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Abstract—Current machine learning techniques for network-
based intrusion detection cannot handle the evolving behavior
of network traffic, requiring periodic model updates to be con-
ducted. Besides requiring huge amounts of labeled network traffic
to be provided, traditional model updates demand expressive
computational costs. This paper proposes a new feasible model
update procedure implemented in two steps. First, we use a
Generative Adversarial Network (GAN) to augment the sampled
network traffic. Next, we use the augmented dataset to perform
model updates through a transfer learning-based approach. Thus,
our model can decrease both the number of instances that must
be labeled and the computational costs during model updates.
Our experiments on a one-year dataset with over 8 TB of data
show that literature techniques cannot handle changes in network
traffic behavior. In contrast, the proposed model without updates
improved true-positive rates by up to 25.6 %. With monthly model
updates, it requires only 14% of computational costs and 2.3%
of instances to be provided.

Index Terms—Network-based Intrusion Detection, Data Aug-
mentation, Machine Learning

I. INTRODUCTION

Over the last years, the number of network-based cyberat-
tacks has significantly increased and is currently on the rise.
According to a cybersecurity report, the fourth quarter of 2021
has increased the number of reported network attacks by 52%,
currently targeting over 15% of all Internet users [1]. In gen-
eral, to detect this growing number of threats, operators resort
to network-based intrusion detection systems (NIDS), through
either misuse-based or behavior-based techniques [2]. The
previous detects network attacks through the identification of
well-known attack signatures, thus, can only detect previously
known threats [3]. In contrast, the latter performs the detection
task by evaluating the event behavior, signaling misconduct
when a deviation from the normal modeled behavior is de-
tected, hence, being able to signal new attacks.

Several works have been proposed for behavior-based in-
trusion detection, wherein machine learning (ML) techniques
are typically used [2]. A behavioral ML model is built by
evaluating a training dataset composed of a huge amount,
usually millions, of labeled network traffic events from both
normal and malicious players [4]. Finally, the corresponding
built ML model can then be deployed in the production
environment to classify network traffic samples.
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Despite the high accuracies reported in the literature,
behavior-based techniques are hardly deployed in produc-
tion [5]. Networked environments pose many challenges com-
pared to those wherein ML has been successfully applied.
This is because network traffic behavior is highly variable
and evolves over time, a situation that can be caused by
the provision of new network services, the disclosure of new
network attacks, or even changes in network communication
links [6].

This kind of network traffic behavior change makes the
deployed ML model outdated, as the evaluated network traffic
used during the model building procedure no longer reflects
the current production environment behavior [7]. As a result,
the deployed ML model will significantly increase its error
rates, which demand a countermeasure for executing frequent,
time-consuming, and highly costly model updates [5].

Unfortunately, traditional ML model updates in NIDS are
still a challenging and overlooked task, typically requiring the
provision of an updated training dataset and the execution of a
computationally expensive process of the entire model training
process [2]. On the one hand, the operator must first recollect
huge amounts of network traffic while labeling each event as
either normal or attack, often through manual means, thus,
demanding several weeks or even months of expert assistance.
On the other hand, traditional model update techniques discard
the outdated model and build a new one from scratch, increas-
ing the needed time, and the computational costs demanded
to fulfill such a task. Model updates in NIDS remain an
overlooked task in the literature, wherein authors often assume
that periodic model updates can be easily performed.

This paper proposes a new ML model update procedure
suitable for NIDS, aimed at easing the model update task,
implemented in three steps. First, the model updates are
performed through a sliding window mechanism coped with a
data sampling technique. The insight is to decrease the number
of samples that should be labeled while also maintaining
a recent collection of network traffic over time. Second,
we apply a Generative Adversarial Network (GAN) for data
augmentation purposes, thus, rebuilding the original network
traffic distribution without demanding additional event labeling
tasks to be conducted, easing the update process. Third, we
perform model updates through a transfer learning approach
aiming to decrease computational costs while leveraging the

2668

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:18:09 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE Global Communications Conference:

knowledge of the outdated model. The main insight of our
proposal is to leverage the GAN-based data augmentation to
decrease the number of samples that must be labeled during
model updates while also making use of transfer learning to
reduce the model update computational costs.

