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Abstract—Over the last few years, Unmanned Aerial Vehicles
(UAVs) have become increasingly popular for both commercial
and personal applications. As a result, security concerns in both
physical and cyber domains have been raised, as a malicious
UAV can be used for the jamming of nearby targets or even for
carrying explosive assets. UAV detection and identification is a
very important task for safety and security. In this regard, several
techniques have been proposed for the detection and identification
of UAVs, in general, through image, audio, radar, and RF based
approaches. In this paper, we benchmark the detection and
identification of UAVs via audio data from [1]. We benchmarked
with widely used deep learning algorithms such as Deep Neural
Networks (DNN), Convolutional Neural Network (CNN), Long
Short Term Memory (LSTM), Convolutional Long Short Term
Memory (CLSTM) and Transformer Encoders (TE). In addition to
the dataset of [1], we collected our own diverse identification audio
dataset and experimented with Deep Neural Networks (DNN).
In a UAV detection task, our best model (LSTM) outperformed
the best model of [1] (CRNN) by over 4% in accuracy, 2% in
precision, 4% in recall and 4% in F1-score. In UAV identification
task, our best model (LSTM) outperformed the best model of [1]
(CNN) by over 5% in accuracy, 2% in precision, 4% in recall
and 3% in F1-score.

Index Terms—Audio, Deep learning, Detection, Identification,
UAVs

I. INTRODUCTION

The popularity of Unmanned Aerial Vehicles (UAV), com-

monly referred as drones, have significantly increased over the

last few years, followed by the technological advancements

of their on-board components. In practice, modern UAVs

have enabled the deployment of user customized solutions,

which are able to analyze the data from a variety of UAV

hardware components including the camera, microphones,

LiDAR, accelerometer, GPS among others [2]. This ease of

customized UAV solutions has paved the way for several

autonomous UAV applications, such as object delivery, field

surveillance, and even border control etc. [3].

Unfortunately, modern UAVs can also be used for malicious

purposes. Unsurprisingly, drone-based attacks can have a

significant negative impact on the economy, safety and security.

As a result, in recent years several works have been proposed

for the detection and identification of nearby UAVs [4]–[8].

Detection and identification of nearby UAVs are generally

achieved using vision-based analysis [9], radio fingerprint

detection [10], radar-based identification [11], and microphone-

based approaches [12], [13]. In this work we focus on

UAV detection and identification by audio-based approaches.

Machine Learning (ML) based techniques are predominantly

used for analyzing audio acoustic UAV signatures for UAV

detection and identification [12]–[17].

We benchmarked UAV drone detection and identification

from publicly available audio dataset [1], via commonly

used deep learning algorithms namely DNN, CNN, LSTM,

CLSTM and TE. In addition to [1], we collected our diverse

identification audio dataset and experimented with DNN models

on it.

The main contributions of this paper are as follows:

• We benchmarked various deep learning models namely

DNN, CNN, LSTM, CLSTM and TE on publicly available

UAV detection and identification audio dataset [1]. Our

models perform significantly better than the [1].

• In addition to the dataset of [1], we collected our own

diverse identification audio dataset consisting of 7 different

categories of UAVs namely no-UAV, drone, helicopter,

drone-membo, drone-bebop, airplane, and drone-hovering.

We experimented with DNN models on this and results

are promising.

The remainder of the paper is organized as follows. Section

II describes the literature review. Section III presents the audio-

based scheme for UAV detection and identification through

deep learning architectures. Section IV talks about experimental

results and discussion. Finally, Section V concludes our work.

