
Improving Intrusion Detection Confidence Through
a Moving Target Defense Strategy

Roger R. dos Santos, Eduardo K. Viegas, Altair O. Santin
Graduate Program in Computer Science (PPGIa)

Pontifical Catholic University of Parana (Pontifı́cia Universidade Católica do Paraná), Brazil
{robson.roger, eduardo.viegas, santin}@ppgia.pucpr.br

Abstract—Despite the promising results reported in the lit-
erature, the intrusion detection schemes cannot deal with new
network traffic behaviors making such proposals unfeasible to
be deployed in production environments. This paper presents an
intrusion detection model that relies on a moving target defense
strategy to face new network traffic behavior in a two stage
process. First, the system select the most suitable classifiers set
to assign a class (normal or attack) according to the current
event behavior. Second, we evaluate if the performed classification
is reliable by validating its confidence values. The goal is to
ensure that only the higher confident classifications from the most
suitable classifiers are used to trigger intrusion detection alerts,
keeping the system reliable over time. Experiments performed on
a dataset that spans over 97GB of data with seven categories of
network traffic shows that current machine learning techniques
cannot cope with novel traffic behavior, failing to detect up to
four new traffic categories. In contrast, the proposed model can
select the most confident classifiers, reducing the average false-
negative rates by up to 39%, regardless of the current network
traffic category.

Index Terms—Intrusion Detection, Machine Learning, Moving
Target Defense.

I. INTRODUCTION

In general, administrators resort to Intrusion Detection
Systems (IDS) to detect malicious activities within an en-
vironment, through either misuse-based or behavior-based
approaches [1]. In one hand, misuse-based techniques searches
for well-known attack patterns in its input data, thus, are only
able to detect previously known attacks [2]. On the other hand,
behavior-based approaches signal misconduct by analyzing
deviations from the system’s expected behavior. Therefore,
it can detect new kinds of attacks as long as the extracted
behavior significantly differs from benign ones [3].

Several approaches have been proposed for the behavior-
based intrusion detection task, wherein pattern recognition
through machine learning (ML) techniques have yield promis-
ing results [1]. In practice, a behavioral model is extracted
from a training dataset in a computationally expensive process
of model training [4]. The input data is expected to contain the
labeled event behaviors from the production environment, con-
sidering both normal and attack patterns. Finally, the extracted
model can be used for the classification of network traffic
events in production. In the literature, many proposals have
focused on building the most accurate ML model for intrusion
detection on a given dataset, e.g., applying an ensemble of
classifiers [5]. However, the behavior of networked environ-

ments is highly variable and changes over time [6]. Even if
a ’perfect’ ML model is built, it will fail at considering the
network traffic as an unchangeable environment, as measured
through the training dataset [7]. Nonetheless, ML extracts its
behavioral model by finding similarities in its input data rather
than detecting new behavior.

It is known that the network traffic changes over time, either
due to the discovery of new attacks or due to the provision
of new services, the reliability of the intrusion detection
scheme can not be ensured [8]. Thus, the occurrence of new
attacks or services categories may affect the confidence of
the underlying IDS ML model, increasing its signaled false
alarms. Changes in production environment settings demand
the model retraining task to be executed [2]. However, the ML
model retraining requires labeled data to be provided, which
can not be available or provided with human intervention with
a high cost [6]. Additionally, the retraining task may demand
several weeks or even months to provide an updated ML
model. The current ML model in production must keep its
confidence in intrusion detection for long periods, even in the
presence of new attacks and service behaviors.

This paper proposes a new reliable intrusion detection
model that leverages a moving target defense strategy to
select the most suitable ML configuration for the behavior
of the current environment, and the implementation is done
in twofold. First, it chooses the ML configuration adaptation
to consider the evaluated event behavior by assessing the
classification confidence. The proposal insight is that the most
suited classifier can be obtained by assessing the classification
confidence values from a classifier pool. The proposal can
choose the adaptation according to the event behavior without
human assistance neither model updates. Second, it evaluates if
the selected ML configuration can be reliably used to classify
a given network traffic event. Thus, only highly confident
classifications from the most suited classifiers are used for
signaling intrusion alerts, increasing system stability.

