
Detection of Service Provider Hardware
Over-commitment in Container Orchestration

Environments
Pedro Horchulhack∗, Eduardo K. Viegas∗†, Altair O. Santin∗

∗Pontifı́cia Universidade Católica do Paraná (PUCPR) — Graduate Program in Computer Science (PPGIa)
Curitiba, Paraná, 80215-901, Brazil.

{pedro.horchulhack, santin}@ppgia.pucpr.br
†Secure Systems Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates.

eduardo@ssrc.tii.ae

Abstract—The deployment of container-based services contin-
ues to increase as time passes, mainly due to its fast provision
time and lower allocation overheads. Yet, the literature still
neglects the performance degradation in containers due to multi-
tenancy and service provider hardware over-commitment. This
paper proposes a new hardware over-commitment detection
for container orchestration environments, implemented twofold.
First, the containerized hardware usage of deployed containers
is continuously monitored in a non-intrusive manner, leveraging
the container engine resource management interface. Second,
collected features are used by a recurrent neural network model
for detecting both container and service level hardware over-
commitment, following a time-series rationale. Experiments run
on a containerized Apache Spark distribution have shown that
multi-tenancy and hardware over-commitment significantly affect
its performance. In addition, our proposed model is able to detect
hardware over-commitment with up to 91% of true-positive at
the container level, and up to 93% true-positive at the service
level.

Index Terms—Container, Multi-tenancy, Recurrent Neural
Network, Kubernetes, Docker.

I. INTRODUCTION

The cloud computing service model has relied on hardware
sharing through a hypervisor [1]. The software enables the
provision of a virtual machine (VM) executed on top of a virtu-
alized layer of the provider’s physical hardware resources [2].
The tenant, in turn, executes on the VM the desired operating
system (OS) and his needed applications. As a result, the
VM provision and management task introduces significant
allocation overheads, as a new OS must be instantiated for
each provisioned VM [3].

To adequately address the cloud elasticity requirements,
computational services initially deployed through VMs have
been increasingly shifted to container-based solutions [3]. The
container is executed within the host OS environment as an
isolated process. Thus, it can leverage the host OS libraries
and resources, demanding significantly less computational
resources and provision time [4].

The cloud computing service model relies on multi-tenancy
for the sharing of the provider physical hardware resources

between several clients. The virtualized hardware resources are
provided through a pay-as-you-go model, wherein clients only
pay for the hardware resource they use, possibly leaving un-
derutilized resources to be allocated to other cloud tenants [5].
In such a context, cloud providers often overcommit their
physical hardware resources to other cloud tenants for profit
purposes, assuming that cloud tenants will not simultaneously
demand their allocated virtualized hardware [6].

Multi-tenancy introduces significant performance degrada-
tion on VMs. Thus, hypervisors have been continuously im-
proved over the past years to adequately address the fair
sharing of resources between allocated tenants. For example,
the CPU scheduler used by the VMWare hypervisor employs
a CPU share scheme which is continuously evaluated during
the CPU assignment task, giving higher priority to tenants
with higher CPU shares [7]. As a result, even if a short-
age of physical hardware resources occurs due to resource
overcommitment, the hypervisor can ensure fair hardware
access, decreasing the impact on the tenant quality-of-service
(QoS). In contrast, container-based applications often rely on
the host’s kernel scheduler, which may defer the container
access to the physical hardware to pave the way for a higher
privileged host OS process [1]. The literature overlooks such
a challenge, assuming that the impact of multi-tenancy in
containers is similar to those experienced in traditional VM-
based clouds

Cloud computing providers continuously monitor the per-
formance of allocated client services to ensure that the ser-
vice level agreements (SLA) are adequately met [8], [9].
Over the last years, several works have been proposed for
VM performance monitoring in a non-intrusive way, hence,
without requiring access to the client’s isolated user space.
Surprisingly, container performance monitoring is still mostly
overlooked in the literature [10]. It is assumed that container-
based services will be subject to the same multi-tenancy in-
terference experienced on VM-based deployments, neglecting
the resource management differences between the hypervisor
and container.

