
A Stream Learning Intrusion Detection System for

Concept Drifting Network Traffic

Pedro Horchulhack∗, Eduardo K. Viegas†, Martin Andreoni Lopez†

∗Pontifı́cia Universidade Católica do Paraná (PUCPR) — Graduate Program in Computer Science (PPGIa)

Curitiba, Paraná, 80215-901, Brazil.

pedro.horchulhack@ppgia.pucpr.br
†Secure Systems Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates.

{eduardo, martin}@ssrc.tii.ae

Abstract—Network-based intrusion detection is a widely ex-
plored topic in the literature. Yet, despite the promising reported
results, designed schemes are rarely used in production envi-
ronments. Apart from evolving as time passes, the behavior of
network traffic varies significantly, rendering proposed schemes
unreliable for real-world application. This paper proposes a
new stream learning intrusion detection aiming for feasible
model updates, implemented in three phases. First, intrusion
detection is performed through a stream learning classifier,
enabling incremental model updates to be performed. Second,
new network traffic behavior is identified through a one-class
learner. Third, identified new network traffic is incrementally
incorporated into our system. Experiments performed on a
dataset containing evolving network traffic behavior have shown
our proposal feasibility, reaching up to 96% of accuracy while
demanding only 48% of labeled events to be provided.

Index Terms—Intrusion Detection, Stream Learning, Concept
Drift, Machine Learning.

I. INTRODUCTION

Over the past years, the number of reported cyberattacks

are increasing and is still on the rise, showing that current

security solutions have been ineffective to protect compu-

tational systems. According to a Kaspersky report, only in

2021, more than 15% of all Internet users were targeted by

a cyberattack, representing a 50% increase compared to its

precedent year [1]. Consequently, the provision of security

solutions able to detect this growing number of network threats

becomes a must. In practice, network operators resort to

network-based intrusion detection systems (NIDS) to detect

network attacks, typically implemented through two main

approaches [2]. On one hand, misuse-based techniques signal

network attacks based on previously known attack patterns,

performing the detection task through a pattern matching

approach. Nevertheless, this method can only detect previously

known threats, leaving systems unprotected against new kinds

of attacks [3]. On the other hand, behavior-based techniques

perform the detection task according to the behavior of the

analyzed event, signaling misconduct according to a previously

modeled behavior. Therefore, behavior-based approaches can

detect new (zero-day) attacks, assuming that these new attacks

behave similarly to previously modeled ones.

Due to the ever-increasing number of network-based at-

tacks, several works have been proposed for behavior-based

detection of network attacks [4, 3]. Most proposed approaches

perform the detection task through machine learning (ML)

techniques, typically using pattern recognition approaches. To

conduct such a procedure, an ML model is built through a

computationally demanding model training task. In such a

case, the behavior of a training dataset, composed of huge

amounts of labeled production environment samples, is eval-

uated. Finally, the performance of the built ML model is

estimated through a test dataset, which is then assumed to

be evidenced when the system is deployed in a production

environment.

The behavior of networked environments, unfortunately, is

highly variable as well as evolves as time passes [5]. As

time goes on, new network attacks can be identified, and new

network services can be provided. The non-stationary network

traffic behavior poses a great challenge to current behavior-

based approaches proposed in the literature. The reliability

of designed ML techniques is bound to the behavior used

during the training phase [6]. As a result, changes in network

traffic demand the provision of a new ML model, which can

only be obtained after the collection of new network traffic,

its labeling, and the execution of the model training task [5].

Therefore, model updates pose a high cost, and may demand

several days or even weeks to be conducted, leaving systems

unprotected while an updated model is not yet available.

Surprisingly, the non-stationary behavior of network traffic

is often neglected in the literature, wherein authors assume

that model updates can be executed as needed, despite the

challenges related to the data collection and labeling. Conse-

quently, despite the promising reported results in the literature,

behavior-based intrusion detection remains mostly a research

topic, rarely being deployed in production environments.