In summary, the main contributions of this paper are:
• We evaluate commonly used ML-based intrusion detec-

tion schemes concerning their classification confidence
in the face of new attack and service categories. Ex-
periments performed over a dataset that span several
distinct normal and attack categories shows that current
approaches in the literature are unable to cope 4 out of
7 new traffic behaviors;

• We propose and evaluate a novel reliable intrusion detec-
tion model that follows a moving target defense strategy.
The proposed model can select the most suited classi-
fiers for classifying a given network traffic event while
maintaining its confidence in the classification even in the
presence of new network traffic.

II. BACKGROUND

A. Machine Learning for Intrusion Detection

Intrusion Detection Systems (IDS) aims at finding malicious
activities within a given environment [1]. A typical IDS is
composed of four sequential modules. First, the Data Ac-
quisition collects the environment events for further analysis,
e.g., collect network packets from a network interface card
(NIC). Then, the Feature Extraction module extracts a set
of behavioral features from the collected data to compound
a feature vector. In general, the behavior of network events
is represented as a network flow, which summarizes network
packet statistics in a given time window, e.g., the number of
exchanged packets between hosts in 2-sec [9]. The extracted
feature set is classified by a Classification module as attack
or normal, e.g. by applying a ML model. Finally, if an attack
is found, the Alert module signals the operator accordingly.

Recently, several ML approaches have been proposed for the
classification task [10]. In general, authors mistakenly adopt
the assumptions wherein ML has been successfully applied [6],
[11]. The behavior of network environments is highly variable
and changes over time. As a result, building a realistic training
dataset with many network behaviors is a challenging task.
Nonetheless, even if a realistic training dataset can be built,
it will become outdated as time passes. Therefore, besides
providing a highly accurate ML model, the used intrusion
detection scheme must be able to cope with variations of
known traffic and new traffic behaviors [2]. However, authors
often overlook the challenges of network traffic classification,
and traditional ML evaluation takes place [6].

B. Moving Target Defense

The Moving Target Defense (MTD) strategy aims to tackle
the static nature of computational systems by constantly
changing the system settings to reduce or move the attack
surface that a malicious user can explore [12]. For instance,
change a server set of software, service ports, IP address, or
other components that can be a target of attacks [5]. Thus,
MTD can hinder the attacker’s goal by constantly increasing
the attacker’s uncertainty on a given server.

Traditionally, MTD strategies can be interpreted as a three-
step approach [12]. First, it constantly Choose an Adaptation
for a given computational environment settings. For instance,
the adaptation can be achieved by changing the servers’ service
ports and IP addresses. Second, it Implement Adaptation
by applying the selected server settings in a computational
environment. Third, it waits for a predefined Delay before
choosing a new setting, hence, executing the first step again
continuously and periodically. The MTD rationale is that a
successful attack demands several steps to be executed, e.g.,

mapping ports, identifying services, identifying vulnerable
components, and exploiting exploitation. Hence, if such set-
tings are periodically changed, the attacker will not be able
to perform all needed attack steps before a reconfiguration
occurs, making the attacker execute all required actions from
scratch [13].

III. RELATED WORKS

Intrusion detection tasks through ML techniques have been
extensively explored in the literature [1]. In general, proposed
techniques aim at higher classification accuracies on a specific
dataset, with either real [2] or synthetic [14] network traffic.
Despite relying on a realistic dataset for the training task, ML
techniques must be evaluated taking into account the character-
istics of networked production environments. Li Yang et al. [5]
proposes a tree-based structured IDS to identify attacks. Their
proposed approach was able to improve detection accuracies
on CICIDS2017 [15] dataset. They used a traditional ML
evaluation to identify new attacks or services that were not
addressed.

The network traffic behavior changes were noted by Jielun
Zhang et al. [16], which used a transfer learning approach
on a neural network to update the detection scheme when a
new service is provided. However, identifying new services
is not addressed, and the impact on accuracy is not evalu-
ated accordingly. Network traffic behavior changes are also
addressed by E. Viegas et al. [2], where a co-learning approach
is used for the model update task. The proposed scheme was
able to update the underlying model reliably. However, the
impact of the network traffic changes can only be addressed
after the model update, leaving the IDS scheme unreliable.
Therefore, although the model update task has been addressed
in the literature [2], [16], the confidence impact due to new
behaviors occurred while an outdated model is used is not
addressed [3], [6].