This paper proposes a new model for performance degra-978-1-6654-3540-6/22 © 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6354

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
37

5

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

dation detection in multi-tenant container-based environments,
implemented twofold. First, we continuously and periodically
monitor the hardware usage of distributed deployed containers
in a non-intrusive manner. Our proposed model does not
require access to the isolated container environment and can
be executed on top of the provider host OS. Second, the
collected hardware usage metrics of the monitored containers
are used by a recurrent neural network (RNN) model to
detect container and service level performance degradation.
Our proposed model can detect performance degradation due
to multi-tenancy considering both container and service levels
without demanding access to the isolated client space in a
non-intrusive manner.

The main contributions of this paper are:

• An evaluation of the performance degradation due to
hardware overcommitment in a distributed container-
based deployment. Experiments using a distributed con-
tainerized Apache Spark as a use-case have shown that
hardware overcommitment significantly affects deployed
services’ processing performance.

• A new model based on RNN for detection of performance
degradation in multi-tenant containerized services. The
proposed model can detect hardware overcommitment
with up to 91% of true-positive at the container-level and
up to 93% true-positive at the service level.

II. PRELIMINARIES

A. Virtual Machine

Over the last decades, the cloud computing service model
have mostly relied on virtual machine (VM) deployment
to share the provider’s physical hardware between several
tenants [5]. Cloud provider uses the hypervisor software to
create a virtualized abstraction of the underlying physical
hardware. The VM access the physical hardware through the
provided virtualized hardware layer, which is managed by
the hypervisor [2]. The hypervisor manages the virtualized
hardware access to the physical hardware, managing and
ensuring the fair sharing of resources among several tenants.

Hypervisor scheduling algorithms have been extensively
studied and improved to address the fair sharing of re-
sources between cloud tenants [7]. Cloud providers have
leveraged such improvements to increase their profits, even
over-allocating their physical hardware to cloud tenants, thus,
relying on the hypervisor to adequately address the hardware
sharing, as well as decreasing performance degradation impact
due to multi-tenancy.

Nowadays, VM-based deployment of services is unable to
meet the modern cloud elasticity requirements. A VM requires
the execution of a new operating system (OS) and the client
services, which introduces significant virtualization overheads,
increasing the provision time and wasting computational re-
sources. In practice, the VM provision task may demand
several minutes to be fulfilled by the cloud provider.

B. Container

In light of this, container-based solutions are being increas-
ingly used to deploy computational services. In such a case,
the needed application service is executed in a containerized
manner, sharing the host OS libraries with other tenants. The
container is isolated from the host OS and other containers
while sharing the host OS libraries [11].

The host OS becomes responsible for conducting the re-
source allocation and provision tasks, which are generally
executed and managed as an isolated host OS process managed
by the host OS kernel. For example, docker-based containers in
Linux-based OS are managed through namespaces and control
groups (cgroups) [12].

C. Multi-tenancy and Hardware Overcommitment

Cloud providers rely on hardware multi-tenancy to provide
their services, leaving cloud tenants to dispute over time
to use the provider’s physical hardware resources. Multi-
tenancy may significantly affect the processing performance
of deployed services as the cloud provider may over-allocate
its physical hardware to use underutilized resources to other
tenants for profit purposes [6]. In such a case, if deployed
tenants concurrently demand hardware access, the provider
will not be able to meet the hardware requirements, degrading
the client QoS.

Multi-tenancy introduces computational costs associated
with hardware management and sharing with several tenants.
Thus, the hypervisor must manage the hardware access be-
tween deployed VMs reasonably. Performance degradation due
to VM multi-tenancy has been a widely explored topic in
the literature. Hypervisors have been continuously improved
to overcome the performance impact introduced by sharing
physical hardware resources among allocated VMs.

Despite the increase in container-based deployment of ser-
vices, performance degradation due to multi-tenancy in con-
tainers remains overlooked in the literature [10]. Containers
are subject to a higher performance degradation since they are
typically executed as a host OS process, thus, managed by the
host OS kernel, which does not consider fair resource sharing
in multi-tenancy settings.