II. LITERATURE REVIEW

Over the last years, several techniques have been proposed

for UAV detection and identification, ranging from video [5],

radio frequency [6], [18], thermal imaging [7], radar [11],

and more recently audio-based [12], [14], [19]–[22]. In such

a context, several approaches have been proposed for audio-

based UAV detection and identification techniques, as they can

be easily deployed due to their negligible equipment costs, and

the promising accuracy results reported in the literature.
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To achieve such a goal, UAV audio-based detection and

identification is often implemented through four sequential

modules. First, the Data Acquisition module collects sound

samples from a given microphone. In general, the collected data

is evaluated according to a given predefined time interval, e.g.

every 1 second. Then, the Feature Extraction module extracts

a set of behavioral features from the analyzed audio sample,

compounding a feature set. Several techniques can be used

to fulfill such a task in audio-based detection, including the

extraction of the audio spectrogram [17], [23], and the building

of the audio coefficients [8]. Finally, the Detection/Identification
module classifies the built feature set in one of the selected

classes.

In recent years, a plethora of highly accurate audio-based

detection and identification approaches have been proposed

for the detection and identification tasks in UAV detection

and identification [1], [14], [18], [20], [24]. In general, authors

resort to ML approaches, typically implemented through pattern

recognition techniques. To fulfill such a task, the operator

typically relies in a two-phase process, namely training, and

testing.

The training step aims at training of the ML model with

the training dataset and choosing the best model on the

validation dataset. The testing phase evaluates the final model

detection and identification performance metrics. In practice,

the performance measurements obtained at testing phase are

expected to be evidenced when the designed system is deployed

in production environments.

III. PROPOSED APPROACH

The tasks here are detection and identification of UAV via

UAV audio signatures. The overall procedure of our method is

shown in Figure 1.

Almost all the related existing literature works [12], [13],

[15]–[17] exclusively followed the representation learning

techniques, we have also picked that as a design choice for

the implementation. Previous results on various settings of this

task gave state-of-the-art results. The audio data is sent through

feature extraction, the extracted features are passed through the

deep learning models giving the identification and detection

results. The end-to-end model is as follows: first an audio is sent

through mel frequency cepstral coefficients (MFCC) feature

extraction,followed by a deep learning model of choice (DNN,

CNN, LSTM, CLSTM, TE) giving us the result of detection

and identification. Based on the result safety/alert actions can be

performed accordingly. The detailed deep learning architectures

are as follows:

1) Deep Neural Network (DNN): The DNN is made of

fully-connected layers and non-linear activations. The input

to the DNN is the flattened MFCC features, which feeds into

a stack of hidden fully-connected layers. At the output is a

linear layer followed by a softmax layer generating the output

probabilities of the classes.

2) Convolutional Neural Network (CNN): CNNs exploit

the local temporal and spectral correlation in the features via

2D convolution. The input to the CNN is the MFCC features,

Fig. 1. Overview of the proposed deep learning model for audio-based
detection and identification of UAVs.

which feeds into a stack of convolution layers. At the output

is a linear layer followed by a softmax layer generating the

output probabilities of the classes.

3) Long Short-Term Memory (LSTM): LSTMs are known

to model long term dependencies and are shown to work very

well on various sequence modelling tasks. The input to the

LSTM is the MFCC features, and the whole flattened output

sequence is fed to a linear layer followed by softmax for output

probabilities of the classes.

4) Convolutional Long Short-Term Memory (CLSTM):
CLSTMs are combination of convoultion followed by LSTMs.

This has the benefits of both CNNs and LSTMs. CLSTMs

exploit the local temporal and spectral correlation, and model

the long term dependencies well. The input to the CLSTM is

the MFCC features, which has convolution followed by LSTM,

and the whole flattened output sequence is fed to a linear layer

followed by softmax for output probabilities of the classes

5) Transformer Encoder (TE): Transformers are shown to be

the fundamental block for SOTA on various sequence modelling

tasks across various domains. In this work we use only the

Transformer Encoder part. The input is the MFCC features,

and the whole output sequence is fed to a linear layer followed

by softmax for output probabilities of the classes.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Our proposed scheme was evaluated and compared consid-

ering both literature and our own built dataset. The evaluation

aims at answering the following research questions, as follows:

(RQ1) What is the detection accuracy of audio-based techniques
in a publicly available dataset? (RQ2) What is the identification
accuracy when different UAV types are considered? (RQ3) What
is the identification performance impact when more diverse
flying devices are considered?.

