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Abstract—Over the last years, several works have proposed
highly accurate Android malware detection techniques. Surpris-
ingly, modern malware apps can still pave their way to official
markets, thus, demanding the provision of more robust and accu-
rate detection approaches. This paper proposes a new multi-view
Android malware detection through image-based deep learning,
implemented threefold. First, apps are evaluated according to
several feature sets in a multi-view setting, thus, increasing the
information provided for the classification task. Second, extracted
feature sets are converted to an image format while maintaining
the principal components of the data distribution, keeping the
information for the classification task. Third, built images are
jointly represented in a single shot, each in a predefined image
channel, enabling the application of deep learning architectures.
Experiments on a new version of a publicly available Android
malware dataset composed of over 11 thousand Android apps
have shown our proposal’s feasibility. It reaches true-negative
rates of up to 99.5% when implemented with a single-view
approach with our new image-building technique. In addition,
if our proposed multi-view scheme is used, the classification
accuracies of malware families become more stable, reaching
a true-positive rate of up to 98.7%.

Index Terms—Android Malware Detection, Deep Learning,
Static Analysis.

I. INTRODUCTION

Nowadays, it is estimated that over 2.5 billion of active
devices are making use of the Android mobile operating sys-
tem, accounting for over 70% of the total smartphones’ market
share [1]. The number of malicious Android applications,
namely malwares, are also on the rise, currently affecting 24%
of all Android users [2]. An indication that current techniques
used for securing Android users have failed considering that
over 67% of all malware apps were originated from official
app markets [2].

As a result, over the last years, several techniques have
been proposed for Android malware detection, which can be
typically divided into two main approaches [3]. On the one
hand, dynamic-based techniques evaluate the behavior of the
Android application at execution time, in general, making use
of a sandbox environment, posing several challenges related
to the generation of the proper app stimulus for the triggering
of the malicious app behavior [4]. Notwithstanding, modern
malwares is even able to detect when they are being monitored
in a sandbox setting, thus, remaining undetectable by such
techniques [5]. On the other hand, static-based approaches

evaluates the app characteristics in an offline manner, typically
through the contents of the Android Application Pack (apk)
file, such as the requested app permissions (manifest), native
compiled codes (lib), or even the Java compiled source files
(dex) [6]. As a result, it significantly eases the detection
process, as it does not requires executing the analyzed Android
app sample.

Therefore, several static-based detection techniques have
been proposed over the last years, wherein a recent and
promising approach relies on the application of deep learning
architectures [7]. The authors first convert the analyzed file
(e.g., dex) into an image format, typically through a direct
image translation in a byte-to-pixel approach, where the built
image is resized according to the input size of the used deep
learning algorithm [8]. Consequently, both the byte-to-pixel
and the image resizing processes can introduce significant
tradeoffs in the image classification task, considering that
meaningful feature values are often lost.

Notwithstanding, current deep learning techniques for An-
droid malware detection often rely on a single file for the
image conversion task [9]. For instance, focusing on providing
a high detection accuracy through a single apk file as input,
such as the dex, lib, or manifest files. The behavior of
Android malwares can often only be identified when analyzed
through a variety of perspectives (views) [10]. For instance, an
analyzed app may request several permissions to be granted
(manifest), a characteristic that is often identified in malwares.
However, if the source code (dex) is also analyzed, such
granted permissions may be identified as correctly used by
the app. Current approaches in the literature are often able
to provide high detection accuracies in a specific test set.
However, they fail to reach similar accuracies when a more
complex dataset is considered [11]. This is because a single
view is often unable to depict the characteristics of all Android
app samples in production. This property is only achieved
through the evaluation of several feature sets.

This paper proposes a new multi-view Android malware
detection through image-based deep learning, implemented
threefold. First, to-be-classified Android apps are evaluated
considering a multi-view setting, thus, assessing several fea-
ture sets extracted through the corresponding app apk content.
Consequently, the analyzed apps can be classified according
to various views, increasing the detection generalization and
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reliability. Second, extracted feature sets are converted to an
image format by identifying the principal components of the
data distribution. Therefore, the feature sets are mapped to
an image taking into account their feature value distribution,
thus, maintaining meaningful features relation during such a
process. Third, built view images are grouped in a single shot,
each in a corresponding image channel. The main insight
of the proposed model is to be able to apply deep learning
techniques while maintaining the original Android app feature
distribution in a multi-view setting.