III. RELATED WORKS

Cloud providers generally monitor deployed tenants’ QoS to
ensure that the previously established service-level agreements
(SLA) have been met [13]. Service-level indicators (SLI) must
be periodically collected and evaluated while ensuring that the
client isolation is kept [14]. In other words, the cloud provider
must monitor the performance of allocated tenants without
having access to or modifying the isolated client space, which
includes the running OS, and deployed services.

Ntambu and Adeshina [15] tackled virtual machine re-
source usage in a cloud environment through machine learn-
ing techniques. Despite their proposed model reaching high
classification results, the authors considered collecting data
within the client domain. Huang et al [16] used a LSTM
to identify performance degradation in VM environments

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6355
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

Operating SystemOperating SystemUbuntu OS

Docker Engine

Kubernetes Node

Ubuntu OS

Kubernetes Master

Docker Engine

Pod

Container

Apache Spark
Worker

Pod

Execution

PodPodPod

Container

Apache Spark
Worker (Tenant)

Fig. 1: Testbed architecture considering a distributed containerized Apache
Spark job deployed through Kubernetes. Apache Spark jobs are deployed
as Kubernetes Pods. Containerized multi-tenancy interference is created
deploying additional Pods.

with relevant results. Similarly, the authors tackled the issue
within the client domain. Podolskiy et al. [14] proposed a
model to identify SLI deviations through machine learning
techniques and evaluated their approach using data collected
from a private Kubernetes cluster. Wang et al. [17] proposed a
dynamic resource prediction over container metrics. However,
the authors do not address the cloud provider’s perspective.
Also, regarding RNNs, Masouros et al. [18] used an LSTM to
detect performance degradation of containerized applications.

IV. PROBLEM STATEMENT

In this section, we further investigate the impact of multi-
tenancy in the container-based deployment of services. More
specifically, we first describe the used testbed, considering
a distributed containerized service, then how multi-tenancy
affects the processing performance of the selected service.

A. Testbed

The implemented testbed is shown in Figure 1, it consid-
ers a container orchestration provider implemented through
Kubernetes v.1.23.5. The provider is composed of 5 physical
machines, wherein 4 machines act as Kubernetes nodes for
deploying to-be-executed containers, and 1 machine acts as
Kubernetes master. The Kubernetes nodes execute the con-
tainers through Docker v.20.10.7. The provider’s physical
machines are equipped with an 8-core Intel i7 CPU, 16GB
of memory, interconnected through a gigabit network, running
on top of an Ubuntu v.20.04 OS.

To evaluate the multi-tenancy performance impact, we con-
sider a distributed containerized Big Data processing ser-
vice [19]. More specifically, we consider a client that executes
a containerized distributed Apache Spark job while being
subject to performance interference caused by other tenants
also running their own jobs (see Figure 1). In such a case,
a TeraSort Apache Spark job was evaluated as implemented
through the HiBench Suite [20]. The job randomly generates
a series of values and orders them accordingly.

The Apache Spark architecture is executed as a Kubernetes
Pod, composed of 4 Spark workers, each with 2 CPU cores and
1 Spark master. Each Kubernetes Pod (containerized Apache
Spark job) is executed while varying the number of concurrent
Pods (also running their own Apache Spark job). The multi-
tenancy impact on our testbed is created by the concurrent
execution of other Kubernetes Pods.

Fig. 2: Job processing time according to the number of concurrently deployed
jobs in a multi-tenancy setting.

B. How does multi-tenancy affect the processing performance
of containerized services?

Our evaluation aims to verify the job processing time while
varying the number of concurrent executed Kubernetes Pod.
More specifically, we vary the level of multi-tenancy interfer-
ence over our deployed containerized service and evaluate the
job processing time impact. Figure 2 shows the job processing
time according to the number of parallel jobs.

Recalling that, due to the testbed configuration and the
number of allocated CPU cores to each container, our hard-
ware should be able to run 4 parallel jobs without impact
on processing time, given the availability of HW resources.
However, it is possible to note that multi-tenancy has a
significant processing impact over the selected Apache Spark
jobs, even in a 3 parallel job setting. In such a case, the
job processing time increases by 175%. As a result, multi-
tenancy significantly degrades the processing performance of
containerized services.