The proposed scheme for an audio-based detection and

identification of nearby UAVs is implemented through a

pattern recognition pipeline. Therefore, we consider a given

microphone deployed in a monitored environment (Fig. 1,

Deployed Microphone), which will be used for the collection

and periodic sending of the environment audio samples. For

instance, collection of 1-sec batches of audio in a predefined

format. The main assumption is that nearby flying UAVs will
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produce audio noises that will be captured by the microphone

for further analysis. The collected audio sample is analyzed by

the feature extraction module, which goal is to extract a set

of UAV related features. To achieve such a goal the module

applies an audio filtering technique ( e.g., filtering UAV-related

audio signals through the Mel-Frequency Cepstral Coefficients

(MFCC)), before using it for the detection and identification

tasks. As a result, a portion of non UAV-related audio can

be removed from the analyzed sample, improving the system

generalization even in highly noise environments. Finally, the

extracted filtered feature vector (Fig. 1, Filtered Feature Vector)

is used as input by a deep learning classifier, which outputs

a corresponding event class. In such a case, the used deep

learning model can output the analyzed event label in a two-

class setting, e.g. normal or UAV, or even in a multiclass setting,

e.g. outputting the type of UAV that generated the analyzed

audio.

The next subsections further describes the built datasets and

the performed experiments.

A. UAV Audio Datasets

In general, to properly evaluate ML-based techniques for

audio detection and identification, it is necessary the provision

of huge amounts of labeled data. Unfortunately, due to privacy

issues, only few datasets are publicly available.

In light of this, our work makes use of Abdulla Al-Ali et.
al. [1] dataset which provides more than 1300 audio clips of

drone sounds. We used the dataset mainly for two tasks, one

is detection and other is identification. In detection, the classes

are Drone and Not a Drone. Number of drone samples are

1332 and not a drone samples are 10372. In classification task

the classes are membo, bebop, and not a Drone, the number

of samples are 666, 666, and 10372 respectively. Every file is

of 1sec duration. The data set is split on file level basis. The

drone data is a good representation of the real-world drone

audio.

To increase the model performance, the audio dataset is also

augmented through the introduction of noise data to ensure that

the system will be able to detect and identify the drone’s sound

from similar noises in an environment. From [1], the SNR

levels are not available. For the dataset publicly available, it

was collected in a quite indoor environment with drone flying

and hovering.

Apart from the publicly available dataset, we have also

collected a new dataset with additional diverse flying devices

audio sounds from multiple open sources to evaluate the impact

of model identification performance metrics. The dataset was

built, with 7 UAV types, including no-UAV, drone, helicopter,

drone-membo, drone-bebop, airplane, and drone-hovering. The

majority of audio files for each UAV type was collected for 5

minutes.

For both selected datasets the audio data is made with a

sampling rate of 48 kHz and a linear encoding with 16 bits for

sample. Each input sound window is further segmented into

sub-frames of 20ms using a moving Hamming window with

overlap of 10ms. The sub-frames are processed by a bank of

filters to compute the short term feature in both temporal and

frequency domains [20]. For the deep learning algorithms, If

the majority of the frames is labelled with the tag ”drone” into

the given audio segment, it is assumed to recognize a flying

drone in the surrounding environment.

Both datasets are split into 80% for training, 10% for

validation and 10% for testing. The audio files are broken

into chunks of 1 second.

B. Model Building

For the Feature Extraction module, for each audio frame,

we compute the Mel-Frequency Cepstral Coefficients (MFCC)

that are commonly used in audio analysis. We make use of

Mel-scale in audio analysis to capture the comparatively higher

energy in lower frequencies compared to higher frequencies in

the range for the compounding of 40 MFCC features, which

are used as input by the selected deep learning model (Fig. 1,

Filtered Feature Vector).

We evaluate 5 commonly used deep learning algorithms for

the audio-based classification task (Fig. 1, Deep Learning),

namely Deep Neural Network (DNN), Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM), Convolu-
tional Long Short-Term Memory (CLSTM), and Transformer
Encoder (TE).