A popular approach used in the literature to address environ-

ments with non-stationary behaviors’ relies on stream learning

techniques [7]. In contrast to traditional pattern recognition

approaches, stream learning enables incremental model up-

dates to be performed as time passes, significantly decreasing

the computational costs associated with the model-building

task. Opposite to traditional approaches, the current model

is not discarded during model updates, in the contrary, it is

performed for each evaluated event in an incremental manner.

This paper proposes a new stream learning intrusion detec-

20
22

 6
th

 C
yb

er
 S

ec
ur

ity
 in

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(C
SN

et
) |

 9
79

-8
-3

50
3-

97
22

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CS

N
ET

56
11

6.
20

22
.9

95
56

20

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

tion model for concept drifting network traffic, implemented

through three phases. First, intrusion detection is performed

through a stream learning detector, able to incorporate new

network traffic behavior as time passes. Second, new net-

work traffic behavior is identified by making use of a one-

class stream learning algorithm. The algorithm is trained

with instances used during the training phase, thus, signaling

unknown behaviors that should be used for model updates.

Therefore, it enables operators to proactively identify when

model updates must be performed, as well as which network

events are unknown to our deployed scheme. Third, identified

new network traffic is incrementally incorporated by our

model, decreasing the computational costs of model updates.

In summary, our paper’s main contributions are as follows:

• A new stream learning intrusion detection model for

concept drifting network traffic. The proposed model

can incorporate new network traffic behavior’s into the

deployed model.

• A model for detection of new network traffic that must

be incorporated into the intrusion detection model in

unsupervised settings.

The remainder of this paper is organized as follows.

Section II introduces the background related to our paper.

Section III presents related works on intrusion detection.

Section IV describes our proposed model, and Section V

evaluates our scheme. Finally, Section VI concludes our work.

II. NETWORK-BASED INTRUSION DETECTION AND

STREAM LEARNING

Network-based intrusion detection systems (NIDS) are com-

monly implemented through four sequential modules [8],

namely Data Acquisition, Feature Extraction, Classification,

and Alert. The Data Acquisition module collects the data from

the monitored environment, typically reading the passing net-

work packets from a network interface card. The collected data

is fed as input to a Feature Extraction module, which performs

the associated data preprocessing and the extraction of the

proper behavioral features. Usually, in NIDS, network traffic

is classified according to the network flow, which depicts

the behavior of network traffic in a given time interval. For

instance, the number of sent/received network packets between

two given hosts over the last 15 seconds. The extracted set

of features is classified by the Classification module, which

establishes the network flow label as either normal or attack,

signaling identified threats through the Alert module.

Several highly accurate machine learning (ML) techniques

have been proposed for the network flow classification task [2].

Prior work generally resorts to pattern recognition approaches,

yielding highly accurate intrusion detection accuracies. To

achieve such a goal, researchers use three distinct datasets,

namely training, validation, and test. The first is used for

extracting the behavioral ML model, thus, must be composed

of a representative number of network samples. The validation

dataset is often used during the model building phase, enabling

the model finetuning to be executed, such as the selection of

features and the model hyperparameters [9]. Finally, after the

proper model building, the test dataset is used to validate the

final model accuracy. Consequently, the accuracy measured

through the test dataset is assumed to be evidenced when the

model is used in production environments.

Despite the benefits achieved through ML in several

fields, such as image classification [10], performance moni-

toring [11], and fault detection, their actual deployment in the

intrusion detection field remains a challenging task. The ML

methods are mostly used as a research field, rarely deployed

in real-world applications [12].

The behavior of networked environments is non-static due to

the evolving characteristics of network traffic [13]. As a result,

the accuracy rates measured through the test dataset are only

reliably evidenced in production if the network traffic behavior

remains unchanged. In contrast, network traffic changes daily,

a situation caused due to the discovery of new attacks, the

provision of new services, or even changes in the network

traffic communication link.