The experiment showed that multi-tenancy significantly
affects the performance of containerized services. This is
because the container engine (Fig. 1, Docker), is not able to
fairly address the resource sharing between multiple tenants,
significantly degrading the processing performance even if
the service provider is not over-committing its hardware. The
processing performance of containerized services degrades in a
higher multi-tenancy setting. The service provider must detect
such processing degradation to take countermeasures, e.g.,
migrate a set of deployed containers to a different Kubernetes
node.

V. A RECURRENT NEURAL NETWORK MODEL FOR
PERFORMANCE DEGRADATION DETECTION DUE TO

MULTI-TENANCY

We present a detection model based on a recurrent neural
network (RNN) to address the challenge of performance degra-
dation due to multi-tenancy in containerized services. The
proposal considers a container orchestration environment (e.g.,
Kubernetes) that monitors the QoS of deployed containers.

The monitoring goal is the identification of performance
degradation due to multi-tenancy to ensure that SLAs are
appropriately met. The provider monitoring task must be
performed without having access to the isolated container user

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6356
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

Operating SystemOperating SystemContainer Deployment Node

Containerized
HW Usage

Container
Monitoring

Client Service

Container

Client Application

Container Engine

Orchestration Node

Container Master
Orchestration Master

Metric Collector

Degradation Detection

Feature
Vectors

Service Level
Monitoring

Container Level
Monitoring

RNN RNN

Fig. 3: The recurrent neural network model for detection of performance
degradation in multi-tenant containerized environments.

space. Thus, the client can ensure that the provider does not
have access to his data and running services. The provider
must monitor the container performance without having access
to the application data or the containerized OS usage metrics.
The provider monitors the performance of deployed containers
to identify performance degradation at both container and
service levels. In other words, performance degradation due
to multi-tenancy is identified for each deployed container and
client distributed service.

The proposed model is shown in Figure 3, and is im-
plemented through two main modules, namely Container
Monitor and Degradation Detection. The Container Monitor
is executed within each provider node used for the execution
of client container. The module is executed periodically and
collects the deployed container hardware usage metrics ac-
cording to each hardware resource managed by the container
engine, e.g., CPU, network, and disk.

Such an approach assumes that performance degradation
can be identified according to deviations between the container
hardware resources usage. For instance, a high CPU usage by
a container is typically followed or preceded by an increase in
network or disk usage. In contrast, in a performance degraded
scenario, a high CPU usage might not increase network or
disk usage, considering that the container will not be able
to produce processing results accordingly. The metrics are
collected at the node host level, thus, without accessing the
isolated container space.

The collected metrics are sent to the Degradation Detection
module, which goal is to detect container and service level
performance degradation. The module compounds two sets
of feature vectors according to the performance degradation
level that will be identified. The built feature vectors are
used as a representation of the current container orchestration
environment, thus, used by a RNN model for performance
degradation detection. The main insight of such an approach
is that performance degradation is identified based on a
time-series rationale, thus, taking into account the historical
behavior of deployed containers.

The following subsections further describe our proposal,
including the modules that implement it.

A. Container Monitor

The Container Monitor module goal is to periodically
collect a set of container-related hardware usage metrics for
further analysis. The module is executed within each provider
node used to host client containers. The module collects

hardware-related usage metrics for each container, e.g., CPU,
network, and disk. The main assumption of our proposed
model is that performance degradation can be identified ac-
cording to deviations in each container’s hardware resource
usage.

The operation of the Container Monitor module is shown
in Figure 3. The module is deployed at the provider nodes
and periodically collects hardware usage metrics from each
running container in a non-intrusive manner, thus, without
affecting the container isolation, the module requests the
container engine the container hardware usage in a given time
interval, e.g., every 5 second. The collection of hardware usage
metrics is performed within the host OS, as containers are
often managed as a traditional host OS process so the module
may monitor the container process metrics over time.

The collected set of hardware usage metrics is periodically
sent for the Degradation Module.

B. Degradation Detection

The service client must ensure that the service provider
does not have access to her data and running processes within
the containerized domain. Therefore, the service provider
monitoring task must be performed without violating the client
isolation while evaluating the data collected at the container
engine interface, which manages the container hardware ac-
cess.