The DNN was implemented with 3 hidden layers, each with

256 units, coped with a relu activation function, while the

output layer relies in a softmax activation function. The CNN

was implemented with 3 convolutional layers, each with a relu
activation function, a kernel size of 3X3, and a 1X1 stride,

followed by a hidden layer with a softmax activation function.

There are no pooling layers used in the CNN we implemented,

the input dimension size to the CNN is [1X20X33], given the

small size there was no need to use the pool layers. The CNN

model architecture is not provided in [1], due to this, we are

not able to do a proper comparison in terms of architecture,

we made our design choice to keep the model as smaller as

possible.

The LSTM was implemented with one LSTM layer with

128 units, followed by a hidden output layer with a softmax
activation function. Similarly, the CLSTM makes use of a

convolutional layer with a relu activation function, a kernel

size of 3X3, and a 1X1 stride, followed by a LSTM layer with

128 units, followed by a hidden output layer with a softmax
activation function. Finally, the TE was implemented with a

positional encoder, number of attention heads as 2, followed

by a encoder layer with 128 units, and a output layer with a

softmax activation function,

For the model building procedure, for all selected deep

learning algorithms 100 epochs are executed with a batch

size of 128. As for number of epochs, 100 is similar to

the related works. It is important to note that the used set

of parameters, were set similarly to related works, and no

significant differences were found while varying them. There

is 80% train data, 10% val data, 10% test data. In each epoch

train and val data are used, model is trained on train data and
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TABLE I
DETECTION RESULTS OF THE DEEP LEARNING ALGORITHMS AS MEASURED AT THE PUBLICLY AVAILABLE DATASET [1]

Deep Learning Algorithm Accuracy (%) Precision Recall F1-Score

Recurrent Neural Network (RNN [1] 75.00 0.7592 0.6801 0.6838
Convolutional Neural Network (CNN) [1] 96.38 0.9624 0.9560 0.9590
Convolutional Recurrent Neural Network(CRNN) [1] 94.72 0.9502 0.9308 0.9393
Deep Neural Network (DNN) 98.35 0.9661 0.9549 0.9604
Convolutional Neural Network (CNN) 98.85 0.9753 0.9696 0.9724
Long Short-Term Memory (LSTM) 98.93 0.9759 0.9731 0.9745
Convolutional Long Short-Term Memory (CLSTM) 97.78 0.9460 0.9486 0.9473
Transformer Encoder (TE) 98.35 0.9634 0.9489 0.9606

TABLE II
IDENTIFICATION RESULTS OF THE DEEP LEARNING ALGORITHMS AS MEASURED AT THE PUBLICLY AVAILABLE DATASET [1]

Deep Learning Algorithm Accuracy (%) Precision Recall F1-Score

Recurrent Neural Network (RNN [1] 57.16 0.5964 0.5716 0.5562
Neural Network (CNN) [1] 92.94 0.9275 0.9263 0.9263
Convolutional Recurrent Neural Network (CRNN) [1] 92.22 0.9254 0.9223 0.9225
Deep Neural Network (DNN) 98.52 0.9589 0.9439 0.9508
Convolutional Neural Network (CNN) 98.60 0.9553 0.9447 0.9510
Long Short-Term Memory (LSTM) 98.60 0.9480 0.9603 0.9540
Convolutional Long Short-Term Memory (CLSTM) 98.11 0.9457 0.9188 0.9314
Transformer Encoder (TE) 98.19 0.9405 0.9369 0.9386

best model on val data is updated. Finally the best val model

is tested on the unseen test data.

C. Evaluation

The selected deep learning algorithms were evaluated with

respect to their accuracy, precision, recall and F1 scores. To

achieve such a goal, the following classification performance

metrics were used:

• True-Positive (TP): number of UAV-related audio samples

correctly classified as UAV-related.

• True-Negative (TN): number of normal samples correctly

classified as normal.