In summary, the main contributions of this paper are:

o An evaluation of widely used ML classifiers concerning
their accuracy degradation over time. Experiments per-
formed in a dataset that spans a year with real network
traffic show that current techniques significantly reduce
their accuracy soon after the training period;

o A new ML model update procedure suited for network-
based intrusion detection significantly decreases labeled
data requirements and computational costs during model
updates. The proposed model can perform the model
update task with only 2.3% of training data and 14%
of computational costs.

II. PRELIMINARIES
A. Network-based Intrusion Detection

In general, a network-based intrusion detection system
(NIDS) is composed of four sequential modules [8]. First, the
Data Acquisition module collects network events for further
analysis. For instance, collecting network packets from a
monitored network interface card (NIC). Then, the Feature
Extraction module performs the needed data preprocessing
of the collected event, typically building a behavioral feature
vector for the proper event classification.

In general, the event behavior in NIDS is represented
through network flows which summarize the communication
between the analyzed network entities in a given time window,
e.g., the number of exchanged network packets over the last
15 seconds [9]. The built feature vector is then used as input
by the Classification module, classifying the input as either
normal or attack class. Finally, attack-classified events are
signaled to the network operator by an Alert module.

Several approaches have been proposed to perform the
classification task in behavior-based NIDS, wherein authors
often resort to machine learning (ML) techniques [3]. The
ML task is executed through a three-phase process, namely
training, validation, and testing. The dataset is used to build an
ML model that will be used to classify new events according
to the behavior evaluated in the training dataset.

The training phase takes as input a training dataset com-
posed of huge amounts, often millions, of labeled network
events. During the training task, a validation dataset is also
used to finetune the built model, such as feature selection and
model parameter adjustments. Finally, the test phase goal is to
measure the final model accuracy, which will be expected to
be evidenced when the ML model is deployed in production
environments.

B. Network Traffic Behavior Changes

The behavior of network traffic is a situation that the provi-
sion of new services can cause, the discovery of new attacks,
or even changes in the underlying network communication
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link [10]. Unfortunately, these naturally occurring changes in
network traffic behavior affect the deployed ML model used
to detect intrusion attempts [2]. This is because the current
behavior of the production environment will no longer be
similar to the behavior evaluated during the fraining phase,
as represented in the training dataset.

The network operator must conduct periodic model updates,
a task that poses two main challenges. First, providing an
updated training dataset is a challenging task in NIDS. The
network operator must collect and label the network traffic,
a task that is generally only achieved with expert assistance,
posing high costs to be conducted. Second, a computationally
expensive model training process must be performed after
providing an updated training dataset.

Current approaches in the literature overlook the challenges
related to model updates, neglecting how the behavior changes
in network traffic may affect their proposed scheme and how
model updates can be performed in an eased manner.

III. RELATED WORK

Many works have been proposed for network-based intru-
sion detection through ML-based techniques [2]. In general,
proposed approaches focus on providing higher classification
accuracies. But, they neglect that their proposal will not
work when there are changes in network traffic behavior.
[11]. For instance, Y. Yuan et al. [12] makes use of an
ensemble of classifiers to increase the accuracy in a widely
used intrusion detection dataset, leaving model updates and
changes in network traffic overlooked.

Another ensemble-based approach aiming for higher accu-
racies was proposed by X. Gao et al. [13], which considers a
static dataset by applying several tree-based classifiers in co-
operation. Liang and Ma [14] recently mentioned the detection
rates of IDSs gradually decaying with the emergence of new
attacks, which they address by downloading the latest database
and retraining the whole model without previous knowledge.

In a nutshell, network traffic behavior changes are rarely
considered in the literature. However, these issues were also
generated by Ying-Feng Hsu and Morito Matsuoka [15], build-
ing a controlled network traffic behavior change by applying a
number of batches in a widely used intrusion detection dataset
while evaluating their scheme based on the accuracy on each
batch. In such a case, the changes in network traffic behavior
were created in a controlled setting, therefore, it does not
reproduce a realistic behavior of real-world environments.

The easiness of model updates also remains mostly over-
looked in NIDS. N. Martindale et al. [16] proposed a stream
learning intrusion detection scheme to ease the model update
computational costs. However, the authors neglect how the
event label can be obtained and assumes that the network
traffic label can be easily requested when needed. In contrast,
X. Li et al. [17] proposes applying the transfer learning
approach to ease the model training burden in a distributed
setting. The authors could ease the computational costs for
model training while not addressing the difficulties related to
the labeling task.
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(a) Random Forest (b) Decision Tree

Fig. 1: Accuracy behavior for the selected ML classifiers in the MAWIFlow
dataset. Classifiers were trained with January data and not updated throughout
time.