Container performance degradation affects the container’s
QoS of the running client services. On the other hand, service
performance degradation may affect the QoS of the deployed
client service according to the processing performance of
the distributed client containers. Therefore, the Degradation
Detection module goal is to detect performance degradation
at both container and service levels.

The operation of the Degradation Detection module is
shown in Figure 3. The module receives as input the extracted
hardware usage metrics collected by the Container Monitor
module (see Section V-A). The collected metrics are used to
build two additional feature sets according to the performance
degradation level that will be identified, concerning container,
and service level, as follows:

• Container. Collected hardware usage metrics for each
container are used as input by a container-level RNN
model.

• Service. Collected hardware usage metrics for the set of
client deployed containers are fed to a service-level RNN
model.

Each used RNN model, including the container-level and
service-level, performs the classification task through a time-
series rationale. Our proposed scheme can identify perfor-
mance degradation by taking into account the historical be-
havior of the deployed service, thus, increasing the system
detection accuracy.

The proposed model can detect service performance degra-
dation due to multi-tenancy without violating the client con-
tainer isolation.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6357
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Features set extracted for each deployed container in a time interval
of 5 seconds.

HW Feature

CPU User cycles, System cycles, Period number, Throttled
Number, Throttled time

Memory
Resident Set Size, Cached, Mapped, Paged In,

Paged Out, Page Faults, Major Page Faults,
Active, Inactive, Active File, Inactive File, Unevictable

Disk Read, Write, Sync, Async, Discarded, Total

Network
UP bytes, DL bytes, UP pkts., DL pkts.,

Transmission errors, Frame errors, Discarded pkts.,
Compressed pkts., Transmission losses, Multicast frames

VI. EVALUATION

The evaluations aim at answering the following research
questions (RQ): (RQ1) How does our proposed model per-
form for detection of container-level performance degrada-
tion? (RQ2) Is our proposed model able to detect service
performance degradation? (RQ3) How does the hardware
overcommitment ratio affect the classification accuracy of our
proposed scheme?

The following subsections further describe our developed
model prototype and its evaluation.

A. Prototype

A proposal prototype was implemented and evaluated on
top of our previously described Kubernetes cluster (see Sec-
tion IV). The Container Monitor module is executed on top
of each deployed Kubernetes node.

The module collects 5 CPU, 12 memory, 6 disk, and 10
network metrics, compounding a total of 33 hardware usage
features for each deployed container, as shown in Table I.
The features are collected every 5 second interval through the
Linux cgroups (/proc).

The collected features are sent in real-time to the Degra-
dation Detection module through a web service call imple-
mented using SOAPpy API v.0.12.22. The built feature vectors
were classified using three widely used recurrent neural net-
work (RNN) architectures, namely Long-short Term Memory
(LSTM), Gated Recurrent Unit (GRU), and a simple Recurrent
Neural Network (RNN). The LSTM was implemented with
128 LSTM units, followed by a 2 unit dense layer. The GRU
was implemented with 128 GRU units, followed by batch
normalization and also a 2 unit dense layer. The RNN was
implemented with 128 simpleRNN units and a 2 unit dense
layer.

Each evaluated architecture was executed for 1, 000 epochs,
and its learning rate set empirically according to the resulting
loss, a momentum weight of 0.9, and using adam optimizer.
The architectures parameters were defined similarly to re-
lated works [21]. The architectures were implemented through
keras API v.2.4.0, and tensorflow API v.2.4.1.

The built dataset was split into train, test, and validation,
each respectively composed by 40%, 30%, and 30% of the
original dataset. The selected RNN models were evaluated
concerning their true-positive (TP) and true-negative (TN)

(a) Container-level (b) Job-level

Fig. 4: ROC curve of the proposed model for detecting HW overcommitment
in multi-tenant container orchestration environments.

TABLE II: Proposal accuracies for HW overcommitment detection consider-
ing scenarios with less than 1.0 of HW overcommitment level as normal (see
Figure 2).

