
Toward Feasible Machine Learning Model Updates
in Network-based Intrusion Detection

Pedro Horchulhack, Eduardo K. Viegas, Altair O. Santin
Graduate Program in Computer Science (Programa de Pós-Graduação em Informática - PPGIa)

Pontifical Catholic University of Parana (Pontı́ficia Universidade Católica do Paraná), Brazil
{pedro.horchulhack, eduardo.viegas, santin}@ppgia.pucpr.br

Abstract—Over the last years, several works have proposed
highly accurate machine learning (ML) techniques for network-
based intrusion detection systems (NIDS), that are hardly used in
production environments. In practice, current intrusion detection
schemes cannot easily handle network traffic’s changing behavior
over time, requiring frequent and complex model updates to
be periodically performed. As a result, unfeasible amounts of
labeled training data must be provided for model updates as
time passes, making such proposals unfeasible for the real world.
This paper proposes a new intrusion detection model based on
stream learning with delayed model updates to make the model
update task feasible with a twofold implementation. First, our
model maintains the intrusion detection accuracy through a clas-
sification assessment approach, even with outdated underlying
ML models. The classification with a reject option rationale
also allows suppressing potential misclassifications caused by new
network traffic behavior. Second, the rejected instances are stored
for long periods and used for incremental model updates. As
an insight, old rejected instances can be easily labeled through
publicly available attack repositories without human assistance.
Experiments conducted in a novel dataset containing a year
of real network traffic with over 2.6 TB of data have shown
that current techniques for intrusion detection cannot cope with
the network traffic’s evolving behavior, significantly degrading
their accuracy over time if no model updates are performed.
In contrast, the proposed model can maintain its classification
accuracy for long periods without model updates, even improving
the false-positive rates by up to 12% while rejecting only 8%
of the instances. If periodic model updates are conducted, our
proposal can improve the detection accuracy by up to 6% while
rejecting only 2% of network events. In addition, the proposed
model can perform model updates without human assistance,
waiting up to 3 months for the proper event label to be provided
without impact on accuracy, while demanding only 3.2% of the
computational time and 2% of new instances to be labeled as
time passes, making model updates in NIDS a feasible task.

Index Terms—Intrusion Detection, Stream Learning, Reject
Option

I. INTRODUCTION

According to a Kaspersky [1] report, over 800 million
network attacks targeting over 10% of all Internet users were
identified in 2020 alone. In general, administrators use a
network-based intrusion detection system (NIDS) to detect
this growing number of network attacks through one of two
approaches [2]: misuse-based approaches that search for well-
known attack patterns in the input data, and as a result are only
able to detect previously known threats, and behavior-based
approaches that build a behavioral model according to the
expected production environment behavior, thus identifying

attacks according to deviations of the known and expected nor-
mal behavior [3]. Consequently, it is assumed that behavior-
based techniques are able to detect new attacks as long as they
behave significantly differently from benign events [4].

Over the last decades, due to the ever-increasing number
of network attacks, several highly accurate behavior-based
techniques have been proposed for intrusion detection, wherein
pattern recognition through machine learning (ML) techniques
are typically used [5]. An ML model is built through the
evaluation of a training dataset that must be made of up to
millions of labeled network events from both normal and
attack behaviors. The obtained model can then be deployed
in production environments for the classification of other
events, a task that is achieved by finding similarities in
the behavior of its input data to those modeled during the
training phase [6]. As a result, if the network behavior of
the production environment changes, a new ML model must
be built, considering that the behavior present in the used
training dataset does not reflect those currently experienced in
production [7]. An outdated ML model may result in a higher
error rate than those measured during the test phase. Thus,
network operators may need to suppress signaled NIDS alerts
as soon as the expected ratio of false alarms increases [4].
In practice, even the identification of a higher error rate is a
challenging task, taking into account that the label of network
events in production environments is unknown [3].

The behavior of network traffic is highly variable while
also changing as time passes, a situation caused either due
to the discovery of new attacks or due to the provision
of new services [7]. Therefore, to maintain its classification
accuracies and address the behavior changes of the production
environment, ML-based NIDS must be updated regularly [8].
However, the model update is not easily achieved, considering
that the new network traffic must be collected and correctly
labeled [9], i.e., marked as either normal or attack. Nonethe-
less, the ML training task is also a computationally expensive
process. Thus, model updates may demand days or even weeks
of human assistance before the availability of an updated
ML model [10]. As a result, systems deployed in production
environments may remain unprotected against new kinds of
attacks for several days due to the high cost related to model
updates.

In practice, the labeling of network events is not readily
feasible, considering it typically demands human assistance,



which is hardly available or demands a high financial cost [11].
Nonetheless, the manual labeling of all network events is not
feasible, considering the vast amount of data that must be
manually labeled. Due to the difficulties related to labeling
of events, operators often make use of traditional misuse-
based techniques for the labeling of network events for ML
update purposes [3]. In such a case, the label of new attacks
typically becomes publicly known after a significant period
has passed since its initial exploitation, e.g., after weeks or
even months after the attack occurred in production [12]. Thus,
a feasible ML-based NIDS update can only be performed
considering delayed model updates, e.g., after a month has
passed, and traditional misuse-based can be used for the
event labeling. Meanwhile, the outdated NIDS deployed in
production must be able to maintain the expected system
classification accuracies, despite the underlying ML model
being outdated [3], [4].

Current ML model update approaches discard the outdated
model and build a new model over the newly collected data [2].
As a result, the model update task requires a higher number of
labeled network events to be provided, demanding additional
storage and computational costs, considering that the previ-
ously modeled network behavior is discarded along with the
outdated model. Despite being a known challenge, the model
update task in ML-based NIDS remains overlooked in the
literature, wherein authors assume that periodic model updates
can be easily applied without considering the challenge it
produces in their proposed schemes.

In general, the literature resort to stream learning techniques
in scenarios wherein the environment behavior changes as time
passes [13]. In contrast to traditional ML approaches, stream
learning enables the incorporation of new instances into the
currently deployed model in an incremental-based approach,
further easing the model update challenge. However, despite its
benefits on the model update task, it assumes the availability
of the proper event label [14], making their application on
networked environments unfeasible due to the vast amount of
network traffic that must be labeled as time passes.

This paper proposes a novel intrusion detection scheme
based on stream learning that can apply delayed model updates
with old rejected instances without an impact on the accuracy
of the classification, which is implemented in a threefold way.
First, to ease the model update procedure, our proposal uses a
stream learning classifier pool that enables incremental model
updates to be conducted. As a result, model updates can be
applied incrementally, with lower computational costs than
traditional approaches. Second, to maintain the classification
accuracy, even when outdated models are used, our proposal
assesses the classification quality through a classification based
on a reject option rationale. Thus, the classification quality
of our proposed scheme is evaluated, and only highly confi-
dent classifications are accepted. With our proposal, although
an updated ML model is not yet available, the confidence
values of the classification can attest to the correctness of
the classification, even with outdated models, maintaining the
accuracy of the system classification. Third, model updates are

incrementally applied on the stream learning classifier using
old rejected instances. As the rationale of such a scheme, a
correct event label will be publicly available after a while
has passed, for example, after a month, further easing the
model update challenge. In addition, model updates can be
applied using only rejected instances, thus further decreasing
the computational costs. As a result, our proposed model
can maintain its classification accuracy over time, even with
outdated models, and uses an easy-to-apply model update
task through incremental model updates on previously rejected
instances, without human assistance.

In summary, the main contributions of this paper are as
follows:

• Widely used stream learning and batch learning classifiers
are evaluated concerning their classification accuracies
over time (Section IV). Experiments conducted on a
dataset spanning a year of real network traffic show that
current approaches are unable to achieve intrusion detec-
tion under evolving network traffic behaviors, demanding
an infeasible periodicity of the model updates, as well as
significant amounts of labeled training data.

• A new stream learning for intrusion detection model that
conducts a classification with a rejection option and can
maintain its accuracy for long periods without model
updates is proposed (Section V). The proposed scheme
without updates can provide accuracy rates similar to
those of traditional monthly updating techniques.

• A feasible model update approach can achieve incre-
mental model updates on intrusion detection schemes
deployed during production. Model updates are con-
ducted on a small subset of previously rejected instances,
significantly decreasing the computational costs while not
demanding human intervention for labeling, which can be
applied autonomously through traditional misuse-based
techniques. The proposed scheme can store rejected in-
stances for long periods before using them for model
update purposes without a significant impact on accuracy.