These naturally occurring changes in network traffic be-

havior demand the execution of frequent and time-consuming

model updates [5]. To achieve such a goal, a new training and

testing dataset must be collected and adequately labeled, often

only achieved through expert assistance. Notwithstanding, the

model update must be executed from scratch, as traditional

pattern recognition discards the outdated model during the

model training phase. As a result, model updates are neither

cheap nor easily feasible in network-based intrusion detection,

in the contrary, their execution often poses a high cost, while

also demanding several days or even weeks before an updated

model is available, leaving systems unprotected during such

a period [14]. Surprisingly, the literature still neglects such a

challenge, assuming that model updates can be easily executed

as time passes.

A suitable approach used in scenarios wherein the environ-

ment behavior may change as time passes resorts to stream

learning techniques. Contrary to traditional ML approaches,

stream learning aims to enable incremental model updates

to be performed as time passes, incorporating new behaviors

into a previously existing model. More specifically, stream

learning deals with a potentially unbounded infinite sequence

of data items that must be processed over time. The in-

coming data items must be processed (i.e. classified) while

considering potential stream changes with very costly data

labeling. Notwithstanding, due to the potentially infinite nature

of processed streaming, designed algorithms must be able to be

incrementally updated without requiring the data storing, while

also considering a resource-constrained scenario in terms of

processing and memory.

Stream Learning differs from conventional batch processing

in: i) the data elements in the stream arrive online; ii) the

system has no control over the order in which the data

elements arrive to be processed; iii) stream data are potentially

unlimited in size; iv) once an element of a data stream has been

processed, it is discarded or archived and cannot be easily

retrieved unless it is explicitly stored in memory, which is

usually small relative to the size of the data streams. Further,

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

the latency of stream processing is better than micro-batch,

since messages are processed immediately after arrival [15].

A stream ψ is an unbounded set of data, ψ = {Dt|0 ≤ t}
where a point Dt is a set of attributes with a explicit or implicit

time stamp. Formally one data point is Dt = (V, τt), where V

is a p-tuple, in which each value corresponds to an attribute,

and τt is the time stamp for the t-th sample.

Hoeffding Tree introduces the decision tree rationale in

stream learning settings. The algorithm takes advantage of

the Hoeffding Bound to enable it to learn stream patterns

without storing the input data samples for future processing.

Thus, it provides the same asymptotically guarantees when

compared with traditional batch learners, as explores the

statistical distribution of samples, significantly decreasing the

memory needs.

Stream learning algorithms can provide benefits that can

address the model update task in intrusion detection. Apart

from significantly decreasing the computational costs of model

updates, stream learning algorithms must be able to address

concept drift, a situation wherein the behavior of the processed

environment changes.

III. RELATED WORKS

Intrusion detection through machine learning (ML) tech-

niques has been a subject of a plethora of works in the

literature. Yet, despite the promising reported results, IDS are

rarely deployed in production environments, as the network

traffic behavior changes as time passes, and prior works

neglect model update tasks [16].

For instance, N. Moustafa et al. [17] proposes an ensemble-

based intrusion detection model for the internet of things

aiming for higher accuracy rates. Their proposed scheme

makes use of new flow-based features for network traffic

classification and achieves higher accuracies when compared

to other approaches. Similarly, the authors assume that model

updates will be performed periodically, despite the challenges

it introduces. Recently, W. Lunardi et al. [18] proposed

an unsupervised anomaly-based deep learning technique for

network-based intrusion detection. Their proposed model was

able to improve detection accuracy when compared to tra-

ditional techniques in a normal-only training setting through

a predefined threshold to identify anomalous network traffic.

However, their proposed scheme overlooks model updates,

assuming that only attack-related network traffic is subject

to changes as time passes. Y. Zhou et al. [19] addressed

intrusion detection through an ensemble-based approach coped

with a feature selection scheme. Their proposal was able to

significantly improve classification accuracy when compared

to the traditional approach, however, overlooked changes in

network traffic.

The evolving nature of network traffic is hardly considered

in the literature. E. Viegas et al. [9] addressed network traffic

changes by aiming the building of machine learning models

with a higher lifespan. To achieve such a goal, the authors

perform a multi-objective feature selection that introduces

a measure for model longevity. Similarly, R. dos Santos et

al. [20] aimed higher model lifespan considering the classi-

fication reliability during model training in a reinforcement

learning setting. Both approaches can decrease the frequency

in which model updates are necessary, however, does not

address how such a task can be eased when performed.