Level RNN
Accuracies (%)
TeraSort Job
TP TN

Container
GRU 91.29 86.34

LSTM 91.37 86.34
RNN 91.86 83.85

Service
GRU 92.28 97.22

LSTM 92.77 100.00
RNN 93.11 97.22

rates while considering positive samples as hardware over-
commitment and normal samples as normal scenarios.

The testbed label, normal or HW overcommitment, was
established according to the hardware overcommitment level
(see Figure 2). In such a case, samples collected in a scenario
with less than 1.0 of hardware overcommitment were labeled
as normal. In contrast, those generated in a scenario with more
or equal 1.0 were labeled as HW overcommitment.

B. HW Overcommitment Detection

The first experiment aims at answering RQ1, and evaluates
the accuracy of the proposed model for the detection of
container-level HW overcommitment. Figure 4a shows the
receiver operating characteristic (ROC) curve for detecting
container-level performance degradation.

The proposed model provided up to 0.92, 0.92, and 0.95
AUC for detecting container-level performance degradation for
the LSTM, GRU, and RNN architectures, respectively. In the
best case, as shown in Table II, our proposed model can reach
91% of TP and 86% of TN. Therefore, our proposed scheme
can detect container-level HW overcommitment without re-
quiring access to the isolated container space.

The second experiment aims at answering RQ2, and eval-
uates the accuracy of our proposed scheme for the detection
of performance degradation at the service level. We build a
feature vector based on the concatenation of the feature sets
extracted from all deployed containers for each job.

Figure 4b shows the obtained AUC, while Table II shows the
classification accuracy of our proposed scheme for detecting
service-level HW overcommitment. Our model provided high

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6358
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

(a) Container-level (b) Job-level

Fig. 5: The model accuracy according to the level of HW overcommitment
in a multi-tenant container orchestration environment.

classification accuracies, with up to 0.97 of AUC, reaching a
TP rate of 93% and a TN rate of 97%. Our proposal can detect
service-level HW overcommitment in containerized services
without requiring access to the isolated container user space.

Finally, to answer RQ3, we further investigate how the HW
overcommitment level affects the classification accuracy of our
model. Figure 5 shows the F1-Score for the proposal in both
container-level and job-level HW overcommitment detection.
Our proposed model can provide even higher classification ac-
curacies when the HW overcommitment is low (≤ 1.0). This is
because the extracted feature values become unstable when the
HW overcommitment is high. Therefore, our proposed scheme
can increase its classification accuracies when operated in a
real-world environment, wherein the provider should provide
the expected SLA.

VII. CONCLUSION

Performance degradation due to multi-tenancy in container-
based deployment of services has been overlooked in the lit-
erature. This paper has shown that multi-tenancy significantly
affects the processing performance of distributed containerized
services. Notwithstanding, we have proposed and evaluated a
new model based on recurrent neural network for the detection
of HW overcommitment. Our proposed scheme can detect
container and service level performance degradation without
requiring access to the isolated container user space. In future
works, we plan to extend the proposed model to additional
containerized services and integrate our proposed scheme into
a container migration algorithm.

ACKNOWLEDGMENT

This work was partially sponsored by Brazilian National
Council for Scientific and Technological Development (CNPq)
grant nº 304990/2021-3.

REFERENCES

[1] E. Viegas, A. Santin, J. Bachtold, D. Segalin, M. Stihler, A. Marcon,
and C. Maziero, “Enhancing service maintainability by monitoring and
auditing SLA in cloud computing,” Cluster Computing, vol. 24, no. 3,
pp. 1659–1674, Nov. 2020.

[2] H. Nemati and M. R. Dagenais, “VM processes state detection by hyper-
visor tracing,” in 2018 Annual IEEE International Systems Conference
(SysCon). IEEE, Apr. 2018.

[3] F. Ramos, E. Viegas, A. Santin, P. Horchulhack, R. R. dos Santos, and
A. Espindola, “A machine learning model for detection of docker-based
APP overbooking on kubernetes,” in ICC 2021 - IEEE International
Conference on Communications. IEEE, Jun. 2021.

[4] V. Abreu, A. O. Santin, E. K. Viegas, and V. V. Cogo, “Identity and
access management for IoT in smart grid,” in Advanced Inf. Net. and
App. Springer International Publishing, 2020, pp. 1215–1226.