The remainder of this paper is organized as follows. Section II
further describes the challenges of applying ML techniques
for NIDS. Section III presents related studies on NIDS model
updates. Section IV evaluates the traditional ML-based NIDS
concerning their classification accuracies over time. Section V
describes our proposed model. Section VI evaluates our pro-
posed scheme, and Section VII provides some concluding
remarks regarding this research .

II. PRELIMINARIES

In this section, we describe the aspects that make network
intrusion detection challenging to ML-based techniques.

A. Network-based Intrusion Detection

A typical NIDS can be described using four sequential mod-
ules [2]: data acquisition, feature extraction, classification,
and alert. Data acquisition is responsible for data collection
from the monitored environment, which is typically achieved
through the collection of network packets from a network



TABLE I: Example of a feature set that can be extracted
at network-level, considering each feature grouping in a 15s
window interval.

Network
Grouping # Collected Features

H
os

ts
C

om
m

un
ic

at
io

n,
So

ur
ce

to
D

es
tin

at
io

n,
D

es
tin

at
io

n
to

So
ur

ce

1 First Quartile Inter Arrival Time
2 Median Inter Arrival Time
3 Average Inter Arrival Time
4 Third Quartile Inter Arrival Time
5 Maximum Inter Arrival Time
6 Variance Inter Arrival Time
7 Minimum Inter Arrival Time
8 Minimum Packet Length
9 First Quartile of Packet Length

10 Median Packet Length
11 Average Packet Length
12 Third Quartile of Packet Length
13 Maximum Packet Length
14 Variance of Packet Length
15 Total Network Packets
16 Total Network Packets With TCP ACK Flag Set
17 Total Network Packet With Only TCP ACK Flag Set
18 Total Network Packet With TCP SYN Flag Set
19 Total Network Packet With TCP FIN Flag Set
20 Total Network Packet With TCP PSH Flag Set
21 Total Network Packet With TCP URG Flag Set
22 Network Throughput

interface card (NIC) for further analysis. The collected data
are then used as input by the feature extraction module, which
extracts a set of behavioral features from the collected data. In
a NIDS, network data are typically represented by a network
flow, which summarizes the communication between the hosts
and services within a given time window.

Table I shows an example of network-related features that
can be used for a classification task [15]. In such a case,
network packets exchanged between hosts, considering the
origin, destination, and hosts as key values are summarized
in a 15-s time window, and 66 features are extracted (22
features for each feature group). Therefore, network flows
depict the communication behavior between entities on the
network, measured by the exchanged network packets over
time. The feature vector built is then classified as either normal
or attack traffic using the classification module, applying an
ML model, as an example. When a network flow is classified
as an attack, the Alert module properly reports it.

Several techniques have been proposed for the classification
of network flows, wherein the authors often resort to ML-based
schemes, typically through pattern recognition (batch-based)
approaches [2]. The proposed approaches rely on a three-phase
process, namely training, validation, and testing [16]. In the
training phase, an ML model is built through an evaluation
of the network data available in the training dataset. In
practice, the ML model training phase typically aims to find a
behavioral model capable of optimizing the separation between
its input classes, that is, normal and attack samples [17]. Thus,
the training dataset must consist of a significant number of
labeled network events from both normal and attack events.
The validation phase aims toward model improvements, such

as the fine-tuning of model parameters and the feature se-
lection. Therefore, the ML model is built using the training
dataset, and the model parameters are selected through a
validation dataset, each composed of different network-related
samples. Finally, the accuracy of the improved built model is
estimated during the testing phase using the test dataset. The
obtained model can then be deployed during production for
the classification of new network events [3].

In recent years, several studies have applied stream learning
techniques to scenarios in which the behavior changes over
time [18]. In contrast to batch learning approaches, stream
learning enables incremental model updates to be applied,
wherein each new instance is used as an input for model up-
dates. As a result, the computational cost of the model updates
can be significantly decreased, considering that the outdated
model can be leveraged during model updates. Stream learning
has been extensively used in several fields, such as finance,
telemetry, and industrial applications [19].

B. Challenges of Machine Learning for NIDS

Networked environments present many challenges com-
pared to fields where ML techniques have been successfully
applied [3], [4], [16]. The behavior of network traffic is highly
variable; constructing a realistic training dataset becomes a
challenging task.This is because the training dataset must
provide a realistic number of network events, which can
portray the expected production environment behavior to build
a reliable ML model. As the behavior of network traffic can
change drastically within a small interval, the construction
of a realistic training dataset containing all expected network
traffic variations is not easily achieved [16]. In addition, even
if a realistic training dataset is built, it would fail as it would
consider a static network traffic behavior [4]. The behavior
of network traffic evolves as time passes, a situation that can
be caused either by the occurrence of new attacks or owing
to the provisioning of new services or new service content
being requested [7], [16]. As a result, even a ”perfect” ML
model, built through a realistic training dataset, will increase
its error rates over time-demanding periodic model updates to
be applied to maintain its classification accuracy [7].

Model updates in ML-based NIDS are not easily feasible,
considering that a new training dataset must be built and
the newly collected network events properly labeled [3]. A
procedure that can be executed manually by a human, which
is often infeasible considering the vast amount of data that
must be inspected or executed by misuse-based techniques [2].
Network events can be autonomously labeled in such a context
as long as the collected attacks are publicly known. A related
attack signature is made publicly available (e.g., reported in
a Common Vulnerabilities and Exposures (CVE) database).
However, public attack disclosures often occur after a signifi-
cant period has passed [4], with some studies suggesting up to
300 days before their disclosure [20]. To apply misuse-based
techniques, the collected network events must be stored for
long periods before they can be adequately and autonomously
labeled, leaving the systems unprotected against new attacks



because the outdated ML-based NIDS will not be promptly
updated.

C. Desired Properties for Easiness on Model Updates

The desired properties of a reliable ML-based intrusion
detection system have been discussed in several works in the
literature [16]. In general, it is desired that proposed schemes
can generalize the behavior of the events of a training dataset.
As a result, proposed approaches should detect similar/new
attacks and services while operating regardless of the current
environment. However, regardless of the built model general-
ization capacity, the environment behavior will change as time
passes, demanding model updates to be performed.

The model update task in an ML-based NIDS remains an
overlooked problem in the literature, and authors often assume
that it can be quickly conducted when needed [3], [4]. In
practice, the model update task, particularly in networked
environments, poses a significant challenge to network oper-
ators [16]. However, even identifying outdated ML models is
not a common concern and is often overlooked by authors.
An ML-based intrusion detection model must provide feasible
model update procedures. Thus, it can withstand changes in
network traffic behavior over time. Ideally, an ML-based NIDS
should provide the following characteristics related to model
updates:

• Small sample of new network events. A model update
task should be executed using only a few updated network
events. In such a case, the number of instances used for
model update tasks should be decreased, considering the
challenges related to the collection of new events, and
that previous knowledge of the network traffic behavior
is available, for example, the data that was used for the
initial model training task.

• Easy-to-use event labeling procedure. The labeling task
of newly collected network events must be conducted
in an easy-to-use manner because human intervention is
typically required for such a process, rendering a periodic
execution infeasible, particularly when huge amounts of
network events must be labeled. A labeling task should
ideally make use of traditional misuse-based techniques
that enable autonomous labeling to be conducted.

• Low computational resource requirement. Model up-
dates are typically executed offline. Thus, computational
resources can be used as needed. However, because of the
highly variable nature of network traffic behavior, model
updates must be executed frequently, making the compu-
tational costs of the model update a possible burden on
the network operator.

• Performed within a short time interval. Model updates
typically demand several days or even weeks to be
achieved. In the meantime, an outdated model is deployed
in a production environment, leaving systems unprotected
against new types of attacks. Thus, the model update task
should provide an updated model in as few time windows
as possible.

• Long model lifespan. Network traffic behavior varies
significantly over time. Consequently, the ML model must
deal with changes in the network traffic behavior as time
passes without demanding frequent model updates to be
applied. More specifically, model updates must not be
required to be conducted often, considering the challenges
related to such tasks.

• Maintain its accuracy rates even if outdated. Updated
ML models cannot be frequently provided, considering
the time needed for model updates and how frequently a
network operator can execute them. The ML model must
ensure that it can maintain its accuracy rate for a while,
even when facing new network traffic behavior that was
not experienced during the model training task.

III. RELATED WORKS

Machine learning techniques have been extensively and
successfully applied in several fields for classification pur-
poses [3], [7]. In general, proposed schemes in the literature
aims at higher classification accuracies, often considering
unrealistic production environment settings. For instance, Kil-
incer et al. [6] compared the accuracy rates of several classical
batch classifiers, such as Support Vector Machines (SVM),
k-Nearest Neighbors (kNN), and Decision Trees (DT), on
five distinct intrusion datasets. The classifiers reached high
accuracy rates, regardless of the evaluation data used. Another
batch learning approach was proposed by Sangkatsanee et
al. [21], which conducts real-time intrusion detection using
decision trees. Despite the low training time, their proposed
model achieved high accuracy rates but did not consider
periodic model updates.