Stream learning techniques for intrusion detection task is

not widely evidenced in the literature, despite the benefits

it introduces to proposed schemes. P. Horchulhack et al. [5]

uses stream learning algorithms to perform incremental model

updates in intrusion detection. The authors incrementally adapt

the stream learning algorithm based on the confidence score

of the used approaches. However, if the confidence score of

used stream learners is biased, the need for model updates

will not be identified. N. Martindale et al. [21] evaluates an

ensemble-based approach using a variety of stream learning

algorithms. The authors’ approach addressed intrusion detec-

tion by incrementally adapting their used model, however, the

identification of new network traffic was not addressed.

Andreoni Lopez et al. [22, 23] use the stream learning

platform for the intrusion detection system. The system uses

Apache Spark while running a traditional decision tree al-

gorithm. The proposal can detect concept drift on network

traffic. When a concept drift is detected, the model is updated

incrementally. Nevertheless, the proposal could not perform

model updates in an unsupervised manner.

It is possible to note that intrusion detection tasks through

machine learning techniques have been widely explored in the

literature [2, 18], yet, their use in production environments

remains low. Most proposed schemes overlook the challenges

related to network traffic behavior changes, whilst assuming

that model updates will be performed periodically [3].

IV. A STREAM LEARNING INTRUSION DETECTION

SYSTEM FOR CONCEPT DRIFTING NETWORK TRAFFIC

In light of this, we propose a new stream learning intrusion

detection system for concept drifting network traffic imple-

mented in two phases, namely Classification Pipeline and

Update Pipeline.

First, the Classification Pipeline addresses intrusion detec-

tion as a stream learning task, enabling model updates to be

performed incrementally. Our main insight is to employ stream

learning algorithms to easiness the model update task in face of

new network traffic behavior. As a result, when new network

traffic is identified, its behavior can be adequately incorporated

by our proposed scheme.

Second, we address model updates by using a one-class

stream learning scheme. Our proposal contribution is to iden-

tify new network traffic, that must be used for model updates,

without the assistance of an expert. To achieve such a goal,

we build a one-class stream learning algorithm based on the

network events previously used for the training phase. Our

main insight is to use the one-class algorithm to identify

network behaviors not previously used for training, hence,

new network flows must be incorporated into our scheme.

Consequently, our proposed scheme can significantly decrease

expert intervention to address new network traffic. Finally, new

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

Incremental

Update

Network Event

Data Acquisition

Feature Set

Label

Stream Learning

One-class SL
Anomaly Score

Incremental Upd.
Label

Verification

Feature Set

Incremental

Update

Network Interface

Network Packet

Classification Update

Network

Packets

Network

Flows

Network

Alerts

Stream Learning Intrusion Detection

System for Concept Drifting Network Traffic

Alert

x
x
x

1

2

3
Feature Extraction

x
x
x

1

2

3

attack

normal

normal

Fig. 1: Overview of our proposed stream learning intrusion detection model for concept drifting network traffic. Classification is performed through a stream
learning scheme, while new network traffic is identified by using a one-class stream learner.

network traffic behavior is incrementally incorporated by our

model.

The next subsections further describe our proposed model,

shown in Figure 1, including the modules that implement it.

A. Classification Pipeline

Our proposed model takes into account a traditional

network-based intrusion detection scheme implemented by

making use of a behavior-based detection approach. Contrary

to most prior works, our scheme performs the network traffic

classification through a stream learning model.

The classification starts with a to-be-classified network

event collected by a Data Acquisition module (see Fig. 1),

e.g. a network packet. The collected event is used as input by

a Feature Extraction module which extracts a set of behavioral

flow features compounding a feature set, used twofold in our

approach. On one hand, the extracted behavioral features are

fed to a stream learning classifier, which outputs a correspond-

ing classification outcome. The classification triggers alerts if

a network attack is identified, signaling to the operator the

identified network intrusions. On the other hand, the feature

set is also fed as input to our proposed Update Pipeline to

identify newly occurring network traffic in an unsupervised

fashion.