MTD strategies are often applied using an IDS as an
adaptation triggering technique. R. Yang et al. [5] relies
on a network-based MTD approach to decrease the time to
failure of service components, assuming that attacks can be
detected to trigger MTD procedures. D. Sharma et al. [13]
relies on a software-defined network to dynamically change
network settings according to the current attacker path, also
assuming that attacks can be identified as needed. Therefore,
the application of the MTD strategy on the IDS scheme
remains unknown in the literature.

IV. PROBLEM STATEMENT

The identification of new attacks and services is a widely
used assumption on the behavior-based IDS literature [1], [6].
This section further investigates how ML techniques perform
when facing new network traffic behavior. More specifically,
we first introduce our used dataset, with several attacks and
normal network traffic categories, and evaluate several ML
classifiers’ performance on it.

TABLE I: Testbed behavior variations, over time, according to each considered scenario. Both normal and attacker behaviors
vary as time passes.

Scenario Time Window
(minutes) Attacker Behavior Normal Behavior

Net. Probing zero to 30 udpscan, synscan, nullscan, finscan, xmasscan, and ackscan
The 100 benign clients performs

periodic queries on HTTP,
and SNMP services

Serv. Probing 30 to 60 osfingerprint and servicefingerprint
Net. DoS 60 to 90 synflood, udpflood, icmpflood, and slowloris
Serv. DoS 90 to 120 smtpflood, or httpflood

New Attack 120 to 150 vulnerabilityscan

New Content 150 to 180
synflood, udpflood, icmpflood, and slowloris

(Same behavior as Net. DoS scenario)

Requested service content
differs from previous scenario

New Serv. 180 to 210
The 100 benign clients performs periodic
queries on SMTP, NTP and SSH services

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(a) Random Forest

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(b) Gradient Boosting

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(c) Adaboosting

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(d) Bagging

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(e) Multilayer Perceptron

Fig. 1: The accuracy behavior, over time, on the evaluated testbed of widely used machine learning classifiers. Classifiers are
trained using only Net. Probing data occurred at a time window ranging from zero to 30 minutes.

A. A Realistic IDS Dataset

The building and evaluation of intrusion detection schemes
demand a realistic intrusion dataset to be used [1]. In the
literature, authors resort to outdated datasets, with several
known flaws [17]. However, even if a realistic dataset con-
tains real and valid network traffic collected from production
environments, it will fail to consider the network as static.
Therefore, to properly evaluate ML-based intrusion detection
schemes, we present Fine-grained Intrusion Dataset (FGD),
built through the same methodology as [9]. The dataset com-
prises several network behaviors that appear in the real world
that ML models must process in production environments.

The dataset was built in a controlled environment composed
of 100 client machines that generate benign network traffic of
various application protocols and several attacker machines
that generate malicious traffic through well-known tools [9].
The machines performed the requests and attacks at a honeypot
server responsible for the proper response and the collection
of the network traffic. Table 1 shows a description of the
testbed behavior variation over time regarding both normal and
attacker entities. The detailed entity’s behavior can be found
in [9]. The testbed was executed for 4 hours while varying the
generated network traffic behavior every 30 minutes. In total,
the testbed execution resulted in 97.6 GB of network traffic,
composed of 7 possible behavior variations, in which 5 are
related to attack, and 2 concerning normal behavior variations.

B. A Realistic IDS Evaluation

To further investigate the impact of network traffic behavior
changes on ML-based IDS, we consider a training environment
composed of network-related probing attacks, such as port
scans (Table I, Net. Probing). The evaluated ML algorithms are
trained using as input the data from zero to 30 minutes time
window from our testbed (Table I). The behavior of network
data, used as input by ML algorithms, is represented by a
feature vector composed of 50 features [9], which summarizes
the exchanged data between each testbed host and their related
services in a 2-second time window.