Another popular approach used to increase accuracy relies
on using a pool of classifiers in an ensemble-based approach.
For instance, Gao et al. [8] showed that intrusion detection
through an ensemble of classifiers and a majority voting
scheme could increase the system accuracy. Their proposed
model does not consider periodic model update needs. Fate-
meh et al. [22] proposed a multiple classifier system based on
AdaBoost and neural networks. The authors provided higher
accuracy on a single dataset through feature selection and mul-
tiple classifiers, while the challenge of network traffic behavior
change was not evaluated. In Jie Gu et al. [23], the authors
relied on an ensemble technique through a feature augmenta-
tion approach for improved accuracy. Their proposed approach
does not consider the non-stationary nature of network traffic
or the challenges that periodic model updates pose to their
technique. Otoum et al. [24] proposed an ensemble-based
intrusion detection in a wireless field that also provides lower
error rates. However, it leaves the system unprotected from
changes in the behavior of the network traffic. Periodic model
updates are considered by Alebachew et al. [25], wherein the
training dataset is continuously updated with new instances.
At each model update, the number of used training events is
increased, demanding additional computational training time
as time passes.



To address the computational burden of a model update
in a dynamic environment, researchers often resort to stream
learning techniques [26]. These approaches can incremen-
tally update the underlying classification model with newly
labeled instances. Despite being widely applied in several
fields, stream-learning-based intrusion detection techniques are
still at their inception. For instance, Adhikari et al. [27]
proposed a stream learning scheme to address evolving in-
trusion attempts. Although their technique can ease model
updates, their scheme assumes that the correct event label
is always available. Another stream learning approach for
intrusion detection was proposed by Martindale et al. [28],
where the use of an ensemble of classifiers can increase the
accuracy rates. Similarly, the authors assume that event labels
can be provided as needed, which is unrealistic in networked
production environments. In addition, Pu et al. [29] introduced
a technique to identify anomalies by combining a One-Class
Support Vector Machines (OCSVM) and Sub-Space Clustering
(SSC), where each subspace is used as an input to an instance
of OSCVM and finally in the detection of anomalies. Although
their proposed model can achieve the autonomous labeling of
events, it is computationally expensive to apply in real-time.

Owing to the difficulties related to the execution of model
updates, in recent years, several works have been proposed
in such context. For instance, federated learning performs
the model training task in a collaborative and distributively
manner, wherein training data can be kept on end devices
for model training purposes [30]. Although such a technique
can overcome privacy issues related to sending private data
to a centralized entity, the main challenges related to model
updates in intrusion detection remain unaddressed. In such a
context, proposed schemes must keep their reliability for long
periods, despite being outdated, while also having to deal with
the main challenges related to model updates in NIDS (see
Section II-C. In general, to ensure the reliability of classifica-
tion, different authors often assess the classification confidence
values of the classifiers [31]. For instance, Lin et al. [32]
evaluated the classifier confidence values to reject potential
misclassifications in biomedical image analysis. In addition,
Marinho et al. [33] also relied on the same rejection strategy
for map image classification purposes. Eduardo et al. [34]
makes use of the classification confidence values to assess the
classification reliability in intrusion detection. The proposed
model can maintain system accuracy. However, the authors
overlook the feasibility of model updates in their scheme
as time passes, assuming the availability of the event label
when needed. Classification with a reject option has yielded
promising results in several fields where a misclassification
incurs a high level of risk. However, it is infrequently used
for intrusion detection purposes, despite the damage that a
false negative may cause a computational system.

Due to the difficulties related to the lack of reliability
of proposed schemes, often caused by the network traffic
behavior changes over time, proposed approaches are rarely
used in production. However, related works rarely consider a
proper evaluation of their proposals, wherein traditional ML-

based evaluation often takes place, discarding the properties
of production environments. Roberto et al. [35] proposed
a framework for reliable evaluation of intrusion detection
approaches that includes a structured methodology to repli-
cate all necessary steps ranging from the feature engineering
process to the obtained performance metrics. As a result,
the authors provided a well-defined evaluation approach that
related works can replicate. The main focus of their proposed
approach is to enable the replication of reported results in the
literature without challenging the common assumptions used
by related works. In a prior work [16], we have introduced
the expected properties that a reliable ML-based intrusion
detection model must provide while also presenting a dataset
that enables such an evaluation. The desired properties include
detecting similar/new attacks or services while maintaining the
measurement accuracy when deployed on new environments.
The impact caused by the changes in the network traffic
behavior over time remains unaddressed in related works that
focus on the reliability of intrusion detection schemes [16],
[35].

IV. DETECTION OF A MOVING TARGET

This section investigates how changes in network traffic
may affect ML-based intrusion detection approaches and how
model updates can be used to address such a challenge.

A. A Realistic Intrusion Dataset with Extended Time Interval

Intrusion detection techniques built over these datasets have
not been evaluated when considering their long-term detec-
tion accuracies in the face of the underlying network traffic
behavior changes. A realistic intrusion detection dataset [16]
must provide real network traffic that can be observed in a
production environment. The network data must contain valid
and highly diverse network traffic with proper client/server
communication. The collected events must be previously la-
beled as either normal or attack events through either expert
assistance or autonomous approaches, such as through misuse-
based tools or unsupervised ML algorithms. The network
traffic must be collected for extended intervals, thus enabling
an evaluation of the impact of network traffic behavior changes
over time. Finally, the dataset built should be publicly avail-
able for a proper benchmark of the results obtained.

Providing the characteristics above in an intrusion dataset
is a challenging task that can be achieved in two ways [16].
First, the authors may collect real network traffic from the
production environment. As a result, although the collected
data are realistic, highly diverse, and valid, sharing is often
impossible due to privacy concerns [36]. Nonetheless, the
collection of real network traffic for extended intervals can
pose a significant challenge because of the difficulties related
to the labeling task [37]. Second, the authors may set up a
controlled testbed that can ease the labeling task, as well as
the collection of data for extended intervals [16]. However, the
collected network traffic is often unrealistic, presenting a low
diversity in client/server communication [38].



TABLE II: Used intrusion dataset statistics.

Property Value
Average Daily Network Packets 110 Millions
Average Daily Network Flows 22 Millions

Average Daily Anomalous Flows 0.9 Millions
Average Daily Throughput 420 Mbps
Average Daily Dataset Size 7.1 GB

Total Network Packets 40.1 Billions
Total Network Flows 8.1 Billions

Total Dataset Size 2.6TB

(a) Number of network flows
over time.

(b) Distribution of network
flows over time.

Fig. 1: Dataset network flow distribution.

Our proposal is evaluated using the MAWIFlow [7] dataset.
The data are made from network traffic that passes through
the Samplepoint-F from the MAWI [39] archive, i.e., it is
composed of real, valid, and highly diverse network traffic.
The data are collected daily in 15-min intervals from a transit
link between Japan and the USA. For our evaluation, was
used the network traffic that occurred throughout the year
of 2014. The built dataset comprises more than 2.6TB of
data, compounding approximately 40 billion network packets.
Because of the enormous amount of data, to enable the
previous labeling of events, the data used are labeled using
an unsupervised ML technique from MAWILab [11], which
enables the autonomous labeling of the input records as either
normal or attack events. To find anomalies in the MAWI
archive, it uses several unsupervised ML algorithms, thus
without human assistance for the event labeling task. The
identified anomalies are labeled as an attack, whereas the
remaining data are assumed to be normal events. For the
feature extraction task, BigFlow [7] was used, which grouped
events in 15-s intervals while extracting the 66 flow-based
features from Moore’s approach [15], as shown in Table I. A
summary of the dataset statistics is shown in Table II.

B. Addressing Network Behavior Changes

The evaluations performed are aimed at answering the
following research questions (RQ): (RQ1) How do changes
in network traffic behaviors impact traditional ML-based
techniques? (RQ2) How do periodic model updates affect the
accuracy of the evaluated schemes over time? (RQ3) What are
the computational costs of periodic model updates?

For evaluation purposes, two widely used ML-based tech-
niques were considered: batch and stream learning approaches.
Batch learning refers to traditional pattern recognition tech-
niques in which the retraining of the model discards the
outdated model at each model update. By contrast, stream
learning refers to stream learning approaches that apply in-
cremental model updates according to the outdated models.