B. Update Pipeline

The behavior of network traffic changes as time passes,

demanding model updates to be performed periodically. How-

ever, model updates pose significant challenges, mainly due

to the identification of behavior changes in network traffic, as

well as the labeling task of the newly occurring events, often

only achievable by expert assistance.

To address such a challenge, our proposed model makes use

of a one-class stream learning model to proactively identify

network events that are unknown to the stream learning

classifier. The one-class model is trained based on the events

used for stream learning model training, therefore, it identifies

as anomalies network behaviors not similar to those used

for training purposes. The newly occurring network traffic

(anomalies) is then used for incremental model updates over

the current stream learning classifier and the used one-class

stream learner. The update pipeline procedure is shown in

Figure 1 and is executed for every new event that our scheme

Algorithm 1 Proposal classification and update scheme.

Require:

Learner l← f(x) = y ▷ Stream Learner

One-class Learner o← f(x) = v∗ ▷ One-class

Anomaly Threshold t ∈ [0, 1], typically t = 0.1
Stream S ← {event1, . . . , event∞}
Start in initial state s ∈ S
while s is not final do

FeatureVector x = extractFeatures(s)
Classification c = predict(l, x)

if c is attack then

alert(e)
end if

if anomalyScore(o, x) ≥ t then

Label label← requestLabel(e)
l← incrementalUpdate(l, x, label)
o← incrementalUpdate(o, x)

end if

s← s′ ▷ Next network event

end while

will classify. The algorithm applies our proposed one-class

detector to identify new network traffic. Signaled events are

fed as input to a Verification module that adequately labels the

new network traffic, e.g. through human assistance. Finally,

the labeled event is fed as input to the Incremental Update

module, which performs the model update on both the stream

learning classifier and our one-class stream learner.

Algorithm 1 shows our proposal classification and update

procedure. It receives as input a stream learner (l), a one-

class learner (o), with an associated anomaly threshold (t),

and the stream source (s). The model update is executed

for every classified event. The scheme continuously reads an

unbound sequence of network events from a given stream (s).

The behavior of the event is extracted compounding a feature

vector (x), subsequently classified by a given stream learner

(l). If the classification outcome (c) is deemed as an attack, it is

properly reported. After the event classification, the one-class

learner (o) computes an anomaly score and evaluates it with

a given anomaly threshold (t). Anomalous events are used for

incremental model updates on both our used stream learner

and our one-class learner.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

(a) Gradient Boosting (b) Hoeffding Tree

Fig. 2: Accuracy performance of selected classifiers on FGD dataset, in a
1-minute periodicity. Classifiers are trained using the initial minute of the
dataset in the known scenario in a streaming manner. No model updates are
performed as time passes.

As a result, our proposed model’s main contribution is

to enable the selection of which events are unknown to the

underlying stream learning model. Thus, the number of events

that an expert must label is significantly decreased, given that

not all events will be used for model updates, significantly

easing the conduction of model updates as time passes.

V. EVALUATION

Our proposed model was evaluated considering the follow-

ing research questions (RQ):

• (RQ1) How do the traditional classifiers performs with

no updates?

• (RQ2) How does the updated classifiers counterpart

performs?

• (RQ3) What is the performance of our proposed model?

The next subsections further describe our performed evalu-

ations including the model building and used dataset.

A. Model Building

Our evaluation is performed based on the Fine-grained

Intrusion Dataset (FGD) [24]. It is made of network flows

that present the network variation which designed behavior-

based NIDS will experience in production environments. The

dataset contains events in three situations, as follows:

• Training. Network traffic remains unchanged as time

passes. Normal traffic depicts 5 different protocols, gen-

erated by 100 clients [25]. Attacker traffic depics port-

scanning attacks.

• Probing. The behavior of attacker network traffic shifts

to application-level scanning. Normal network traffic re-

mains unchanged.

• App. Scan. Attacker generates application-level pen-

testing. Normal network traffic does not change.

Therefore, during the testbed execution, the current scenario

behavior varies from Training, Probing, and App. Scan in a

10-minute window interval each, as further described in [25].