To evaluate widely used ML-based approaches, we select
five commonly used classifiers for intrusion detection, namely
Random Forest (RF), Gradient Boosting (GBT), Adaboosting
(Ada), Bagging (Bag), and Multilayer Perceptron (MLP).
The ensemble classifiers (RF, Ada, Bag, and GBT) were
implemented with 100 decision trees as their base-learners,
where each one of them also uses gini as the node split
quality metric. The GBT classifier relies upon a 0.1 learning
rate value, with deviance as the loss function. The Ada
classifier uses the SAMME as boosting algorithm and 1.0
as the learning rate. The MLP classifier relies on 100 neurons
on its hidden layer and 200 training epochs with a 0.001
learning rate. A random undersampling without replacement
is used in the training procedure to balance the occurrence
between the classes. The classifiers were implemented through
scikit − learn API v0.24. The classifiers are evaluated con-

cerning their false-positive (FP) and false-negative (FN) rates,
where the FP denotes the ratio of normal events misclassified
as an attack. In contrast, the FN represents the ratio of attack
events misclassified as normal ones.

Figure 1 shows the accuracy variation over time of the
evaluated classifiers. The evaluated approaches presented a
significantly high accuracy rate while facing already known
network behavior (zero to 30minutes, Net. Probing). Evalu-
ated techniques presented an average of only 0.2% and 0.1%
of FP and FN rates, respectively. However, as time passes and
the behavior of network traffic changes, evaluated approaches
cannot reach the same level of reliability in classification. In
such a case, evaluated techniques were able to present high
classification accuracies (false rates < 5%) when facing only
2 kinds of new network behavior (Serv. Probing and New
Content). Therefore, if only a 5% increase in FP and FN rates
is tolerated, 4 classifiers will be deemed unconfident for 4 out
of 6 new behavior variations, which includes Net. DoS, Serv.
DoS, New Attack, and New Serv, while only 1 classifier (Ada)
will reliably for 3 our of 6 scenarios.

As a result, evaluated approaches cannot cope with the nat-
ural variability of network traffic over time. As new behavior
occurs, either from attackers or benign clients, the false alerts
will be significantly increased.

V. A MOVING TARGET DEFENSE STRATEGY TO IMPROVE
CONFIDENCE OF INTRUSION DETECTION

To address the challenge mentioned above that considers an
evolving network traffic behavior, we present a novel intrusion
detection model that is confident and based on a moving target
defense strategy. The proposal overview is shown in Figure 2,
and aims to maintain or even improve the detection confidence
facing the new network traffic behavior through two modules,
the Choose Adaptation and Implement Adaptation. The insight
of our proposal is that the classification confidence values can
be used as a measure to select, from a pool of classifiers, those
that are candidates for making the best classification task.
Hence, adopting the classification settings without performing
model updates, aiming to maintain the system reliability in a
production environment.

The proposal considers an ML-based intrusion detection
mechanism composed of a pool of classifiers that are inter-
changeably applied to the classification task. The classification
procedure starts with a networking event collected for the clas-
sification purpose. The behavior of the collected network event
is extracted by a feature extraction module, compounding a
feature vector (set). The computed feature set is forwarded
to a pool of classifiers (Figure 2, Classifier N), in which
each classifier outputs related classification confidence. The
confidence values are applied as a measure for evaluating
the classifier correctness during the network traffic content
classification (further described in Section V-A). Thus, the
verifier module selects only those classifiers that meet a
predefined correctness threshold. The IDS mechanism can
select the most suited classifier to assign a class (normal or
attack) to the event and associating the confidence that adapts

Fig. 2: Proposed moving target defense strategy to improve
confidence of intrusion detection.

itself to the current environment behavior. Finally, the selected
classifiers are used to compound an event confidence measure
used as a rejection adaptation criteria of our proposal. The
rationale of the confidence measure is to establish if our system
can classify a given network event with confidence. This is
because, in some cases, the current environment behavior may
not be reliably classified by any of the selected classifiers.

The following subsections further describe the rationale of
our proposal, including the modules that implement it.

A. Choose Adaptation

The behavior of networked environments follows a non-
static nature. Consequently, a confident IDS mechanism must
be able to adapt its classification settings accordingly. How-
ever, the model update task is not easily feasible in production
environments and may take several weeks or even months to
be performed. Thus, the system must be able to cope with new
network behavior, even whether outdated.