Batch Learning. Four widely used batch learning algorithms
for intrusion detection purposes were evaluated [2], namely,
Random Forest (RF), Gradient Boosting (GBT), AdaBoost-
ing (Ada), and Ensemble. The RF was evaluated using 100
decision trees as its base learner, each built using gini as a
node quality measure without a maximum tree depth value.
The GBT was evaluated using 100 decision trees as base
learners, with a learning rate of 0.1, and friedman mse as the
split quality measure. Ada was evaluated using the boosting
algorithm with 100 decision trees as the base learners and a
learning rate of 1.0. Finally, the ensemble was implemented
through a majority voting procedure for the three previously
described classifiers. The batch learning classifiers were im-
plemented on top of the scikit-learn API v. 0.24. Stream
Learning. Similarly, four widely used stream learning clas-
sification algorithms were evaluated in our dataset: Hoeffding
Tree (HT), Leveraging Bag (Bag), OzaBagging (Oza), and
Ensemble. The HT was evaluated using information gain as
the node split criterion, a grace period of 200, and naive
Bayes adaptive as the leaf node prediction. The bagBag was
evaluated with 3 HT as the base estimator and ADWIN as the
leveraging algorithm with 0.002 as the delta parameter for the
change detector. Similarly, the Oza was evaluated with 3 HT
as base estimators. The ensemble was implemented through
a majority voting procedure from the three single-evaluated
classifiers HT, Bag, and Oza. The stream learning classifiers
were implemented on top of scikit-multiflow API v. 0.5.3.
Owing to the highly unbalanced nature of the dataset, because
the majority of instances are normal (Figure 1), a random
undersampling without a replacement technique is applied on
each dataset day.

The classifiers were evaluated with respect to their false-
negative rates (FN), false-positive rates (FP), and F1 scores. To
achieve such a goal, the following classification performance
metrics were used:

• True-Positive (TP): number of attack samples correctly
classified as attack.

• True-Negative (TN): number of normal samples correctly
classified as normal.

• False-Positive (FP): number of normal samples incor-
rectly classified as attack.

• False-Negative (FN): number of attack samples incor-
rectly classified as normal.

The F1 score was computed as the harmonic mean of
precision and recall values while considering attack as positive
samples and normal as negative samples [40], as shown in



(a) Hoeffding Tree (HT) (b) Leveraging Bag (Bag) (c) OzaBagging (Oza) (d) Ensemble

Fig. 2: Accuracy performance of the evaluated stream learning classifiers without performing periodic model updates.

(a) Random Forest (RF) (b) Gradient Boosting (GBT) (c) AdaBoosting (Ada) (d) Ensemble

Fig. 3: Accuracy performance of the evaluated batch learning classifiers without performing periodic model updates.

Eq. 3.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

The first experiment aims at answering RQ1 and evaluates
the performance accuracy of both batch and stream learning
classifiers when no model updates are applied. The evaluated
classifiers were trained using the first 30 days of the January
dataset data and evaluated through the remaining dataset
period, without model updates being applied. The goal is to
measure how the network traffic behavior changes over time,
which affects the classification accuracy of traditional ML-
based schemes.

Figures 2 and 3 show the performance accuracy of the
evaluated stream learning and batch learning classifiers, re-
spectively. It is possible to note a significant accuracy impact
as time passes and the model lifespan increases for all evalu-
ated classifiers. For instance, the HT stream learning classifier
(Fig. 2a) increases its FN rate by 4.7% in February, only a
month after its training period, while presenting the worst
performance in June, reaching a 34% FN rate, which is an

increase of 15.4% when compared to the rates obtained in
January. Similarly, batch learning classifiers are also affected
by changes in network traffic behavior. In this case, consid-
ering the RF batch learning classifier (Fig. 3a), it increases
its FN rate in February by 11%, while presenting the worst
classification accuracy in November, reaching 53% of the FN
rate. By contrast, the FP rates are not significantly affected
as time passes; however, higher FN rates are experienced, de-
manding model updates to be nonetheless applied. Regardless
of the classification scheme used, changes in network traffic
significantly affect the classification accuracy if no model
updates are conducted, even when an ensemble of classifiers
are used (Figures 2d and 3d).

The second experiment aims to answer RQ2 and evaluate
performance accuracy when applying periodic model updates.
Monthly model updates are conducted on each evaluated
classifier, using the data one month before the model update
period. For instance, on February 1st, the underlying ML
model is updated with data that occurred during the previous
30 days (January 1 through 31). Both batch and stream
learning classifiers are trained from scratch through model
updates. Hence, stream learning classifiers are not incremen-
tally updated, as commonly assumed in related studies. In
other words, the evaluation addresses changes in network
traffic behavior through monthly model updates, a common
assumption that has yet to be evaluated in the literature.



(a) Hoeffding Tree (HT) (b) Leveraging Bag (Leve) (c) OzaBagging (Oza) (d) Ensemble

Fig. 4: Accuracy performance of the evaluated stream learning classifiers with monthly model updates.

(a) Random Forest (RF) (b) Gradient Boosting (GBT) (c) AdaBoosting (Ada) (d) Ensemble

Fig. 5: Accuracy performance of the evaluated batch learning classifiers with monthly model updates.

Figures 4 and 5 show the performance accuracy throughout
time when monthly model updates are applied on the stream
and batch learning classifiers, respectively. In such a case,
the majority of the evaluated classifiers were able to provide
high accuracy rates throughout time, showing that periodic
model updates can be used to address changes in network
traffic behavior. For instance, the stream learning ensemble
approach (Fig. 4d) presented an average FP rate of only 7.5%,
whereas its no updated counterpart presented an average of
18% (Fig. 2d). Similarly, the worst accuracy rate does not
significantly vary when periodic model updates are applied,
showing that changes in network traffic behavior can be
addressed through frequent model updates.

Figure 6 compares the F1 scores (Eq. 3) with and without
periodic model updates, being performed of both batch and
stream learning ensemble techniques. It is possible to note a
significant improvement on F1 scores when model updates
are being performed, increasing up to 0.09 and 0.24 for
stream and batch learning techniques, respectively. As a result,
reliable deployment of ML-based NIDS demands periodic
model updates be performed to keep the system accuracies
high as time passes.

We further investigate how challenging it is for the evaluated
techniques to achieve periodic model updates. Figure 7 shows
the cumulative number of instances demanded by the evaluated
schemes during monthly model updates. It is possible to note

(a) Stream Learning (b) Batch Learning

Fig. 6: Comparison of F1-Score for batch and stream learning
ensemble classifiers, with and without monthly model updates.

that, as time passes and further rounds of model updates are
executed, the number of instances that should be labeled also
increases. In practice, considering monthly updates with the
last 30 days of data as the training dataset, all network events
must be labeled over time. However, the task of labeling
network events is challenging and infeasible to perform for
all collected data, particularly when considering a high-speed
network setting, which can produce huge amounts of events
within a small window of time. As a result, despite periodic
model updates enabling ML-based techniques to maintain their



Fig. 7: Cumulative number of instances that should be labeled
throughout a time when monthly model updates are applied.
The large number of events that must be labeled during model
updates poses a significant challenge to traditional approaches.
Although misuse-based labeling approaches can be used for a
subset of network events.

classification accuracies over time, the number of instances
that should be labeled makes such a task infeasible in a real-
world setting.

Finally, to answer RQ3, we investigate the computational
costs of the model updates on traditional ML-based tech-
niques. To achieve this goal, we compared the cumulative
computational costs of the ensemble-based classifiers with
model monthly model updates (Figs. 4d and 5d) versus their
counterparts without model updates (Figs. 2d and 3d). The
experiments were conducted on commodity hardware, and the
computational costs were computed to the CPU usage time
for all available cores, using multithreading ML API.

Figure 8 shows the cumulative computational costs of the
ensemble-based classifiers. Periodic model updates demand
an average additional computational processing time of 83
and 3, 254 s for the batch and stream learning classifiers,
respectively. Recall that each evaluated ML technique is imple-
mented on specific APIs and that the required processing time
relies on the underlying implementation of the ML library.
In addition, due to the outdated model’s discarding, the batch
learning classifiers will require more extended processing over
time, and more network flows will be used in the model
training task.