Data augmentation techniques have been increasingly used
for ML model-building purposes recently. For instance, U.
Otokwala et al. [18] proposed a data augmentation scheme
to balance the occurrence of network traffic during the model
building, increasing the detection accuracy but overlooking its
application for model updates. GAN-based data augmentation
was proposed by G. Andresini et al. [19] to deal with class
imbalance. The proposed model improves the detection of
underrepresented classes but neglects the model update chal-
lenge.

IV. PROBLEM STATEMENT

In this section, we further investigate the behavior changes
in network traffic and how they affect the classification per-
formance of traditional ML-based NIDS techniques. More
specifically, we introduce the used dataset and then evaluate
several ML-based techniques concerning their degradation
accuracy as time passes.

A. MAWIFlow Dataset

Currently, the literature assumes that network traffic be-
havior remains unchanged as time passes, considering that
used datasets do not account for long recording periods.
Consequently, proposed schemes built over such data cannot
evaluate how their proposals perform when facing network
traffic behavior changes.

Our work uses the MAWIFlow [7] dataset. The dataset was
built using the Samplepoint-F from the MAWI [20] archive.
As a result, it is made of real and valid network traffic that
was collected daily for an interval of 15 minutes from a transit
link between Japan and the USA The built dataset comprises
more than 8TB of data, compounding around 4 billion in
network flows. In fact, was used the whole network traffic
of 2014 for evaluation purposes.r For prior event labeling, we
apply an unsupervised ML technique from MAWILab [21],
which automatically labels input events as normal or attack.
MAWILab employs several unsupervised machine learning
algorithms to find anomalies in MAWI data without individual
or human assistance for the event labeling task. The anomalies
are labeled as attacks, while the remaining data are assumed
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Fig. 2: Accuracy behavior for the selected ML classifiers in MAWIFlow
dataset. Classifiers were trained every month with 1 month worth of data.

to be normal events. For the feature extraction task, the
BigFlow [7] tool was used, which grouped events in intervals
of 15 seconds while extracting 40 flow-based features from
Orunada [22] work.

B. The Changes in Network Traffic Behavior

Our evaluation tests aimed at answering two main research
questions: (RQ1) How do ML-based techniques perform with-
out periodic model updates? (RQ2) How do ML-based tech-
niques perform when periodic model updates are conducted?

Two widely used ML classifiers were selected: Decision
Tree (DT) and Random Forest (RF). The DT classifier was
implemented with gini split quality measure, and the RF
classifier was implemented with 100 decision trees as its base-
learner, where each one of them also uses gini as the node split
quality metric. A random undersampling without replacement
is used in the training procedure to balance the occurrence
between the classes.

The classifiers were implemented through scikit-learn API
v0.24. The classifiers were evaluated according to their True-
Positive (TP) and True-Negative (TN) rates. The TP denotes
the ratio of attack instances correctly classified as attack,
while the TN denotes the ratio of normal instances correctly
classified as normal.

The first experiment aims at answering RQ1 and evaluates
the classification performance of the selected classifiers when
no model updates are performed over time. We train the ML
model with the January data and evaluate it continuously
without performing model updates.

Figure 1 shows the classification performance of the selected
techniques when no periodic model updates are performed.
The selected classifiers significantly reduce their classification
performance after the training period. For instance, the RF
classifier degrades its TP rate by 25.2% only a month after
training (Fig. la, Jan. vs Feb.), while providing the worst
accuracy in November, degrading its TP rate by 85.2%.

The second experiment aims at answering R(Q)2 and evalu-
ates the classification performance of the selected techniques
when periodic model updates are performed. We updated the
underlying ML model at the beginning of every month with
the data that occurred over the last 30 days.
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Figure 2 shows the classification accuracy of the selected
classifiers when periodic model updates are performed. It is
possible to note that, in contrast with their no-update counter-
part, the selected classifiers could provide high classification
accuracies throughout time. For instance, the RF classifier
provided an average TP rate of 87.3%, while its no-update
counterpart reached an average TP rate of only 54.1%.