The feature extraction algorithm grouped events in intervals of

2-seconds while extracting 49 flow-based features from Viegas

et al. [9] work.

(a) Gradient Boosting (b) Hoeffding Tree

Fig. 3: Accuracy performance of selected classifiers on FGD dataset, in a
1-minute periodicity. Classifiers are updated every minute using all the data
that occurred before the model update procedure.

The selected classification schemes were evaluated con-

cerning their false-negative rates (FN), false-positive rates

(FP), true-positive rates (TP), and true-negative rate (TN), as

follows:

• True-Positive (TP): number of attack samples correctly

classified as an attack.

• True-Negative (TN): number of normal samples correctly

classified as normal.

• False-Positive (FP): number of normal samples incor-

rectly classified as an attack.

• False-Negative (FN): number of attack samples incor-

rectly classified as normal.

To evaluate selected techniques concerning the detection

of both normal and attack samples we compute the balanced

accuracy, as shown in Eq. 1.

BalancedAccuracy =

sensitivity
︷ ︸︸ ︷

TP/(TP+FN)+

specificity
︷ ︸︸ ︷

TN/(TN+FP)

2

(1)

We evaluate two widely used machine learning and stream

learning techniques. The first was implemented through the

Gradient Boosting (GBT) classifier. The latter was imple-

mented through the Very Fast Hoeffding Tree (VFHT) stream

learner. The GBT was evaluated with 100 decision trees as its

base-learner, where each one of them uses gini as the node

split quality metric, the classifier relies upon a 0.3 learning rate

value, with deviance as the loss function. The VFHT stream

learner was evaluated using information gain as the node split

criterion, a grace period of 200, and naive Bayes adaptive

as the leaf node prediction. Our proposed one-class stream

learner was implemented using a Half-Space Tree (HST). The

one-class learner is built using all the instances used for the

stream learning training procedure. The HST makes use of a

window size of 15, 25 estimators, while the anomaly thresh-

old varies for each experiment (Alg. 1, Anomaly Threshold)

The GBT was implemented through scikit-learn API v0.24,

whereas the VFHT and the HST were implemented on top of

scikit-multiflow API v. 0.5.3. The parameters of the selected

techniques were empirically set.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

B. Traditional Behavior-based Intrusion Detection

Our first experiment aims at answering RQ1 and evaluates

the classification performance of traditional behavior-based

intrusion detection techniques without performing updates as

time passes. In such a case, the selected classifiers are built

using the data that occurred during the first 5 minutes of

our dataset (Training behavior), and no model updates are

performed. Figure 2 shows the classification performance of

selected techniques in our dataset. It is possible to note that

the classification accuracy remains significantly high during

the training behavior, decreasing when a new behavior is evi-

denced (Probing and App. Scan). Consequently, model updates

must address the non-stationary behavior of the network traffic.

Our second experiment answers RQ2 and evaluates how

model updates can be used to address new network traffic

behavior. To achieve such a goal, we conduct periodic model

updates every minute in our dataset using the network events

that occurred over the last 1 minute. More specifically, we

perform periodic model updates in a 1 minute periodicity with

1 minute worth of data.

Figure 3 shows the classification performance of the selected

techniques when model updates are periodically performed. In

contrast to their no-update counterpart, periodically-updated

classifiers were able to address the non-stationary behavior

of network traffic. It is possible to note that classification

accuracies are increased as soon as the model update is per-

formed. For instance, in a Probing scenario, the classification

accuracy is initially degraded (Fig. 3, 10th minute), while after

the model is adequately updated the accuracy increases again

(Fig. 3, 11th minute onward). However, conducting such an

update procedure in production environments is not easily

feasible, due to the huge amounts of network traffic that

must be adequately labeled. Consequently, model updates must

be performed demanding as few as possible labeled network

events.

C. Stream Learning for Concept Drifting Network Traffic

Finally, we evaluate the performance of our proposed

scheme to address the evolving behavior of network traffic.