C. Discussion

In this section, experiments have shown that the natural
changes in network traffic behavior over time affect the
classification accuracies of ML-based approaches if no model
updates are conducted (Figures 2 and 3). To address this
evolving behavior of network traffic, we assume that periodic
model updates will be applied. The experiments showed that
periodic model updates can indeed be used to maintain the
classification accuracies of intrusion detection schemes (Fig-
ures 4 and 5). However, the challenge related to the model
update task required to maintain the reliability of the system
makes periodic model updates unfeasible under production

(a) Stream Learning (b) Batch Learning

Fig. 8: Cumulative computational costs of evaluated ensemble
classification during model updates.

settings. More specifically, the number of instances that should
be labeled during model updates (Figure 7) cannot be provided
through the production settings. Nonetheless, although it can
be executed offline, the increase in the computational costs
owing to the frequent execution of the model update task
(Figure 8) also further increases the difficulties related to the
model updates. We further investigate how the changes affect
the accuracy of the proposed intrusion detection schemes and
how periodic model updates can address such behavior.

V. A STREAM LEARNING INTRUSION DETECTION MODEL
WITH DELAYED MODEL UPDATES

We propose an approach aiming to maintain the system
accuracy as time passes while also easing the model update
task through a two-step process, namely, Stream Learning
Intrusion Detection and Offline Model Update. The Stream
Learning Intrusion Detection aims to maintain the accuracy
of the system as time passes, even if no model updates are
applied. The proposal considers that model updates can be
achieved with significant delays or even not applied at all,
as occurs in a production environment. Consequently, the
classification algorithm deployed must cope with new network
traffic behavior even when outdated ML models are used.
To avoid affecting the system accuracy caused by outdated
models, we evaluate the classification confidence values during
a classification based on a reject option rationale. As a result,
only highly confident and most likely correct classifications
are accepted by our model. Thus, our proposed scheme can
maintain the accuracy of the system classification over time,
even with outdated classifiers.

The goal of the Offline Model Update is to ease the model
update task. Our scheme applies incremental model updates
using the instances rejected by our classifiers deployed during
production, thus decreasing the number of instances used
during model updates. Nonetheless, to ease the labeling task,
our scheme stores rejected instances for an extended period
before using them for the model updates. As a result, the
network operator can easily label them through traditional
misuse-based intrusion detection techniques, considering that
by the time the system is updated with such rejected instances,
the proper event label will be publicly available, for example,



Fig. 9: Proposed intrusion detection based on streaming learning with delayed model updates. The classification procedure is
executed continuously through a stream learning classifier pool. Model updates are executed offline and periodically with old
rejected instances.

in a Common Vulnerability and Exposure (CVE) database. The
proposal insight is that the model update task can be easily
conducted using instances that could not be reliably classified
by our underlying ML model during production, as evaluated
through classification with a reject option approach.

Figure 9 shows an overview of our proposed model. The fol-
lowing subsections describe the modules implemented through
our proposal.

A. Stream Learning Intrusion Detection

The behavior of network traffic changes regardless of the
deployed ML-based NIDS must maintain its classification
accuracies measured during the test phase under production
usage even if the underlying ML model is outdated (see
Section II-C). However, traditional ML-based NIDS applies a
decision on all evaluated instances, even if they are unknown
to the ML model, which may increase the error rate as time
passes. As a result, current detection schemes often increase
their error rate measured during the test phase over time,
caused by changes in the underlying network traffic behavior.

To address such shortcomings the classification is conducted
in two ways in our proposal. First, to ease the model updates,
classification is conducted through a pool of stream learning
classifiers (Figure 9, Stream Learning N). As a result, model
updates can be applied incrementally, leveraging the current
outdated model deployed during production, thus significantly
decreasing the computational costs of the model update. Sec-
ond, to maintain its classification accuracy for more extended
periods, even if no periodic model updates are applied, events
are classified with a reject option (Figure 9, Verifier). To
achieve this goal, we evaluate the classification confidence
values from each classifier and accept only those classifications
that surpass a predefined classification acceptance threshold.

Finally, the network event label is assigned through a majority
voting rationale from all accepted classifications from every
single classifier. On the contrary, if none of the deployed
classifiers can accept the applied classification, the event is
rejected, and its alert is suppressed. Classification confidence
values are classifier agnostic, e.g., the Random Forest classifier
outputs its confidence values according to the ratio of individ-
ual decision trees that assign a given label to the evaluated
event. It is important to note that the rejection threshold
must be defined according to the operator’s discretion because
a higher threshold will produce higher reliability but with
different events being rejected. In contrast, a lower threshold
will reject fewer instances but produce higher error rates
during classification as time passes.

The overall classification procedure is shown in Figure 9
(Stream Learning Intrusion Detection). It starts with a to-
be-classified network event collected by a data acquisition
module (Fig. 9, Event i). The behavior of the collected
data is then extracted using the feature extraction module,
compounding a feature vector (Fig. 9, Event ii). The extracted
vector is classified by a pool of stream learning classifiers
(Figure 9, Stream Learning N), wherein each model outputs a
related classification confidence value (Fig. 9, Event iii). The
confidence values are evaluated using a Verifier module, which
assesses the confidence values of each classifier according
to their classification acceptance threshold. Each accepted
classification is used to establish the final event label through
a majority voting procedure. If all evaluated classifiers reject
the evaluated event, its alert is suppressed, and the event is
stored for later model updates (Fig. 9, Event iv.b). Otherwise,
accepted events are forwarded to the Alert module, which
properly reports them to the network operator (Fig. 9, Event



Algorithm 1 Proposal Network Flow Classification
Require:

Instance inst = {x1, ..., xN}
Classifiers pool = {c1, ..., cN}
Thresholds threshold = {(t1a, t1n), ..., (tNa , tNn )}
procedure CLASSIFICATION(inst, pool, threshold)

for each classifier, t ∈ {pool, threshold} do
class, conf ← classify(classifier, inst)
if class = normal and conf ≥ tn then

vote(inst, normal)
else if class = attack and conf ≥ ta then

vote(inst, attack)
end if

end for
if getNumberOfV otes(inst) = 0 then

reject(inst)
else

alert(getMajorityV ote(inst))
end if

end procedure

iv.a).
Algorithm 1 describes the classification procedure of our

proposal. The algorithm receives as input an instance (inst)
to be classified, composed of several flow-based features
(x1, ..., xN ), a classifier pool with several stream learning clas-
sifiers, and a corresponding classification acceptance thresh-
old for both normal and attack classes for each classifier.
Every single classifier conducts the classification, and the
corresponding output confidence value (conf ) is evaluated to
accept or reject a decision performed by the single classifier.
Accepted classifications are used by a majority voting process
(vote). Finally, if none of the classifiers are able to accept the
classification, the event is rejected (reject); otherwise, an alert
is signaled (alert).

B. Offline Model Updates

Model updates are conducted offline, considering that the
outdated ML model will still be deployed under the production
environment. To decrease the number of events that must be
labeled as time passes (see Section II-C), the model update
task is achieved through only those events that were previously
rejected by our proposal. As the rationale of such a scheme,
model updates can be made only through instances that are
not reliably classified by the outdated model deployed during
production. This is because the underlying ML models will
be improved according to only those instances it was unable
to classify previously properly. As a result, our proposal can
further decrease the number of instances labeled, stored, and
used for the model updates. In addition, model updates are
conducted only when a predefined time window has passed
since the rejection of a given event (Figure 9, D Days Old
Rejected Events) because, if older events are used in the model
updates, they can be autonomously labeled using traditional
misuse-based tools. Consequently, by the time the rejected

Algorithm 2 Proposal Offline Model Update
Require:

Storage Interval d = daysToStoreRejectedInstances()
Dataset dataset = getOldRejectedInstances(d)
Classifiers pool = {c1, ..., cN}
Label Provider l = getLabelProvider()
procedure MODELUPDATE(dataset, pool, l)

for each instance ∈ dataset do
label = provideLabel(l, instance)
for each learner ∈ pool do

incrementalUpdate(learner, instance, label)
end for

end for
end procedure

event is used in the model update, the proper event label will
be publicly available, for example, in publicly available cyber-
security attack databases, making the labeling task feasible in
a production environment. Thus, model updates can be applied
autonomously without human intervention.

The model update procedure is shown in Figure 9. It is
triggered periodically by a network operator, e.g., every month.
In such a case, stored rejected events older than a predefined
time window (e.g., 30 days after its rejection) are collected
from an event database that stores rejected events from the
production environment. The selected events are then labeled
through an Event Labeling module, which may either be
accomplished through expert assistance or make use of misuse-
based techniques for the autonomous labeling of events. The
labeled events are then used for incremental model updates
of the pool of stream learning classifiers deployed within the
production environment.