One can be noticed that periodic model updates must be
performed to keep their classification accuracy as time passes.
However, this is not a trivial task for NIDS, considering
the challenges related to the data tagging task, as it often
requires expert assistance, requiring several days or weeks
of execution. To enable proper deployment of the proposed
ML-based NIDS, the literature must first address the task of
updating the model, allowing the operator to perform such a
task without requiring significant amounts of labeled data.

V. GAN-BASED DATA AUGMENTATION AND TRANSFER
LEARNING FOR MODEL UPDATE EASINESS

To address the above-mentioned challenge related to model
updates in NIDS, we propose a GAN-based data augmentation
model coped with a transfer learning scheme to ease the model
update task. Our proposed approach addresses model updates
threefold, as shown in Figure 3.

First, model updates are performed considering a sampled
sliding window mechanism to decrease the number of samples
that must be labeled. In such a case, the training data is
sampled from the network traffic that was observed before the
triggering of the model update task, e.g., 10% of randomly
selected events over the last 7 days. The insight is that
the amount of network traffic used for model updates can
be significantly decreased, thus, easing the network operator
labeling task if it is selected considering a sample of the sliding
window of events.

Second, our proposed scheme relies on a GAN-based data
augmentation technique to decrease the impact caused by the
proposed network sampling approach. The rationale for such
an implementation is that network traffic behavior “gaps”
caused by the sampling approach can be recreated through
a data augmentation mechanism.

Third, to decrease the computational costs during model
updates, the knowledge of the outdated model is leveraged at
model updates, as achieved through a transfer learning scheme.
The insight of such a scheme is to significantly decrease the
number of samples that must be labeled due to the sampled
sliding window. It reduces the accuracy impact caused by
such gaps due to the GAN-based data augmentation and also
decreases the computational costs due to the transfer learning
approach.

A. Classification

The proposed model assumes a traditional ML-based NIDS
classification task, which relies on an ML model that uses a
transfer learning scheme. The deployed ML model needs to
be updated regularly to address the network traffic behavior
changes over time. The network traffic is collected over a
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Fig. 3: Proposed GAN-based data augmentation and transfer learning mech-
anism for easiness model update task in NIDS.

given monitored environment by a Data Acquisition module
(Fig. 3, Data Acquistion). The behavior of the collected data
is extracted by a Feature Extraction module that outputs a
corresponding network flow in a feature vector format. The
vector is classified as either normal or attack by a ML model,
which signals misconducts to the Alert module.

B. Model Updates

As evaluated previously (see Section IV), the non-stationary
behavior of network traffic demands periodic ML model up-
dates be performed. However, model updates pose a significant
challenge in ML-based NIDS due to the difficulties related to
the data labeling task. Our proposed model relies on three
main stages: a data sampling mechanism, a GAN-based data
augmentation scheme, and a transfer learning approach, as
shown in Figure 3. The data sampling decreases the number
of samples that must be labeled by the network operator,
thus, easing the model update costs. The GAN-based data
augmentation aims to rebuild the sampled data’s original
network traffic distribution. Finally, transfer learning aims to
decrease the model building computational costs during the
model update, as it leverages the outdated model.

The proposed scheme insight is that we can significantly
decrease the number of samples from network traffic that
must be labeled by the network operator while maintaining
the original network traffic distribution and reducing the
computational costs of model updates. The proposed model
update procedure is executed periodically, e.g., every month.
In such a case, a sliding window of events, built by sampling
the monitored environment behavior, must be provided (Fig. 3,
Event Sliding Window). For instance, it randomly sampled
10% of the network events that preceded the model update
task over the 7 days. The sampled dataset is then provided
to the label provider module, which properly establishes each
event label (Fig. 3, Label Provider). Several techniques can be
used to fulfill such a task, including manual expert assistance
or even the application of unsupervised learning techniques.

The labeled sampled dataset is used as input by the GAN-
based data augmentation, which aims to rebuild the origi-
nal network traffic distribution from the sampled data. The
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Fig. 4: Behavior of the acuracy for the proposed model on the MAWIFlow
dataset. Monthly model updates are performed with 10% of the network events
sampled from network traffic.

augmented dataset is used for the model update procedure.
The outdated model, deployed in the production environment,
is retrieved and used for incremental model updates in a
transfer learning approach (Fig. 3, Transfer Learning). Finally,
the updated ML model is deployed back in the production
environment.

