(Apache Spark API) Reads, Exec. Memory Usage, JVM GC Time
OS Metrics CPU Usage, Memory Usage, Read Disk

(PSUtil) Sectors, Written Disk Sectors, Uploaded
Bytes, Downloaded Bytes, Uploaded
Packets, Downloaded Packets

5-second time interval. At each time interval, the Metric Col-
lector module receives the collected features through a SOAP
(Simple Object Access Protocol) web-service, as implemented
through the SOAPpy API v.0.12.22. A machine learning
classifier classifies each container’s built feature vector through
the scikit-learn API v.0.23.

VII. EVALUATION

The present evaluation aims at answering the following
research questions: (Q1) Is the proposal able to detect resource
overbooking within the client domain? (Q2) What is the
minimal resource overbooking needed for accurate detection?
(Q3) What is the detection delay for the identification of
resource overbooking?

The next items describe our testbed and how our proposal
performs when detecting multi-tenancy interference within the
client domain.

A. Overbooking of Resource Detection

To evaluate the proposed model was used the same set
of experiments performed in Section IV-A to implement our
proposal prototype. Each overbooking degree setting, from
0.25 to 3.0 ratio, was evaluated, wherein the containerized
Apache Spark jobs are monitored for 10 minutes of execution
in each scenario. Therefore, for each evaluated overbooking
setting, an average of 120 (5 per second) feature vectors are
collected for each Apache Worker container.

The first experiment aims to answer question Q1 and
evaluate the proposed model accuracy for identifying the
resources overbooking within the client domain. We evaluate
four commonly used machine learning classifiers [19], (i)
the Decision Tree (DT) classifier with a confidence factor of

 0

 20

 40

 60

 80

 100

0 0.5 1 1.5 2 2.5 3

A
c
c
u
ra

c
y
 (

%
)

Overbooking Ratio

TN TP

(a) CPU-bound Job.

 0

 20

 40

 60

 80

 100

0 0.5 1 1.5 2 2.5 3

A
c
c
u
ra

c
y
 (

%
)

Overbooking Ratio

TN TP

(b) Resource-bound Job.

Fig. 4: Gradient Boosting classification accuracy with all
features while varying the overbooking label threshold. The
proposed approach can reach high detection accuracies with
an overbooking ratio threshold as small as 1.2.

TABLE II: Proposed approach accuracies for overbooking
detection within client domain considering scenarios with less
than 1.0 of overbooking ratio as normal.

Accuracies (%)
Feat. Classifier CPU-bound Job Resource-bound Job
Set TP TN TP TN

A
ll

Fe
at

. DT 94.45 89.01 94.74 88.84
RF 98.42 90.43 97.51 92.01

GBT 98.35 90.43 98.15 91.87
kNN 96.03 68.60 88.34 51.37

Fe
at

.S
el

. DT 94.59 88.88 95.09 89.39
RF 98.56 89.92 97.72 91.73

GBT 98.63 89.92 98.08 91.73
kNN 96.03 68.21 90.40 58.95

0.25, (ii) the Random Forest (RF), and (iii) Gradient Boosting
(GBT) classifiers with 100 decision trees as their base-learners,
and the (iv) k-Nearest Neighbor (kNN) classifier with five
neighbors. Each classifier was evaluated with and without
feature selection being made. To this end, the feature selection
applies a filter-based information gain technique, wherein only
features with an information gain over 0.2 are used for the
model building procedure. Two classification classes were
used, normal and overbooking.

For the model building process, the collected data from 2
Apache workers (containers) are used for training, while the
data from the remaining Apache worker is used for testing. The
classifiers were evaluated with respect to their True-Negative
(TN) and True-Positive (TP) accuracies. The TN rate denotes
the ratio of normal (non overbooking) measurements correctly
classified as normal. The TP rate denotes the ratio of over-
booking measurements correctly classified as overbooking.

Table II shows the proposal classification accuracy for the
evaluated classifier according to each Apache Spark job to
detect resources overbooking ratio higher than a 1.0 threshold.
It is possible to note that our proposal was able to provide
high detection accuracies, up to 98.15% of TP, and 91.87% of
TN for the resource-bound job with the GBT classifier with
all features, while a 98.35% of TP, and 90.43% of TN for
the CPU-bound job with the same classifier. The proposal
provided similar classification accuracy regardless of the eval-
uated Apache Spark job, showing its applicability. Therefore,

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20
 0

 20

 40

 60

 80

 100

threshold

O
v
e
rb

o
o
k
 R

a
ti
o

O
v
e
rb

o
o
k
 D

e
te

c
ti
o
n
 (

%
)

Execution Time (m)

Overbook Ratio
Detected as Overbook (%)

(a) CPU-bound Job.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20
 0

 20

 40

 60

 80

 100

threshold

O
v
e
rb

o
o
k
 R

a
ti
o

O
v
e
rb

o
o
k
 D

e
te

c
ti
o
n
 (

%
)

Execution Time (m)

Overbook Ratio
Detected as Overbook (%)

(b) Resource-bound Job.

Fig. 5: The proposed model overbooking detection rate using
GBT classifier with all features, through several overbooking
of resources configurations. The classifier is trained with a 1.0
overbooking detection ratio threshold

the proposal can detect resources overbooking within the client
domain with high detection accuracy.