In summary, the main paper contributions are:
• An evaluation of current single view Android malware

detection techniques. Such an evaluation shows that clas-
sification accuracy is highly related to the used feature
set and varies according to the test dataset.

• A new multi-view Android malware detection through
image-based deep learning. The evaluation shows that our
proposed model can provide similar accuracy to the most
accurate single-view techniques.

The remainder of this paper is organized as follows. Sec-
tion II further describes the application of ML techniques
on Android malware detection. Section III describes related
works. Section IV presents our proposal, while Section V
evaluates its performance. Section VI concludes our work.

II. PRELIMINARIES

This section further describes the typical Android malware
detection challenge, including the modules that implement
such a task. Then, we further discuss the challenges related to
the application of deep learning classification to perform the
Android malware detection.

A. Android Malware Detection

Static-based Android malware detection tasks can often
be represented through four sequential modules [12]. First,
the Data Acquisition module receives as input the data to
be used for the classification task, which is often performed
through the Android Application Package (apk) file. Second,
the Feature Extraction module compounds a feature set ac-
cording to the used feature view. For instance, analyzing the
native compiled source codes (lib) or the Java compiled source
codes (dex). The built feature vector is then used as input
to a Classification module, which applies a machine learning
(ML) model to classify its input as either normal or malware
class [13]. Analyzed malware-classified samples are signaled
by the Alert module.

Over the last years, several techniques have been proposed
for the classification task in Android malware detection,
wherein authors often resort to ML-based approaches im-
plemented as a pattern recognition task [3]. A behavioral
ML model is built according to the training dataset data
composed of huge amounts of both normal and malware
Android samples [14]. The built ML model can then be used in
production for the classification of additional Android malware
samples. Surprisingly, despite the high accuracy rates reported
in the literature, traditional ML-based approaches have been

unable to secure users against malware apps, as noted by the
frequent reports of malicious apps paving their way to the
official app markets [2]. As a result, several works in the
literature have been pursuing new malicious app detection
approaches.

B. Deep Learning Android Malware Detection

Techniques based on deep learning architectures are cur-
rently being considered the state-of-the-art in image recog-
nition and classification tasks, being successfully used in
several fields, such as medical diagnosis, fraud detection,
and object recognition [15], [16]. As a result, several works
have proposed the application of deep learning techniques
for Android malware detection [17]. However, deep learning
was proposed initially for image-based problems, making its
application for Android malware detection a challenging task.

To enable the application of deep learning techniques,
Android malware detection schemes must address two main
challenges, image representation and image resizing [17]. The
image representation concerns the translation of the analyzed
file from the Android apk to an image format. In their vast
majority, proposed approaches execute such a task in a direct
byte-to-pixel value translation, thus, representing the vector
into a matrix format. The built image size varies according to
the used apk file, e.g., a dex file size may change according to
the Android app size, from a few megabytes to up to several
gigabytes, thus, resulting in a variable-sized image. Therefore,
the image resizing task aims to standardize the generated im-
age size, a requirement for the application of traditional deep
learning techniques. In general, current approaches perform
the image resizing without considering the original distribution
of the feature values. As a result, the image used as input
by the deep learning architecture may not properly depict the
analyzed app characteristics. It may lose such properties during
the image resizing task.

III. RELATED WORKS

Over the last years, several highly accurate Android mal-
ware detection approaches have been proposed in the liter-
ature, typically through ML-based schemes. For instance, J.
Jiang et al. [18] analyzes the Android app opcode sequence
calls for the building of an ML feature vector. Their proposed
model provided reasonably high accuracies but overlooked the
application of deep learning and the evaluation of additional
feature sets. In contrast, K. Zhao et al. [19] proposes an ML-
based malware detection model according to the app requested
permissions and API calls. The proposed model increased
accuracy by using traditional ML classifiers when both views
were considered. Unfortunately, deep learning application was
not taken into account. Similarly, a deep learning approach
was proposed by D. Zhu et al. [20] to analyze the app data
flows. The authors were able to increase accuracy compared to
traditional ML classifiers. However, they neglected the multi-
view detection and image-based deep learning application
challenges.
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In recent years, several works have been proposing the
application of image-based deep learning architectures for
Android malware detection [17]. For instance, D. Vasan. et
al. [21] performs the detection of Android malware through
the analysis of the apk dex file. To achieve such a goal,
the authors convert the dex file into a byte-to-pixel approach
and resize the generated image without taking into account
the feature value distribution. Despite that, their proposed
model increased accuracy while overlooking the evaluation of
additional feature sets. P. Yadav et al. [22] proposes a new
deep learning architecture to increase the malware detection
accuracy. Their proposed model evaluates the apk dex file
to address malware obfuscation detection. Unfortunately, the
authors perform the traditional image resizing, neglecting the
feature distribution and additional feature sets.