Our proposal relies on a moving target defense strategy
during event classification. Each collected event is processed
by a pool of classifiers, while the system adapts itself to the
current environment behavior by choosing the most suited
one for the classification task. Although the models are not
updated, the system can adapt itself by changing the set of
classifiers taking into account the classification confidence of
each model. The classification confidence values are used as
a measure of model correctness on the event class (normal or
attack) assignment task. The classification confidence is agnos-
tic, e.g., the RF classifier outputs the classification confidences
values according to the ratio of its decision trees that labeled
the classified event. The assumption is that the classification
confidence can select the most suited classifiers according to
the current event behavior.

The Choose Adaptation module receives as input a event
feature set for classification, which is then evaluated by a set
of classifiers (Figure 2, Classifier N). Each classifier outputs
a classification confidence value used by the verifier module
to select the most suited classifier. In this case, a rejection
threshold is used to attest to the classification confidence of
each underlying model. Therefore, if a classifier does not meet
a classification threshold, the event is rejected. According
to the administrator’s needs, the threshold values, e.g., a

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5

E
rr

o
r

R
a
te

 (
%

)

Rejection Rate (%)

Ada
Bag
GBT
MLP

RF

Fig. 3: The rejection rate of each classifier in the proposed
scheme for the classification pool.

higher value, provide higher classification confidence. Finally,
the chosen classifiers are considered to the next module,
responsible for ensuring the classification’s validity.

B. Implement Adaptation

The Implement Adaptation module receives as input the
selected set of classifiers from the verifier module. Its goal is
to output a classification outcome for the collected event. The
final event class is assigned using a majority voting procedure
from the accepted classifiers. However, as several or no
classifiers can be deemed confident for an event classification
task, the module must first compute the confidence measure as
a final acceptance criterion. Thus, even if several classifiers are
considered confident for classifying a given event, the alert is
only triggered considering the established confidence measure.
The computation of the confidence measure is shown in Eq. 1,
where N denotes the number of classifiers deemed as reliable,
and conf. the classification confidence values to attack or
normal classes.

confidence = max(

N∏
i=1

conf.iattack,

N∏
i=1

conf.inormal) (1)

The confidence measure denotes the maximum value from
the product operator of either attack and normal confidence
values from all accepted classifiers. Thus, even if several
classifiers accept an event, the confidence measure will only
be high if a consensus between accepted classifiers is reached,
i.e., if all accepted classifiers labeled the evaluated event to the
same class. Finally, the confidence measure is used to accept
or not the system adaptation (Figure 2, Accepted Adaptation,
or Rejected Adaptation). Rejected adaptations have their alerts
suppressed, as the event classification reliability is low, even
when using only the most suited classifiers as obtained from
the Choose Adaptation module. As a result, our proposal can
ensure confidence in event classification, even if none of the
available classifiers can be used to classify the input event.

VI. EVALUATION

The evaluation aims at answering the following research
questions: (Q1) Is the proposed adaptation accessible to
improve system confidence? (Q2) How does the proposed

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

U
n
c
o
n
fi
d
e
n
t
(%

)

Time (minutes)

(a) Rate of instances deemed
as unconfident over time in the
testbed

 0

 20

 40

 60

 80

 100

 0 5
0

 1
00

 1
50

 2
00

N
e
t.
 P

ro
b
in

g

S
e
rv

.
P

ro
b
in

g

N
e
t.
 D

o
S

S
e
rv

.
D

o
S

N
e
w

 A
tt
a
c
k

N
e
w

 S
e
rv

ic
e

N
e
w

 C
o
n
te

n
t

A
c
c
u
ra

c
y
 (

%
)

Time (minutes)
FP FN

(b) Accuracy rate on confident
instances concerning behavior
variations

Fig. 4: Evaluation of the confident intrusion detection model.
The proposed scheme is trained using only Net. Probing data,
occurred at time window zero to 30 minutes (Table I), and
evaluated using a 50% rejection rate.

model behave in the face of a new traffic behavior? (Q3) Is
the proposal able to improve detection confidence?