To answer question Q2, we evaluate the proposal sensitivity
to overbooking of resources. We vary each scenario label as
normal or overbooking according to its overbooking ratio, as
the operator may define the detection sensitivity for each need.
Figure 4 shows the proposal accuracies for the overbooking
ratio label threshold with the GBT classifier will all features
(most accurate classifier, Table II). It is possible to note
that the proposal can identify with high detection accuracy
overbooking interferences that will cause significant process-
ing time increase (when the overbooking ratio surpasses the
threshold of 1.2, as evaluated in Section IV). If demanded by
the operator, the proposal can reliably detect overbooking up
to 1.25 ratio while reaching up to 95% in both TN and TP
detection rates, regardless of the processed Apache Spark job.

Finally, to answer question Q3, we deploy our proposed
model with a 1.0 overbooking ratio label threshold and in-
vestigate the overbooking detection sensitivity while varying
the concurrent multi-tenancy interference. Figure 5 shows the
proposal detection accuracy over time and the detection delay
at each overbooking ratio change. It is possible to note that
our proposal can detect multi-tenancy interference as soon as
the current Apache job in execution begins to degrade its
performance after a 1.0 overbooking threshold is surpassed.
Besides, one can further decrease the detection speed by
reducing the feature extraction collection period (5-second in
our prototype).

VIII. CONCLUSION

Resources overbooking is a known challenge in traditional
cloud computing environments, which remains overlooked in
current containerized environments. This paper has proposed
a novel approach for identifying resources overbooking within
the client domain, which incurs the quality of service degra-
dation.

Through the application of machine learning techniques
over both containerized OS and application performance met-
rics, the proposed model was able to identify with high
detection accuracy. Such a situation happens when the cloud
provider performs resources overbooking that will affect con-
tainerized services’ processing performance.

As future works, we will evaluate the proposed model
accuracies on further containerized applications and under
more dynamic environments.

ACKNOWLEDGMENT

This work was partially sponsored by Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq), grant nº 430972/2018-0).

REFERENCES

[1] S. Goyal, “Public vs private vs hybrid vs community - cloud computing:
A critical review,” International Journal of Computer Network and
Information Security, vol. 6, no. 3, pp. 20–29, Feb. 2014.

[2] V. Medel, O. Rana, J. ángel Bañares, and U. Arronategui, “Modelling
performance & resource management in kubernetes,” in Proceedings
of the 9th International Conference on Utility and Cloud Computing.
ACM, Dec. 2016.

[3] T. Combe, A. Martin, and R. D. Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62,
Sep. 2016.

[4] C. Vicentini, A. Santin, E. Viegas, and V. Abreu, “A machine learning
auditing model for detection of multi-tenancy issues within tenant
domain,” in 2018 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2018, pp. 543–552.

[5] D. Hoeflin and P. Reeser, “Quantifying the performance impact of over-
booking virtualized resources,” in 2012 IEEE International Conference
on Communications (ICC). IEEE, Jun. 2012.

[6] Z. Zhong and R. Buyya, “A cost-efficient container orchestration strategy
in kubernetes-based cloud computing infrastructures with heterogeneous
resources,” ACM Transactions on Internet Technology, vol. 20, no. 2, pp.
1–24, May 2020.

[7] E. Truyen, D. V. Landuyt, V. Reniers, A. Rafique, B. Lagaisse, and
W. Joosen, “Towards a container-based architecture for multi-tenant
SaaS applications,” in Proceedings of the 15th International Workshop
on Adaptive and Reflective Middleware - ARM 2016. ACM Press, 2016.

[8] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, and X. Liu,
“SmartVM: a SLA-aware microservice deployment framework,” World
Wide Web, vol. 22, no. 1, pp. 275–293, May 2018.

[9] E. Viegas, A. Santin, J. Bachtold, D. Segalin, M. Stihler, A. Marcon,
and C. Maziero, “Enhancing service maintainability by monitoring and
auditing SLA in cloud computing,” Cluster Computing, Nov. 2020.

[10] V. Abreu, A. O. Santin, E. K. Viegas, and V. V. Cogo, “Identity and
access management for IoT in smart grid,” in Advanced Information
Networking and Applications. Springer International Publishing, 2020,
pp. 1215–1226.

[11] P. C. V. Varma, V. K. C. K., V. V. Kumari, and S. V. Raju, “Analysis
of a network IO bottleneck in big data environments based on docker
containers,” Big Data Research, vol. 3, pp. 24–28, Apr. 2016.

[12] D. Bernstein, “Containers and cloud: From LXC to docker to kuber-
netes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.

[13] F. Caglar and A. Gokhale, “ioverbook: Intelligent resource-overbooking
to support soft real-time applications in the cloud,” in 2014 IEEE 7th
International Conference on Cloud Computing, 2014, pp. 538–545.

[14] L. Tomás and J. Tordsson, “Cloud service differentiation in overbooked
data centers,” in 2014 IEEE/ACM 7th International Conference on Utility
and Cloud Computing, 2014, pp. 541–546.

[15] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Communications Letters, vol. 21, no. 7, pp.
1481–1484, Jul. 2017.

[16] S. Venkateswaran and S. Sarkar, “Time-sensitive provisioning of bare
metal compute as a cloud service,” in 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, Jul. 2019.

[17] E. K. Viegas, A. O. Santin, and V. Abreu, “Machine learning intrusion
detection in big data era: A multi-objective approach for longer model
lifespans,” IEEE Trans. on Network Science and Engineering, 2020.

[18] C. Vicentini, A. Santin, E. Viegas, and V. Abreu, “SDN-based and
multitenant-aware resource provisioning mechanism for cloud-based big
data streaming,” Journal of Network and Computer Applications, vol.
126, pp. 133–149, Jan. 2019.

[19] E. Kugler, A. O. Santin, V. V. Cogo, and V. Abreu, “A reliable
semi-supervised intrusion detection model: One year of network traffic
anomalies,” in Int. Conf. on Comm. (IEEE ICC), 2020.