A more robust approach to address the image building
process for deep learning applications was proposed by A.
Darwaish et al. [8]. The authors rely upon a dictionary-
based process for the translation of the apk dex file to an
image format, showing that the careful evaluation of the
useful features can improve detection accuracy. Similarly, the
authors overlook the application of multi-view. J. Jung et
al. [9] address the dimensional image challenge through the
image size fixing according to the dex original file size. The
authors can increase accuracy when fixing the original image
size while overlooking the feature value distribution and the
multi-view application. Therefore, it is possible to note that
works in the literature often do not address the application of
several feature sets in a multi-view setting. Nonetheless, deep
learning-based schemes neglect the challenges related to the
image-building task.

IV. A MULTI-VIEW DEEP LEARNING ANDROID MALWARE
DETECTION MODEL

We propose a multi-view deep learning Android mal-
ware detection model aiming for higher detection accuracies
through the evaluation of additional feature sets. Our proposed
model addresses multi-view deep learning in a threefold man-
ner and is shown in Figure 1.

First, to enable the implementation easiness of our proposed
model, we extract several feature sets in a vector format.
Our model uses the extracted feature sets (views) to build
a corresponding image to apply image-based deep learning
architectures. Second, to convert the extracted feature set to
a proper image format, we use an image builder module that
considers the underlying distribution of the feature values dur-
ing such a conversion. The central insight of such a technique
is to decrease the information losses caused by traditional
image conversion and resizing approaches, thus, increasing the
final model accuracy built over such data. Third, to properly
enable the multi-view nature of our proposed scheme, we
use the image joiner approach, wherein the built grayscale
images are joined together to a single colored image. More
specifically, each view, represented by a grayscale image, is
depicted as a specific image channel, e.g., RGB channels.
Consequently, the multi-view nature of the Android malware

Fig. 1: Proposed multi-view deep learning Android malware
detection model.

detection is adequately considered during the detection task
without information losses caused by the image generation
and image joiner modules.

The following subsection describes our proposed model and
the modules that implement it.

A. Image Building in a Multi-view Setting

Traditional approaches used for building the image that will
be used as input by the deep learning model in their vast
majority overlook the information losses caused by the image
building and resizing tasks. Notwithstanding, the application
of additional feature sets in a multi-view setting is overlooked.
As a result, traditional approaches used for the image-building
task may introduce information losses that will affect the final
accuracy of the used deep learning algorithm.

To address such a shortcoming, our proposed model takes
into account the original feature distribution values during the
image building procedure (Fig. 1, Image Builder N). Similarly,
as made through traditional approaches used to extract the
principal components of the data distribution (e.g., Principal
Component Analysis (PCA)), we convert each feature vector to
a matrix format by applying a feature transformation scheme.
More specifically, for each given N -sized input feature vector,
we output a MxM -sized matrix, computed through the ex-
traction of the principal components of the data distribution.
As a result, the built image can keep the original feature
distribution, despite the image building and resizing tasks. In
addition, to enable the proper evaluation of all built images,
wherein each is made according to each extracted feature set,
we create a new image that depicts the multi-view setting
of our model. A new colored image with N channels is
built to achieve such a goal, wherein each channel represents
each extracted view image. Therefore, a single image is
generated for the classification task that appropriately depicts
each considered view by our model.

The following subsection further describes the classification
pipeline used by our model that uses our image-building
procedure.
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(a) API Calls (b) OPCodes (c) Dex (d) Multi-view

Fig. 2: Sample malware images built through our proposed feature reduction for image builder technique. The built images
are used as input according to the used view for each selected deep learning algorithm.