• False-Positive (FP): number of normal samples incorrectly

classified as UAV-related.

• False-Negative (FN): number of UAV-related audio sam-

ples samples incorrectly classified as normal.

The F1 score was computed as the harmonic mean of

precision and recall values while considering UAV-related as

positive samples and normal as negative samples, as shown in

Eq. 3.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(3)

From the literature [1], there were no experiments conducted

on the publicly available dataset with DNN, LSTM and

Transformer techniques. We performed them for a proper

TABLE III
INDIVIDUAL ACCURACIES IN OUR OWN BUILT DATASET.

UAV type Accuracy (%) Prec. Rec. F1-Score

no-UAV 85.71 1.00 0.86 0.92
drone 100 1.00 1.00 1.00
helicopter 66.66 0.67 0.67 0.67
drone-membo 100 1.00 1.00 1.00
drone-bebop 100 1.00 1.00 1.00
airplane 100 1.00 1.00 1.00
drone-hovering 100 0.88 1.00 0.93
OVERALL Dataset 95 0.96 0.95 0.95

comparison to asses the overall improvement for the detection

and classification tasks.

The first experiment, aims at answering RQ1 and evaluates

the identification accuracy of the selected deep learning algo-

rithms over the publicly available dataset [1]. The evaluation

goal is to measure how the selected techniques perform when

using publicly available dataset for audio-based detection of

UAVs. In Table I shows, modeling results of [1] and our own

benchmark results for drone detection task. All our models

outperformed the models in [1] by 4% to more than 20% in

accuracy. Our best model (LSTM) outperformed best model of

[1] (CRNN) by over 4% in accuracy, 2% in precision, 4% in

recall and 4% in F1-score. Our best detection model, LSTM

classifier achieved the highest accuracy of 98.93%, precision

of 0.9759, recall of 0.9731 with an F1-Score of 0.9745.

The second experiment, aims at answering RQ2, and eval-

uates the UAV identification accuracy of the selected deep

learning algorithms when different UAV types are considered.

To achieve such a goal, the publicly available dataset [1] is
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evaluated with different types of UAVs. In Table II shows,

modeling results of [1] and our own benchmark results for

drone identification task. All our models outperformed the

models in [1] by 6% to more than 30% in accuracy. Our best

model (LSTM) outperformed best model of [1] (CNN) by

over 5% in accuracy, 2% in precision, 4% in recall and 3%

in F1-score. Our best identification model, LSTM classifier

achieved the highest accuracy of 98.60%, precision of 0.9480,

recall of 0.9603 with an F1-Score of 0.9540. For instance, our

identification LSTM model was able to achieve 98.60% of

accuracy, a decrease of only 0.33% when compared to the

detection scenario (Table I vs. Table II).

The DNN model in table 3 is trained and tested on the newly

collected 7 class UAV dataset. The third experiment aims at

answering RQ3, and evaluates the identification accuracy in

our own built dataset. Table III shows that the classification

accuracy of the DNN classifier in our own built dataset. The

DNN classifier achieved a high accuracy of 95.20%. Compared

to its counterpart, trained in the publicly available dataset, the

DNN decreased the accuracy by 3.32%, a marginal decrease

considering that the classifiers is being used in a different and

difficult setting.

V. CONCLUSIONS

In this work, we benchmarked the detection and identification

of UAVs via audio, through multiple deep learning algorithms

namely DNN, CNN, LSTM, CLSTM, and TE. In addition to

dataset of [1], we also collected our own identification dataset

and built DNN model over it. We have demonstrated that all

of the DNN, CNN, LSTM, CLSTM and TE algorithms are

able to provide significantly higher performance metrics in

comparison to [1]. In detection task, our best model (LSTM)

outperformed the best model of [1] (CRNN) by over 4% in

accuracy, 2% in precision, 4% in recall and 4% in F1-score.

In identification task, our best model (LSTM) outperformed

the best model of [1] (CNN) by over 5% in accuracy, 2% in

precision, 4% in recall and 3% in F1-score.
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