A. Reliability in Intrusion Detection

The proposed scheme was evaluated on the same testbed
evaluated previously (see Section IV, Table I). The proposal
classifier pool is composed of the same set of classifiers
evaluated previously (Figure 1), namely RF, GBT Boosting,
Ada, Bagging, and MLP. The classifiers are trained using
the same set of parameters and data that occurred during
the Net. Probing attacks (Table I, zero to 30minutes). The
first experiment aims at answering question Q1, and evaluates
if classification confidence can be used to attest classifi-
cation reliability (Figure 2, Choose Adaptation). For each
classifier a rejection threshold is defined taking into account
the classification confidence values from the Serv. Probing
scenario (Table I, 30 to 60 minutes). The confidence values
for each classifier are obtained through the predictproba from
sklearn API. One can recall that the established thresholds are
used for selecting the accepted classifiers (Figure 2, Accepted
Classifiers). The selected set of thresholds remains unchanged
throughout the testbed execution. For rejection threshold, is
used the Class-Related-Threshold (CRT). Thus, each classifier
has two rejection thresholds (one for normal and one for
attack). Figure 3 shows the error vs. rejection rates for each
used classifier. A high rejection rate can improve the accuracy
rates of the evaluated classifiers. Thus, it can be used to attest
to the system’s reliability as time passes.

The second experiment aims to answer question Q2 about
classification performance. Each classifier’s rejection thresh-
olds are set at a 50% rejection rate and used throughout the
testbed data. One can recall that both rejection thresholds
should be defined according to the administrator’s needs and
set a high rejection rate on our evaluation to investigate the

TABLE II: Accuracy of evaluated techniques according to the
testbed behavior, considering reject events. (Fig. 4a)
.

Detection Approach Accuracy (%)

Testbed
Behavior

D
et

ec
tio

n
M

ea
su

re

R
an

do
m

Fo
re

st

G
ra

di
en

t
B

oo
st

in
g

A
da

bo
os

tin
g

B
ag

gi
ng

M
L

P

Pr
op

os
ed

A
pp

ro
ac

h

Net.
Probing

FP 0 0.0 0.0 0.0 0.4 0.0
FN 0.0 0.0 0.01 0.0 0.2 0.0

Serv.
Probing

FP 0.0 0.0 0.0 0.0 0.3 0.0
FN 3.3 2.5 1.4 2.2 2.1 0.05

Net.
DoS

FP 0.0 0.1 0.7 0.4 1.1 0.0
FN 88.1 38.3 5.2 31.1 57.2 2.58

Serv.
DoS

FP 0.0 0.0 1.1 0.0 0.4 0.0
FN 99.9 99.9 58.6 99.8 99.9 10.0

New
Attack

FP 0.0 0.0 0.0 0.0 0.3 0.0
FN 99.8 91.1 97.1 96.9 95.2 8.33

New
Content

FP 0.0 0.0 0.0 0.0 0.3 0.0
FN 0.0 0.0 0.0 0.6 0.0 0.0

New
Serv.

FP 0.0 0.0 0.0 0.2 1.6 0.4
FN 8.0 20.1 0.6 0.6 0.3 0.0

All
Scenarios

FP 0.0 0.0 0.2 0.1 0.6 0.05
FN 42.7 36.0 23.3 32.9 36.4 2.99

performance further. Figure 4a shows the rejection rate, and
figure 4b the related accuracy rates throughout the testbed. The
proposed approach significantly improved detection accuracy
even when facing new network traffic behavior. For instance,
if up to a 5% error rate increase is tolerated, it maintains the
detection confidence for all evaluated scenarios. Noteworthy,
the confidence measure was also able to detect unreliable
classifications, as noted by a rejection rate increase on New
Attack scenario.

Finally, for answering question Q3, we compare the average
accuracy of our proposal vs. the traditional approaches over
each evaluated testbed (Figure 1). In general, the proposed
scheme was able to improve detection accuracies when com-
pared to traditional approaches significantly. For instance,
considering the average accuracy (Table II, All Scenarios),
our proposed model increased the FP by only 0.05% for
both RF and GBT, while improved the FP rates by up to
0.15%, 0.05%, and 0.55 when compared to the Ada, Bagging
and MLP classifiers respectively. However, the FN rates are
significantly decreased by our proposal, as it can find the
most suited set of classifiers for new attacks, hence improving
the FN rates by up to 39.71%, 33.01%, 20.31%, 29.91%,
and 33.41% when compared to the RF, GBT, Ada, Bagging
and MLP respectively. Therefore, the proposed model based
on a moving target defense provides confidence in intrusion
detection, even when facing new network traffic behavior.