VI. EVALUATION

The evaluation of our proposed model aims at answering
three main research questions: (RQ3) How does our proposed
model perform without periodic model updates? (RQ4) How
our proposed model performs with periodic model updates?
(RQ@5) How does our proposed model perform when compared
to traditional techniques?

A. Model Building

Our proposed model classifier (Fig. 3, ML Model) was
implemented and evaluated through a Multilayer Perceptron
(MLP) to enable the transfer learning scheme to be applied
during model updates. The MLP was implemented with 40
input features, as provided by MAWIFlow feature set, 512
neurons at the hidden layer, and 1 output layer. The hidden
layer neurons make use of a relu activation function, the
training relies in a learning rate of 0.001, adam optimizer,
and 1,000 epochs. The MLP was implemented through scikit-
learn API v0.24.

For the GAN-based data augmentation, our proposed
scheme has relied on the conditional tabular GAN (CTGAN)
approach [23]. A new CTGAN is trained over the sampled
data for data augmentation purposes at each model training,
including the initial and periodic model updates. In such a
case, 10% of augmented instances are generated and added to
the sampled training dataset (Fig. 3).

B. Addressing Network Traffic Behavior Changes

The first experiment aims at answering RQ3 and evaluates
our proposed model without periodic model updates. We
randomly sample 10% of network traffic events from the first
week of January to achieve such a goal. The sampled data is
used as input to our GAN for data augmentation purposes,
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Fig. 5: Model convergence at February with and without our proposed transfer
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Fig. 6: Performance of evaluated techniques with monthly model updates in
MAWIFlow dataset over time.

while the augmented dataset is used to build the model.
The model is not updated throughout the year. Therefore, we
evaluate how the proposed GAN-based data augmentation can
improve the model training procedure when significantly less
data is provided during the model training (10% of 7 days vs.
100% of 30 days).

Figure 4a shows the classification performance of our pro-
posed model without periodic model updates. It is possible
to note that our proposed technique is also affected by the
network traffic behavior changes over time when no periodic
model updates are performed. Despite the provision of only
10% of the original network traffic, our proposed scheme is
still able to improve the average TP rates by up to 34.4%
when compared to the no-update RF (Fig. 4a vs. Fig. la).
The proposed GAN-based data augmentation approach can be
used to improve the lifespan of intrusion detection schemes.

The second experiment aims to answer RQ4 and evaluate
our proposed model when periodic model updates are per-
formed. We perform monthly model updates to achieve such
a goal, considering an event sliding window of 7 days and a
sampling rate of 10%.

Figure 5 shows the proposed transfer learning model con-
vergence rate compared to building the model from scratch
in February. On average, the application of transfer learning
during model updates decreased the computational costs by
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85.3%.

Figure 4b shows the accuracy behavior of our proposed
model with monthly model updates. It is possible to note that
our proposed technique provided significantly high accuracy
rates, presenting an average of 91.4%, and 95.7% of TP and
TN rates, respectively, an improvement of 25.6% in the TP
rate when compared to its no-update counterpart.

Our proposed technique significantly eased the model up-
date task, demanding only 14% of computational costs while
using only 2.3% of the network events. This is because it uses
only 10% of randomly sampled data from the last 7 days, while
the traditional techniques were trained with 100% of the last
30 days (Fig. 4b vs. Fig. 2).

To answer RQ5 we further investigate our proposed model
benefits compared to traditional techniques. Figure 6a shows
the cumulative number of network samples that the evaluated
techniques must label during model updates.

Our proposed model demanded only 2.3% of samples
to be labeled compared to traditional approaches, posing a
significantly easier to execute model update task. Figure 6b
shows the classification accuracy of our proposed model
versus the techniques evaluated previously (Fig. 4b vs Fig. 2).
The approaches were evaluated according to their F1-Score,
computed as the harmonic mean of precision and recall values.
Our proposed model was able to provide similar F1-Scores
when compared to traditional approaches while demanding
only 2.33% of labeled network events to be delivered and
14% of computational costs during model updates.

VII. CONCLUSION

Network traffic behavior changes are a known and over-
looked challenge to ML-based NIDS. This paper has shown
that current approaches in the literature cannot keep their
classification accuracy for long periods, demanding frequent
and challenging model updates to be conducted.

Our proposed model was able to significantly ease the model
update task through a sampled sliding window mechanism
coped with GAN-based data augmentation and the application
of transfer learning over the outdated deployed ML model.
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