To achieve such a goal, we evaluate our scheme while varying

the anomaly threshold used by our one-class learner (Alg. 1,

Anomaly Threshold). The threshold must be defined based on

the operator’s needs, as a higher value will demand more

events to be adequately labeled, but will, as an assumption,

provide higher model accuracies. Therefore, we select two

operation points (thresholds), namely High, and Avg. using

a 0.85, and 0.45 anomaly thresholds respectively.

The two selected anomaly threshold operation points are

used to evaluate the performance of our model. Recalling that

we use the mentioned threshold to incrementally update our

proposed scheme (see Alg. 1) Figures 4a, and 4b show the

classification accuracy of our model according to the used

anomaly threshold. Our proposed model was able to improve

accuracy while demanding less events to be provided during

model updates (Fig. 3b vs. 4) For instance, our scheme at

a high operation point (Fig 4a) reaches an average accuracy

(a) Performance
(High Operation Point)

(b) Performance
(Avg. Operation Point)

Fig. 4: Accuracy performance of our proposed model on FGD dataset, in a
1-minute periodicity. Our proposal is updated every minute according to the
identified anomalous samples on the preceding minute.

of 95.49%, while demanding only a total of 48% of labeled

events to be provided as time passes. Notwithstanding, our pro-

posed scheme can achieve high classification accuracies even

when fewer events are provided for model update purposes.

For example, the Avg. operation point (Fig. 4b) reaches an

average accuracy of 94.46%, while demanding a total of 60%

of labeled events to be provided over time.

VI. CONCLUSION

The behavior of network traffic varies over time, signif-

icantly affecting the reliability of designed behavior-based

intrusion detection schemes. This paper proposed a novel

approach for feasible model updates through a stream learning

technique coped with a one-class learner. The first can incor-

porate new network traffic behavior as time passes into the

deployed model. The latter detects new network traffic that

must be used for model update purposes. The experiments

shown in the paper demonstrated our proposal’s feasibility.

For future works, we plan to evaluate our scheme on more

datasets.

REFERENCES

[1] Kaspersky Security Bulletin 2022. Statistics, 2022.
[Online]. Available: https://go.kaspersky.com/rs/802-IJN-240/
images/KSB statistics 2021 eng.pdf

[2] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-
Alonso, “Survey of network intrusion detection methods from
the perspective of the knowledge discovery in databases pro-
cess,” IEEE Trans. on Network and Service Management,
vol. 17, no. 4, pp. 2451–2479, Dec. 2020.

[3] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
Symposium on Security and Privacy. IEEE, 2010.

[4] C. Gates and C. Taylor, “Challenging the anomaly detection
paradigm: A provocative discussion,” in Proc. of the Workshop
on New Security Paradigms (NSPW), 2006, pp. 21–29.

[5] P. Horchulhack, E. K. Viegas, and A. O. Santin, “Toward feasi-
ble machine learning model updates in network-based intrusion
detection,” Computer Networks, vol. 202, p. 108618, Jan. 2022.

[6] J. V. V. Silva, N. R. de Oliveira, D. S. V. Medeiros, M. An-
dreoni Lopez, and D. M. F. Mattos, “A statistical analysis of
intrinsic bias of network security datasets for training machine
learning mechanisms,” Annals of Telecommunications, Feb.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

[7] E. Viegas, A. Santin, V. Abreu, and L. S. Oliveira,
“Stream learning and anomaly-based intrusion detection in the
adversarial settings,” in 2017 IEEE Symposium on Computers
and Communications (ISCC). IEEE, Jul. 2017. [Online].
Available: https://doi.org/10.1109/iscc.2017.8024621

[8] D. Chou and M. Jiang, “A survey on data-driven network
intrusion detection,” ACM Comput. Surv., vol. 54, no. 9, oct
2021. [Online]. Available: https://doi.org/10.1145/3472753

[9] E. Viegas, A. O. Santin, and V. A. Jr, “Machine learning
intrusion detection in big data era: A multi-objective approach
for longer model lifespans,” IEEE Transactions on Network
Science and Engineering, vol. 8, no. 1, pp. 366–376, Jan. 2021.