VII. CONCLUSION

This paper has shown that current ML-based schemes in the
literature cannot cope with new network traffic behaviors, sig-
nificantly degrading their accuracy in such situations. Besides,
we have proposed a confident intrusion detection model based
on a moving target defense. The proposed model provided
significantly higher accuracy on intrusion detection even when

facing new network traffic behavior. As future works, we plan
on extending our proposed model to incorporate model updates
during model adaptation.

ACKNOWLEDGMENT

This work was partially sponsored by Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq), grant nº 315322/2018-7.

REFERENCES

[1] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso,
“Survey of network intrusion detection methods from the perspective of
the knowledge discovery in databases process,” IEEE Trans. on Network
and Service Management, vol. 17, no. 4, pp. 2451–2479, Dec. 2020.

[2] E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “A reliable
semi-supervised intrusion detection model: One year of network traffic
anomalies,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC). IEEE, Jun. 2020.

[3] C. Gates and C. Taylor, “Challenging the anomaly detection paradigm:
A provocative discussion,” in Proc. of the Workshop on New Security
Paradigms (NSPW), 2006, pp. 21–29.

[4] F. Ramos, E. Viegas, A. Santin, P. Horchulhack, R. R. dos Santos, and
A. Espindola, “A machine learning model for detection of docker-based
APP overbooking on kubernetes,” in ICC 2021 - IEEE International
Conference on Communications. IEEE, Jun. 2021.

[5] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, “Tree-based intelligent
intrusion detection system in internet of vehicles,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, Dec. 2019.

[6] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010.

[7] E. Viegas, A. O. Santin, and V. A. Jr, “Machine learning intrusion
detection in big data era: A multi-objective approach for longer model
lifespans,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 1, pp. 366–376, Jan. 2021.

[8] F. Pinagé, E. M. dos Santos, and J. Gama, “A drift detection method
based on dynamic classifier selection,” Data Mining and Knowledge
Discovery, vol. 34, no. 1, pp. 50–74, Oct. 2019.

[9] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Com-
puter Networks, vol. 127, pp. 200–216, Nov. 2017.

[10] R. L. Tomio, E. K. Viegas, A. O. Santin, and R. R. dos Santos,
“A multi-view intrusion detection model for reliable and autonomous
model updates,” in ICC 2021 - IEEE International Conference on
Communications. IEEE, Jun. 2021.

[11] J. Mallmann, A. O. Santin, E. K. Viegas, R. R. dos Santos, and
J. Geremias, “PPCensor: Architecture for real-time pornography detec-
tion in video streaming,” Future Generation Computer Systems, vol. 112,
pp. 945–955, Nov. 2020.

[12] R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of moving
target defense,” in Proceedings of the First ACM Workshop on Moving
Target Defense - MTD '14. ACM Press, 2014.

[13] D. P. Sharma, S. Y. Enoch, J.-H. Cho, T. J. Moore, F. F. Nelson,
H. Lim, and D. S. Kim, “Dynamic security metrics for software-
defined network-based moving target defense,” Journal of Network and
Computer Applications, vol. 170, p. 102805, Nov. 2020.

[14] J. Liang and M. Ma, “Co-maintained database based on blockchain for
idss: A lifetime learning framework,” IEEE Transactions on Network
and Service Management, pp. 1–1, 2021.

[15] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization,” in
Proc. of the 4th Int. Conf. on Inf. Systems Sec. and Priv. SCITEPRESS
- Science and Technology Publications, 2018.

[16] J. Zhang, F. Li, H. Wu, and F. Ye, “Autonomous model update scheme
for deep learning based network traffic classifiers,” in 2019 IEEE Global
Communications Conference (GLOBECOM). IEEE, Dec. 2019.

[17] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible
evaluation of anomaly-based intrusion-detection methods,” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 40, no. 5, pp. 516–524, 2010.