[5] B. B. Bulle, A. O. Santin, E. K. Viegas, and R. R. dos Santos, “A host-
based intrusion detection model based on OS diversity for SCADA,”
in IECON 2020 The 46th Annual Conference of the IEEE Industrial
Electronics Society. IEEE, Oct. 2020.

[6] N. Bashir, N. Deng, K. Rzadca, D. Irwin, S. Kodak, and R. Jnagal, “Take
it to the limit,” in Proceedings of the Sixteenth European Conference on
Computer Systems. ACM, Apr. 2021.

[7] Q. Ali, D. Dunn, R. Garg, X. Lu, T. Muirhead, R. Taheri,
and J. Zubb, “Performance of vsphere 6.7 scheduling options,”
VMWare Inc., White Paper, 04 2019. [Online]. Avail-
able: https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/techpaper/performance/scheduler-options-vsphere67u2-perf.pdf

[8] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “Vm place-
ment strategies for cloud scenarios,” in 2012 IEEE Fifth International
Conference on Cloud Computing. IEEE, 2012, pp. 852–859.

[9] E. Viegas, A. O. Santin, and V. A. Jr, “Machine learning intrusion
detection in big data era: A multi-objective approach for longer model
lifespans,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 1, pp. 366–376, Jan. 2021.

[10] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of
container-based technologies for the cloud,” Future Generation Com-
puter Systems, vol. 68, pp. 175–182, Mar. 2017.

[11] D. Reis, B. Piedade, F. F. Correia, J. P. Dias, and A. Aguiar, “Developing
docker and docker-compose specifications: A developers’ survey,” IEEE
Access, vol. 10, pp. 2318–2329, 2022.

[12] S. Sultan, I. Ahmad, and T. Dimitriou, “Container security: Issues,
challenges, and the road ahead,” IEEE Access, pp. 976–996, 2019.

[13] S. Tata, M. Mohamed, T. Sakairi, N. Mandagere, O. Anya, and H. Lud-
wig, “rsla: A service level agreement language for cloud services,” in
IEEE Int. Conf. on Cloud Computing (CLOUD), 2016, pp. 415–422.

[14] V. Podolskiy, M. Mayo, A. Koay, M. Gerndt, and P. Patros, “Maintaining
slos of cloud-native applications via self-adaptive resource sharing,” in
2019 IEEE 13th International Conference on Self-Adaptive and Self-
Organizing Systems (SASO), 2019, pp. 72–81.

[15] P. Ntambu and S. A. Adeshina, “Machine learning-based anomalies
detection in cloud virtual machine resource usage,” in 2021 1st Interna-
tional Conference on Multidisciplinary Engineering and Applied Science
(ICMEAS), 2021, pp. 1–6.

[16] C.-H. Huang, B.-H. Huang, and T.-Y. Wu, “Hardware resource relia-
bility analysis based on deep learning for virtual machine deployment
optimization,” in 2020 IEEE 9th Global Conference on Consumer
Electronics (GCCE), 2020, pp. 726–727.

[17] S. Wang, Y. Yao, Y. Xiao, and H. Chen, “Dynamic resource prediction
in cloud computing for complex system simulatiuon: A probabilistic
approach using stacking ensemble learning,” in 2020 International
Conference on Intelligent Computing and Human-Computer Interaction
(ICHCI), 2020, pp. 198–201.

[18] D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime interference-
aware predictive monitoring for modern multi-tenant systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
184–198, 2021.

[19] P. Horchulhack, E. K. Viegas, and A. O. Santin, “Toward feasible
machine learning model updates in network-based intrusion detection,”
Computer Networks, vol. 202, p. 108618, Jan. 2022.

[20] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
IEEE Int. Conf. on Data Eng. Workshops (ICDEW), 2010, pp. 41–51.

[21] E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “A reliable
semi-supervised intrusion detection model: One year of network traffic
anomalies,” in IEEE Int. Conf. on Comm. (ICC), 2020, pp. 1–6.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

6359
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:19:32 UTC from IEEE Xplore. Restrictions apply.