B. Image-based Classification

The classification procedure, shown in Figure 1, starts with
a to-be-classified Android apk file. The ingested apk file is
decompressed and the apk files properly selected. For instance,
the dex, manifest.xml, and lib files. The selected files are
provided as input to a set of feature extraction modules;
wherein each module outputs a corresponding feature vector
(Fig. 1, Feature Extraction N). The extracted feature vectors
are converted into a set of grayscale images by the Image
Builder module, which maintains the original feature distri-
bution during such a process (see Section IV-A). The built
images are provided to the Image Joiner module, which goal is
to make a single image by allocating each generated grayscale
image into a specific image channel. Thus, a single image is
generated in a colored format, wherein each channel represents
the original view. The built colored image is used as input by
a deep learning model for the classification task, providing
the classification output to an alert module, which signals
malware-classified apps to the user.

C. Discussion

Our proposed model aims to enable the application of multi-
view Android malware detection through image-based deep
learning architectures. To achieve such a goal, we perform
the image building task through a feature transformation
technique, which can maintain the original feature distribution
during such a task. As a result, the image conversion can be
performed without the image resizing approach, significantly
improving the information that is provided to the subsequent
modules. To enable the application in a multi-view setting, we
build a single image composed of several channels, wherein
each channel represents a specific view. Consequently, our
proposed scheme can perform the image-based deep learning
application in a multi-view setting without degrading the
information available during the classification task.

V. EVALUATION

The evaluation of our proposed model aims at answering
three main research questions:

• (RQ1) How does deep learning techniques perform when
using our proposed image builder technique?

• (RQ2) How our proposed multi-view model perform for
Android malware detection?

• (RQ3) How does our proposed model perform when
compared to traditional approaches?

The following subsections show the obtained results, includ-
ing the model building procedure and the evaluation results.

A. Multi-view Android Malware Dataset

Current approaches for Android malware detection in the
literature often make use of a single feature set for detection
purposes. Consequently, the detection task is bound to a single
view (feature set), e.g., an API call view can only provide
detection features for apps that change their behavior at the
API call level.

To address such a shortcoming, we enhance a publicly
available Android malware dataset to include additional fea-
ture sets. To achieve such a goal, we explore the widely
used CICMalDroid [23] dataset, made of 11, 598 Android app
samples, those distributed in 1, 795 normal Android apps, and
4 additional malware families, composed by 1, 253 adware,
2, 100 banking, 3, 904 smsfraud, and 2, 546 riskware apps. For
each Android app sample from the dataset, we extract 3 views
(feature set) as follows:

• API Calls. 2, 426 features represent the number of calls a
given Android app made to each function in a predefined
list.

• OPCodes. 216 features representing the OPCode occur-
rence, from a predefined list of OPCodes, in the Android
dex file.

• Dex. 50, 176 features obtained through a traditional byte-
to-pixel translation, according to the Android dex file.

To extract the aforementioned listed features, we make use
of the AndropyTool [24], which analyzes the Android apk
file and outputs a corresponding json file. The produced file is
then post-processed to standardize its format across the 11, 598
analyzed Android app samples
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Fig. 3: Receiver operating characteristics (ROC) curve for
each selected deep learning architecture according to the used
feature set (view) over the test dataset.

B. Model Building

Our model was implemented by making use of two widely
used deep learning architectures, namely InceptionV3 and
Resnet50. Each architecture was evaluated executing for 1, 000
epochs, and its learning rate was set empirically according
to the resulting loss and a momentum weight of 0.9. The
architectures were implemented through keras API v.2.4.0,
and tensorflow API v.2.4.1. The proposed image build-
ing procedure (see Section IV-A) was implemented through
the DeepInsight [25] API v.2 while making use of the t-
Distributed Stochastic Neighbor Embedding feature reduction
technique. An additional view was used to evaluate our tech-
nique to make use of the multi-view approach when building
the 3 image color channels. To achieve such a goal, we build a
traditional dex image in a byte-to-pixel format. Figure 2 shows
an example of the built images through our proposed image
building technique.

The classifiers were evaluated according to their True-
Positive (TP) and True-Negative (TN) rates. The TP denotes
the ratio of malware instances correctly classified as malware,
while the TN denotes the ratio of normal instances correctly
classified as normal. The built dataset was randomly split in
training, testing, and validation datasets, each composed by
40%, 30% and 30% of Android apps respectively. A random
undersampling without replacement is used in the training
dataset to balance the occurrence between the classes.