Algorithm 2 describes the model update task of our pro-
posal. It receives as input a storage interval d that represents
the number of days a rejected event should be stored before it
can be used for model updates, a dataset comprising rejected
events older than d, a classifier pool, and a label provider l. The
label provider is used for labeling a networking event properly.
It may be made of expert assistance, misuse-based tools,
or even unsupervised ML algorithms. The model update is
achieved by requesting the event label for each instance in the
dataset. With its corresponding event label, the network event
is used for the incremental model update for each classifier
used in the classification pool. Finally, the updated classifier
pool is forwarded for the classification module to update the
underlying ML algorithms (Figure 9, Updated Model).

As a result, the model update task is significantly eased.
Fewer instances must be used for model updates, considering
that only rejected ones are used for an update. Selected
instances can be autonomously labeled through traditional
misuse-based techniques, considering that they can be stored
for an extended period and that their label will be publicly
known by the time they are used for model update purposes.
Nonetheless, the required computational processing during
model updates is significantly decreased because our proposed



model leverages stream learning classifiers, enabling incre-
mental model updates to be performed. This is also a result of
the reduced number of instances applied for the model updates
because we only use those previously rejected instances by our
scheme.

C. Discussion

The number of required updated network events (see Sec-
tion II-C) decreases as our proposed scheme is able to select
which instances should be used for model update purposes
through classification with a reject option approach. Given,
they are stored for some time before being used for model
update purposes, newly collected network events can be easily
labeled as they are stored for a while before they are used for
model updates. Computational costs are decreased considering
that only a subset of instances is used for model updates, and
outdated models are updated over time. Finally, considering
that our model accepts only highly confident classifications,
the accuracy rates and model lifespan are improved during
production usage even with outdated models, considering
that only highly confident classifications are accepted by our
scheme. As a result, our proposed model can address the main
challenges related to model updates on ML-based NIDS while
also providing reliability in intrusion detection over time.

VI. EVALUATION

Our evaluation aims at answering the following research
questions: (RQ4) Is the proposed classification evaluation
approach able to improve the accuracy of the classification?
(RQ5) How does our proposed model perform without periodic
updates? (RQ6) How does our proposed model perform with
periodic model updates? (RQ7) How does the delay on model
update task affects the classification accuracy over time?
(RQ8) What are the computational costs of our proposed
model?

The following subsections further describe our proposed
model building procedure and the evaluations conducted

A. Model Building

The proposed scheme was implemented, making use of the
same set of stream learning classifiers evaluated previously
(see Section IV). Therefore, our proposed model relies on a
pool of stream learning classifiers that includes the HT, Bag,
and Oza, similarly as performed by the Ensemble approach
(Figure 2d), also evaluated in Section IV. Similarly, the
stream learning classifiers were implemented on top of scikit-
multiflow API v. 0.5.3, and the same set of parameters were
used. Due to the highly unbalanced nature of the dataset, as
the majority of instances are normal (Figure 1), a random
undersampling without replacement technique is applied on
each dataset day as a dataset preprocessing procedure.

B. Stream Learning Intrusion Detection

Our first experiment aims at answering RQ4 and evaluates
whether the proposed approach for a classification evaluation
aids in improving the accuracy of the proposed scheme. The

Fig. 10: Rejection and average error rate tradeoff of each single
stream learning classifier, used by our stream learning pool on
February data.

stream learning ensemble of our proposed model was trained
using January data, and the tradeoff between the error and
rejection rates on the test dataset of February was evaluated.
The error-reject tradeoff is established through the class-
related-threshold approach [41]. Therefore, each considered
event class, normal and attack, holds a specific acceptance
threshold for each single classifier (see Algorithm 1). The
classification confidence values are classifier agnostic and were
obtained through the predict proba function in the scikit-
multiflow API. The goal is to measure whether a classification
assessment can be used to improve classification accuracy,
even under an outdated ML model setting.

Figure 10 shows the Pareto curve of the error rejection
tradeoff for every single classifier of February, considering
only the optimal set of operation points for every single
classifier. In such a case, the average error rate is measured
as the FP and FN rates average. The rejection rate was
measured according to the rate of instances in which our
model suppressed the classification outcome. It is possible to
note that the classification evaluation through the classification
confidence values can be used to improve the system’s accu-
racy, even when outdated ML models are used. For instance,
the OzaBagging classifier decreased the error rate from up to
12% to only 5% when rejecting up to only 10% of instances.
Therefore, the classification evaluation approach can be used to
maintain the system’s accuracy while applying a model update
task.

To answer RQ5, we evaluated how our proposed model per-
forms when no periodic model updates are conducted, meaning
rejecting only potential misclassifications as established by
our verifier scheme. The evaluation goal is to measure how
our model can be applied, even if outdated, by assessing
only the classification reliability of the classified instances.
The acceptance threshold of every single classifier is set at a
10% error rate (Figure 10), and the intrusion detection task
is conducted without model updates throughout the year. It is



Fig. 11: Proposed scheme accuracy and rejection rate over
time without periodic model updates.

important to note that the operation point must be established
according to the operator’s needs. Although a higher rejection
rate is able to provide higher accuracies over time, a higher
number of network events are rejected, whereas a lower
rejection rate accepts more network events but is susceptible
to producing higher error rates as time passes. Recall that our
proposed model (Figure 9) relies on an ensemble of classifiers
implemented using the HT, Bag, and Oza, and the detection is
applied through a majority voting rationale. Thus, our model
rejects a given instance if all single classifiers also reject it,
and only the accepted classification by every single classifier
is used in majority voting (Algorithm 1).

Figure 11 shows the accuracy and rejection performance of
our model without periodic model updates being applied. It is
possible to note that our model can maintain the system accu-
racy rate over time compared to January, even with outdated
underlying classifiers. More specifically, our scheme maintains
the system accuracy for most of the dataset months, despite
the rejection rate, even if no model updates are conducted.
On average, our scheme without model updates, and using
only the classification evaluation technique, improved the FP
rate by 12% when compared to the traditional technique
without a rejection (Figure 11 versus Figure 2d), while re-
jecting an average of only 8.5% of events. Consequently, the
classification evaluation approach can be used to maintain the
system accuracy over time while an updated model remains
unavailable or even improve the model lifespan of the intrusion
detection scheme if no model updates are planned to be
performed.

To answer RQ6, we evaluate the performance of our
proposed model with periodic model updates being applied
using the old rejected instances. The same previously used
classification acceptance operation points were applied to
reject the instances by our model. The rejected instances were
stored and used in incremental model updates after 30 days had
passed since rejection (Algorithm 2, the parameter d), while
the model update task is executed in a monthly periodicity. For

Fig. 12: Proposed scheme accuracy and rejection rate over time
with monthly model updates being performed using rejected
instances with 30 days old for model updates.

(a) Batch Learning (b) Stream Learning

Fig. 13: F1-Score comparison of our proposed model vs.
the ensemble approach of both traditional stream and batch
learning techniques.

Fig. 14: Cumulative number of instances demanded during
model updates of our proposed scheme vs. traditional tech-
niques.

instance, on February 28th, our stream learning classifier pool
is updated with the instances that were rejected by our model



(a) Accuracy Rate (b) F1 Score (c) Rejection Rate

Fig. 15: Average error, F1 score, and rejection rate over time by varying the storage interval of rejected instances for the use
of model updating in our proposal.

from January 1st to January 31th. Instances were rejected a
month before the model update task execution. The storage
window time should be defined according to the operator’s
needs, considering the label provider technique used by the
network operator.

Figure 12 shows the accuracy and rejection rates of our pro-
posed scheme when monthly model updates are applied with
rejected instances that were stored for at least 30 days. In such
a case, our proposed scheme can significantly decrease the
error rates while significantly rejecting fewer instances over
time compared to its no-update counterpart. More specifically,
on average, model updates improved the FP rate by 2% while
rejecting only 2% of instances, a decrease in the rejection
rate by 6.5% when compared to its no-update counterpart
(Figure 11 versus Figure 12). Therefore, our proposed scheme
can maintain the accuracy rates of intrusion detection over
time while significantly easing the model update process when
needed.

We further investigate the accuracy performance of our
model when periodic model updates are conducted using
the 30-day-old rejected instances. Figure 13 compares the
performance accuracy of our model when compared to the
traditional ensemble approach of both stream and batch learn-
ing techniques. Our scheme, with monthly updates, was able
to provide lower error rates when compared to the evaluated
techniques without updates and with monthly updates. More
specifically, when compared to the batch ensemble approach,
our scheme improved the F1 score by an average of 0.08 and
0.03 compared to the no-updates and monthly updates, respec-
tively (Figure 12 versus Figs. 3d and 5d), which represents an
improvement of 5.7% and 0.6% on the average error rate.