[10] J. Mallmann, A. O. Santin, E. K. Viegas, R. R. dos Santos, and
J. Geremias, “PPCensor: Architecture for real-time pornography
detection in video streaming,” Future Generation Computer
Systems, vol. 112, pp. 945–955, Nov. 2020.

[11] F. Ramos, E. Viegas, A. Santin, P. Horchulhack, R. R. dos
Santos, and A. Espindola, “A machine learning model for
detection of docker-based APP overbooking on kubernetes,” in
IEEE International Conf. on Communications (ICC), 2021.

[12] J. Gu and S. Lu, “An effective intrusion detection approach
using SVM with naı̈ve bayes feature embedding,” Computers
& Security, vol. 103, p. 102158, Apr. 2021. [Online].
Available: https://doi.org/10.1016/j.cose.2020.102158

[13] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts
of machine learning in computer security,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 3971–3988. [Online].
Available: https://www.usenix.org/conference/usenixsecurity22/
presentation/arp

[14] R. R. dos Santos, E. K. Viegas, and A. O. Santin, “A reminiscent
intrusion detection model based on deep autoencoders and
transfer learning,” in 2021 IEEE Global Communications Con-
ference (GLOBECOM). IEEE, Dec. 2021. [Online]. Available:
https://doi.org/10.1109/globecom46510.2021.9685724

[15] M. Andreoni Lopez, A. G. P. Lobato, and O. C. M. Duarte,
“A performance comparison of open-source stream process-
ing platforms,” in IEEE Global Communications Conference
(GLOBECOM). IEEE, 2016, pp. 1–6.

[16] R. R. dos Santos, E. K. Viegas, A. O. Santin, and V. V. Cogo,

“Reinforcement learning for intrusion detection: More model
longness and fewer updates,” IEEE Transactions on Network
and Service Management, pp. 1–17, 2022. [Online]. Available:
https://doi.org/10.1109/tnsm.2022.3207094

[17] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “An ensemble
intrusion detection technique based on proposed statistical flow
features for protecting network traffic of internet of things,”
IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4815–4830,
Jun. 2019.

[18] W. T. Lunardi, M. Andreoni Lopez, and J. Giacalone, “Ar-
cade: Adversarially regularized convolutional autoencoder for
network anomaly detection,” 2022.

[19] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an effi-
cient intrusion detection system based on feature selection and
ensemble classifier,” Computer Networks, vol. 174, p. 107247,
Jun. 2020.

[20] R. R. dos Santos, E. K. Viegas, A. Santin, and V. V.
Cogo, “A long-lasting reinforcement learning intrusion detection
model,” in Advanced Information Networking and Applications.
Springer International Publishing, 2020, pp. 1437–1448.

[21] N. Martindale, M. Ismail, and D. A. Talbert, “Ensemble-
based online machine learning algorithms for network intrusion
detection systems using streaming data,” Information, vol. 11,
no. 6, p. 315, Jun. 2020.

[22] M. Andreoni Lopez, D. M. Mattos, O. C. M. Duarte, and
G. Pujolle, “Toward a monitoring and threat detection system
based on stream processing as a virtual network function for big
data,” Concurrency and Computation: Practice and Experience,
vol. 31, no. 20, p. e5344, 2019.

[23] A. G. P. Lobato, M. Andreoni Lopez, A. A. Cardenas, O. C. M.
Duarte, and G. Pujolle, “A fast and accurate threat detection and
prevention architecture using stream processing,” Concurrency
and Computation: Practice and Experience, vol. 34, no. 3, p.
e6561, 2022.

[24] R. R. dos Santos, E. K. Viegas, and A. O. Santin, “Improving
intrusion detection confidence through a moving target defense
strategy,” in 2021 IEEE Global Communications Conference
(GLOBECOM), 2021, pp. 1–6.

[25] E. K. Viegas, A. O. Santin, and L. S. Oliveira, “Toward a reliable
anomaly-based intrusion detection in real-world environments,”
Computer Networks, vol. 127, pp. 200–216, Nov. 2017.

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:21:07 UTC from IEEE Xplore. Restrictions apply.