C. Multi-view Android Malware Detection

The first experiment aims at answering RQ1 and evaluates
the classification performance of the selected deep learning
architectures when implemented by making use of a single
view. To achieve such a goal, each selected architecture is
trained over the training dataset, while using the validation
dataset for the generalization evaluation, and using the testing
dataset to report the obtained accuracies (see Section V-A
for dataset split). Figures 3a, and 3b shows the ROC curve
for the single view deep learning architectures. It is possible
to note that the single-view approaches provided significantly
high detection accuracies using our proposed image-building
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Fig. 4: Accuracy distribution for each evaluated view and deep
learning architecture. The proposed model was able to provide
the highest accuracies regardless of the used deep learning
architecture.

TABLE I: Classification accuracy of selected techniques ac-
cording to the used feature set (view) over the validation
dataset.

Deep Classification Accuracy (%)
View Learning Norm. Ad. Bank. Risk. SMS

API Calls Inception 91.6 88.6 84.3 94.7 96.4
Resnet50 99.5 94.3 75.0 53.8 94.1

Opcode Inception 85.2 92.4 82.5 83.4 96.2
Resnet50 91.7 83.4 87.1 91.6 97.8

Dex Inception 73.6 73.2 76.0 87.9 95.9
Resnet50 91.6 88.8 84.6 85.3 96.7

Multi-View Inception 92.3 85.4 83.7 87.8 96.9
Resnet50 90.9 85.0 75.9 88.5 98.7

technique. For instance, the selected single-view techniques
that were implemented through the InceptionV3 architecture,
were able to provide an Area-Under-the-Curve (AUC) values
of 0.95, 0.81 and 1.00 for the API Calls, OPCodes, and
Dex views respectively. Table I further investigates the clas-
sification accuracies of the single-view approaches. Similarly,
the accuracy rates were significantly high, for instance, the
Resnet50 deep learning model presented a true-negative rate
of 99.5%, 91.7%, and 91.6% for the API Calls, OPCodes,
and Dex views respectively. As a result, our proposed image-
building scheme enables the application of deep learning
techniques without losing information caused by the image
building and image resizing techniques.

Our second experiment aims at answering RQ2 and evalu-
ates our proposed model while making use of the multi-view
image (Fig. 2d). The selected deep learning architectures were
built with the multi-view generated image, in a colored format,
with each image channel representing a single view (see
Fig. 2d, for a sample image). Figure 3 shows the ROC curve
for the multi-view approaches for each selected deep learning
architecture, while Table I shows the individual accuracies
according to each malware family. It is possible to note
that the multi-view deep learning architectures could improve
detection accuracy compared to single-view ones, regardless
of the used architecture. For instance, the AUC of the multi-
view technique was 1.0 for both architectures, thus, providing
similar accuracies to the best practices based on single-view.
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The proposed model, which uses a multi-view setting, could
portray the specificity of every single view in a single image,
as can be noted by the provision of the highest accuracy
regardless of the used deep learning architecture.

Finally, to answer RQ3, we further investigate the classifi-
cation improvements obtained by our proposed model when
compared to traditional techniques. Table I shows the classi-
fication accuracies of our proposed model when making use
of single and multi-view settings. It is possible to note that
our proposed multi-view scheme, which relies on our image
building technique, can provide the most stable accuracies
compared to the single-view ones. Figure 4 shows the dis-
tribution of the malware classification accuracies according to
the used view. Our proposed multi-view approach provided
the most stable classification values compared to the single-
view ones in such a case. Consequently, the proposed scheme
can provide higher accuracies for Android malware detection
while considering additional feature sets for the classification
task.

VI. CONCLUSION

Authors from the literature propose approaches for detecting
Android malwares, but despite their extensive efforts, these
threats are still on the rise. This paper has addressed An-
droid malware detection through image-based deep learning
techniques. The proposed model considers the image building
and resizing challenges through feature reduction techniques,
which can keep the principal components of the feature
distribution during the image building task. The experiments
performed in a widely used Android malware dataset have
shown our proposal feasibility, increasing the accuracy when
compared to both single-view and traditional approaches. In
future works, we plan on extending the evaluation for other
platforms malwares and also evaluate different views.
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