When compared to the stream approach, our scheme im-
proved the F1 Score by an average of 0.06 and 0.03 compared
to the no-updates and monthly updates, respectively (Figure 12
versus Figs. 2d and 4d), thus, also improving the average
error rate by up 6.1% and 1% respectively. Recalling that an

improvement in F1 Score, was achieved while rejecting only
an average of 2% of the instances.

Nonetheless, despite the improved accuracy of our model,
we were also able to decrease the challenge regarding the
model update task significantly. Figure 14 shows the number of
instances demanded by our model when compared to both no-
update and monthly update techniques. Our proposed scheme
increased the accuracy rates while demanding an average of
only 2.2% of the labeled instances demanded by the traditional
monthly update techniques. In addition, when compared to
the no-update schemes, our proposed model incurred only 2%
of additional instances to be provided over time. Therefore,
despite the improvements in the accuracy of our proposal, as
the main contribution, the model update task is significantly
eased when considering the low requirements on the number of
labeled instances to be provided as time passes. Furthermore,
our proposal’s instances used in the model updates can be
easily labeled when considering the high storage interval
applied during the model updates.

To answer question RQ7 we further investigate how the
delay of model update tasks through rejected instances (Algo-
rithm 2, Storage Interval d) can be increased without impact on
accuracy or rejection. As evaluated previously, our proposed
scheme can last long periods without periodic model updates
without affecting the system accuracy (see Figure 11). Thus,
we further investigate the effect of increasing the storage
intervals on both accuracy and rejection rate. Figure 15 shows
the average error rate, F1 Score, and rejection rate when
rejected instances are stored for more extended periods before
being used for model updates. It is possible to note that
higher storage intervals do not significantly affect accuracy or
rejection rate over time. For instance, increasing the storage
interval of rejected instances from 30 days to 90 days increases
the average rejection rate by only 1.7%, decreasing the average
error rate by only 0.6%. As a result, network operators can
store rejected instances for more extended periods if their label



Fig. 16: Computational costs of model updates of our pro-
posed scheme vs traditional monthly updated stream learning
ensemble technique.

provider technique demands it, further easing the model update
task without significant tradeoffs on accuracy and rejection
rates.

Finally, we answer RQ8 and evaluate the computational
costs of our proposal when compared to the traditional en-
semble stream learning technique with monthly model updates
(Figure 12 versus Figure 4d). Similarly, the experiments were
conducted on commodity hardware, and the computational
costs were computed according to the sum of the CPU
usage time from all available cores. Figure 16 shows the
computational costs of our proposal when periodic model
updates are applied through the 30-day-old rejected instances
(as performed in Figure 12). It should be noted that our
proposed model, when compared to the traditional ensemble
approach with monthly model updates, demands an average
of only 3.2% of the computational costs.

As a result, the proposed model can significantly ease
the model update task by increasing the model lifespan,
reducing the number of labeled instances provided while
also demanding significantly lower computational costs during
model updates. For instance, consider an ML-based NIDS
deployed in production for the classification of the MAWIFlow
dataset. Throughout a 12-month period, with monthly model
updates, our proposed scheme would demand a total of 4, 6
thousand seconds of training computational time, while the
traditional technique would demand a total of 35, 7 thousand
of seconds of training computational time, a 7.67 fold increase.
In addition, if we assume that each instance demands 264 bytes
for its storage (Table I, 66 features with 4 bytes per feature),
our model would demand monthly average storage capacities
of 133 GB, while the traditional approach would demand each
month an additional of 958 GB, a 7.2 fold increase per month.
Therefore, our proposed model makes the model update task
more feasible, considering the storage rejection period until the
label becomes publicly available, and significantly decreases

the computational and storage costs for model updates.

VII. CONCLUSION

In the literature in general, the authors overlook the chal-
lenges that the evolving network behavior may cause on their
proposed schemes, which, in practice, will require frequent
model updates to be conducted. However, the model update
is a challenging task in NIDS due to the huge amounts of
network traffic that must be evaluated, labeled, and used during
the model training phase. This paper makes the model update
feasible through a stream learning classifier pool, a classifi-
cation evaluation approach, and delayed model updates. The
stream learning algorithms have enabled the easy incorporation
of new network traffic behavior, whereas the classification
assessment provides a reliable classification even when the
underlying models are outdated. As a result, even without
periodic model updates, our model can keep its accuracy over
time and even improve its FP rates by up to 12% compared
to the traditional stream learning classification approach. The
delayed model updates enable the labeling task of new network
behavior to be efficiently conducted after a proper attack dis-
closure in a public repository. Therefore, the proposed model
can perform model updates without human assistance, waiting
up to 3 months for the proper event label to be provided
without impact on the system accuracy, while demanding only
3.2% of the computational time and 2% of new instances to
be labeled as time passes, making model updates in NIDS a
feasible task.

The future work will extend the proposed model into
a federated learning architecture, further easing the model
update process.

The dataset used in the experiments described through-
out the present paper is publicly available for download at
https://secplab.ppgia.pucpr.br/idsovertime.

ACKNOWLEDGMENT

This work was partially sponsored by Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq), grant nº 430972/2018-0).

REFERENCES

[1] Kaspersky Security Bulletin 2020. Statistics, 2020. [Online]. Available:
https://securelist.com/kaspersky-security-bulletin-2020-statistics/99804/

[2] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso,
“Survey of network intrusion detection methods from the perspective of
the knowledge discovery in databases process,” IEEE Trans. on Network
and Service Management, vol. 17, no. 4, pp. 2451–2479, Dec. 2020.

[3] C. Gates and C. Taylor, “Challenging the anomaly detection paradigm:
A provocative discussion,” in Proc. of the Workshop on New Security
Paradigms (NSPW), 2006, pp. 21–29.

[4] R. Sommer and V. Paxson, “Outside the closed world: On using machine
learning for network intrusion detection,” in 2010 IEEE Symposium on
Security and Privacy. IEEE, 2010.

[5] G. W. Cassales, H. Senger, E. R. de Faria, and A. Bifet, “IDSA-IoT:
An intrusion detection system architecture for IoT networks,” in 2019
IEEE Symposium on Computers and Communications (ISCC). IEEE,
Jun. 2019. [Online]. Available: https://doi.org/10.1109/iscc47284.2019.
8969609

[6] I. F. Kilincer, F. Ertam, and A. Sengur, “Machine learning methods
for cyber security intrusion detection: Datasets and comparative
study,” Computer Networks, vol. 188, p. 107840, Apr. 2021. [Online].
Available: https://doi.org/10.1016/j.comnet.2021.107840

https://securelist.com/kaspersky-security-bulletin-2020-statistics/99804/
https://doi.org/10.1109/iscc47284.2019.8969609
https://doi.org/10.1109/iscc47284.2019.8969609
https://doi.org/10.1016/j.comnet.2021.107840


[7] E. Viegas, A. Santin, A. Bessani, and N. Neves, “BigFlow: Real-time
and reliable anomaly-based intrusion detection for high-speed networks,”
Future Generation Computer Systems, vol. 93, pp. 473–485, Apr. 2019.

[8] X. Gao, C. Shan, C. Hu, Z. Niu, and Z. Liu, “An adaptive
ensemble machine learning model for intrusion detection,” IEEE
Access, vol. 7, pp. 82 512–82 521, 2019. [Online]. Available: https:
//doi.org/10.1109/access.2019.2923640

[9] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From
intrusion detection to attacker attribution: A comprehensive survey
of unsupervised methods,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3369–3388, 2018. [Online]. Available:
https://doi.org/10.1109/comst.2018.2854724

[10] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-
stage optimized machine learning framework for network intrusion
detection,” IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 1803–1816, Jun. 2021. [Online]. Available:
https://doi.org/10.1109/tnsm.2020.3014929

[11] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proc. of the 6th Int. Conf. on emerging
Networking EXperiments and Technologies (CoNEXT), 2010.

[12] A. Blaise, M. Bouet, V. Conan, and S. Secci, “Detection of
zero-day attacks: An unsupervised port-based approach,” Computer
Networks, vol. 180, p. 107391, Oct. 2020. [Online]. Available:
https://doi.org/10.1016/j.comnet.2020.107391

[13] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” vol. 37,
pp. 132–156, Sep. 2017. [Online]. Available: https://doi.org/10.1016/j.
inffus.2017.02.004

[14] S. U. Din, J. Shao, J. Kumar, W. Ali, J. Liu, and Y. Ye,
“Online reliable semi-supervised learning on evolving data streams,”
vol. 525, pp. 153–171, Jul. 2020. [Online]. Available: https:
//doi.org/10.1016/j.ins.2020.03.052

[15] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems - SIGMETRICS '05. ACM Press, 2005. [Online]. Available:
https://doi.org/10.1145/1064212.1064220

[16] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,” Com-
puter Networks, vol. 127, pp. 200–216, Nov. 2017.

[17] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A
detailed investigation and analysis of using machine learning
techniques for intrusion detection,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 686–728, 2019. [Online]. Available:
https://doi.org/10.1109/comst.2018.2847722

[18] Y. Zhong, W. Chen, Z. Wang, Y. Chen, K. Wang, Y. Li, X. Yin,
X. Shi, J. Yang, and K. Li, “HELAD: A novel network anomaly
detection model based on heterogeneous ensemble learning,” Computer
Networks, vol. 169, p. 107049, Mar. 2020. [Online]. Available:
https://doi.org/10.1016/j.comnet.2019.107049

[19] H.-L. Nguyen, Y.-K. Woon, and W.-K. Ng, “A survey on data
stream clustering and classification,” Knowledge and Information
Systems, vol. 45, no. 3, pp. 535–569, Dec. 2014. [Online]. Available:
https://doi.org/10.1007/s10115-014-0808-1

[20] L. Bilge and T. Dumitras, “Before we knew it,” in Proceedings
of the 2012 ACM conference on Computer and communications
security - CCS '12. ACM Press, 2012. [Online]. Available:
https://doi.org/10.1145/2382196.2382284

[21] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo,
“Practical real-time intrusion detection using machine learning
approaches,” Computer Communications, vol. 34, no. 18, pp. 2227–
2235, 2011. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S014036641100209X

[22] F. Safara, A. Souri, and M. Serrizadeh, “Improved intrusion detection
method for communication networks using association rule mining and
artificial neural networks,” vol. 14, no. 7, pp. 1192–1197, Apr. 2020.

[23] J. Gu, L. Wang, H. Wang, and S. Wang, “A novel approach to
intrusion detection using SVM ensemble with feature augmentation,”
Computers & Security, vol. 86, pp. 53–62, Sep. 2019. [Online].
Available: https://doi.org/10.1016/j.cose.2019.05.022

[24] S. Otoum, B. Kantarci, and H. T. Mouftah, “A novel ensemble method
for advanced intrusion detection in wireless sensor networks,” in ICC
2020 - 2020 IEEE International Conference on Communications (ICC).

IEEE, Jun. 2020. [Online]. Available: https://doi.org/10.1109/icc40277.
2020.9149413

[25] A. Chiche and M. Meshesha, “Towards a scalable and adaptive learning
approach for network intrusion detection,” vol. 2021, pp. 1–9, Jan.
2021. [Online]. Available: https://doi.org/10.1155/2021/8845540

[26] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
“Ensemble learning for data stream analysis: A survey,” Information
Fusion, vol. 37, pp. 132–156, Sep. 2017. [Online]. Available:
https://doi.org/10.1016/j.inffus.2017.02.004

[27] U. Adhikari, T. H. Morris, and S. Pan, “Applying hoeffding adaptive
trees for real-time cyber-power event and intrusion classification,” IEEE
Transactions on Smart Grid, vol. 9, no. 5, pp. 4049–4060, Sep. 2018.
[Online]. Available: https://doi.org/10.1109/tsg.2017.2647778

[28] N. Martindale, M. Ismail, and D. A. Talbert, “Ensemble-based online
machine learning algorithms for network intrusion detection systems
using streaming data,” Information, vol. 11, no. 6, p. 315, Jun. 2020.
[Online]. Available: https://doi.org/10.3390/info11060315

[29] G. Pu, L. Wang, J. Shen, and F. Dong, “A hybrid unsupervised
clustering-based anomaly detection method,” Tsinghua Science and
Technology, vol. 26, no. 2, pp. 146–153, 2021.

[30] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” vol. 37, no. 3, pp.
50–60, May 2020. [Online]. Available: https://doi.org/10.1109/msp.
2020.2975749

[31] B. Hanczar, “Performance visualization spaces for classification with
rejection option,” Pattern Recognition, vol. 96, p. 106984, Dec. 2019.
[Online]. Available: https://doi.org/10.1016/j.patcog.2019.106984

[32] D. Lin, L. Sun, K.-A. Toh, J. B. Zhang, and Z. Lin, “Biomedical
image classification based on a cascade of an SVM with a
reject option and subspace analysis,” Computers in Biology and
Medicine, vol. 96, pp. 128–140, May 2018. [Online]. Available:
https://doi.org/10.1016/j.compbiomed.2018.03.005

[33] L. B. Marinho, J. S. Almeida, J. W. M. Souza, V. H. C.
Albuquerque, and P. P. R. Filho, “A novel mobile robot localization
approach based on topological maps using classification with
reject option in omnidirectional images,” Expert Systems with
Applications, vol. 72, pp. 1–17, Apr. 2017. [Online]. Available:
https://doi.org/10.1016/j.eswa.2016.12.007

[34] E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “Facing the
unknown: A stream learning intrusion detection system for reliable
model updates.” Springer International Publishing, 2020, pp. 898–909.
[Online]. Available: https://doi.org/10.1007/978-3-030-44041-1 78

[35] R. Magán-Carrión, D. Urda, I. Dı́az-Cano, and B. Dorronsoro, “Towards
a reliable comparison and evaluation of network intrusion detection
systems based on machine learning approaches,” vol. 10, no. 5, p. 1775,
Mar. 2020.

[36] H. Wu, Z. Yu, G. Cheng, and S. Guo, “Identification of encrypted
video streaming based on differential fingerprints,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, Jul. 2020. [Online]. Available:
https://doi.org/10.1109/infocomwkshps50562.2020.9162914

[37] H. Wang, M. J. Bah, and M. Hammad, “Progress in outlier detection
techniques: A survey,” IEEE Access, vol. 7, pp. 107 964–108 000, 2019.
[Online]. Available: https://doi.org/10.1109/access.2019.2932769

[38] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward credible
evaluation of anomaly-based intrusion-detection methods,” IEEE Trans.
on Systems, Man, and Cybernetics, vol. 40, no. 5, pp. 516–524, 2010.

[39] MAWI, “MAWI Working Group Traffic Archive - Samplepoint F,”
2021. [Online]. Available: https://mawi.wide.ad.jp/mawi/

[40] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and
M. Conti, “Similarity-based android malware detection using hamming
distance of static binary features,” vol. 105, pp. 230–247, Apr. 2020.
[Online]. Available: https://doi.org/10.1016/j.future.2019.11.034

[41] G. Fumera, F. Roli, and G. Giacinto, “Reject option with multiple
thresholds,” Pattern Recognition, vol. 33, no. 12, pp. 2099–
2101, Dec. 2000. [Online]. Available: https://doi.org/10.1016/s0031-
3203(00)00059-5

https://doi.org/10.1109/access.2019.2923640
https://doi.org/10.1109/access.2019.2923640
https://doi.org/10.1109/comst.2018.2854724
https://doi.org/10.1109/tnsm.2020.3014929
https://doi.org/10.1016/j.comnet.2020.107391
https://doi.org/10.1016/j.inffus.2017.02.004
https://doi.org/10.1016/j.inffus.2017.02.004
https://doi.org/10.1016/j.ins.2020.03.052
https://doi.org/10.1016/j.ins.2020.03.052
https://doi.org/10.1145/1064212.1064220
https://doi.org/10.1109/comst.2018.2847722
https://doi.org/10.1016/j.comnet.2019.107049
https://doi.org/10.1007/s10115-014-0808-1
https://doi.org/10.1145/2382196.2382284
https://www.sciencedirect.com/science/article/pii/S014036641100209X
https://www.sciencedirect.com/science/article/pii/S014036641100209X
https://doi.org/10.1016/j.cose.2019.05.022
https://doi.org/10.1109/icc40277.2020.9149413
https://doi.org/10.1109/icc40277.2020.9149413
https://doi.org/10.1155/2021/8845540
https://doi.org/10.1016/j.inffus.2017.02.004
https://doi.org/10.1109/tsg.2017.2647778
https://doi.org/10.3390/info11060315
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.1016/j.patcog.2019.106984
https://doi.org/10.1016/j.compbiomed.2018.03.005
https://doi.org/10.1016/j.eswa.2016.12.007
https://doi.org/10.1007/978-3-030-44041-1_78
https://doi.org/10.1109/infocomwkshps50562.2020.9162914
https://doi.org/10.1109/access.2019.2932769
https://mawi.wide.ad.jp/mawi/
https://doi.org/10.1016/j.future.2019.11.034
https://doi.org/10.1016/s0031-3203(00)00059-5
https://doi.org/10.1016/s0031-3203(00)00059-5

