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Abstract—Over the last years, the engine calibration task has
mostly been conducted based on the engineers’ knowledge. As
a result, considering the complexity of modern engines, finding
the most suitable configuration for each situation has become
an impractical and expensive task. Apart from causing engines
to be produced with inadequate calibration configuration, it can
also decrease the lifespan of their components, degrading their
efficiency. This paper proposes a machine learning-based digital
twin model for pressure prediction in a fuel injection system,
split into two steps. First, we extract statistical engine features
based on a predefined time window to represent the engine
behavior over time. Second, a digital twin implemented through
a machine learning model is used to predict pressure levels
in the fuel injection system. As a result, the predicted values
can be used to assist the engine common rail system module
in avoiding undesired engine states. Experiments performed on
a new dataset, built over a real diesel-based engine, consisting
of 208 features and over 1.3 million instances, have shown the
feasibility of our proposal. The proposed scheme can predict in
an advance time of 0.1 seconds the pressure levels for a fuel
injection system with only 0.057 RMSE. Moreover, it increases
its error rate by only 10.6% if a 0.5-second time advance is
required.

Index Terms—Digital Twin, Engine, Machine Learning

I. INTRODUCTION

Developing new vehicle engines, especially those based on
diesel fuel, is a challenging task that demands manufacturers to
meet government legislation while ensuring engine efficiency
[1]. To fulfill such a task, manufacturers must properly cali-
brate the fuel injection system, which is directly related to the
exhaust gas system, such as the Common Rail System (CRS).
In general terms, the common rail system calibration is based
on a proportional–integral–derivative (PID) controller embed-
ded in the Electronic Control Unit (ECU). The controller’s
goal is to fine-tune the injection system’s real pressure based
on the ECU’s required pressure signal. Engine manufacturers
have been performing the calibration task based solely on
engineers’ expertise following a previously settled guideline
[2]. Therefore, the calibration is only mutable during the
development phase, and several quality levels must be met
before the engine production can start.

As each system calibration comes out uniquely, finding
possible failures and their root causes has become increasingly

challenging considering the rising number of projects and their
complexity [3]. As an example of failure, a not adequately
tuned controller may generate overshoots and undershoots that
the CRS might face during its usage. Overshoots occur when
the real pressure of the system exceeds the required pressure
limits, reaching higher than desired levels. Undershoots lowers
the system pressure beyond its intended operation level. Such
situations may significantly decrease the engine lifespan while
degrading its efficiency. In such a context, over the last years,
several works have been proposed to improve the industry
engine development process, wherein approaches based on
digital twin (DT) have yielded promising results [4].

A DT aims to accurately reflect the physical object prop-
erties (e.g., engine), as represented by their sensors’ values.
The values depict a series of the physical object conditions,
which are then used to create the DT. The DT can then
be used to run simulations, investigate performance issues,
and generate possible improvements and insights within the
digital domain, which can then be applied back to the original
physical object [5]. Several approaches have been proposed to
create DT, wherein authors typically resort to machine learning
(ML) techniques [6].

A behavioral model can be built by evaluating a training
dataset composed of vast amounts of the physical object
collected sensor values. As a result, the built model, acting
as the DT, will be able to portray the data used during the
training phase. Unfortunately, the building of a realistic DT
training dataset is a challenging task. A realistic DT must
collect training data under a variety of conditions. This should
include faulty and normal events often not easily achieved
during the engine development. The DT can often only portray
the relationship between the collected sensor values even if
a realistic training dataset is available. Therefore, the way
they can be used for improvement purposes is neglected, for
example, to improve system calibration in an engine fuel
injection.

This paper proposes a DT model based on ML techniques
to assist the engine calibration task, implemented through
two strategies. First, we extract statistical features based on a
predefined time window of the collected engine sensor values.
The insight of such an approach is that historical statistical
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features can be used to represent the engine behavior in
detecting future engine failures. Second, the extracted feature
values are used as input by an ML model, which acts as the
engine DT. The model is used to predict pressure levels in the
fuel injection system. The main insight of such an approach
is to use a DT to assist the engine calibration reliability while
also predicting the system behavior and engine failures so that
counteractions can be performed accordingly.

The main paper contributions are as follows:
• A new DT dataset built through the collection of 208

sensor values from real diesel-based engines. It is com-
posed by over 1.3 million of samples, including 57 and 52
thousand undershoot and overshoot failures respectively.

• A new DT model based on ML techniques for the
prediction of pressure levels in the fuel injection system.
The proposed scheme can predict in advance of 0.1
seconds the pressure levels of the fuel injection system
with only 0.057 of RMSE.

II. PRELIMINARIES

A. Common Rail Injection System Layout

Our work consider a common rail injection system (CRS)
layout, as shown in Figure 1, which is commonly used by
traditional diesel-based engines, such as the one used by a
commercial vehicle with a 2.0 liters diesel engine 4×4 model.
In the CRS, the pressure generation and the fuel injection
are independent. The pressurization of the fuel takes place
in the Common Rail, as the high-pressure pump supplies a
continuous flow of diesel to it, ensuring the fuel is under the
ideal pressure and ready to be injected.

To enable its proper operation, it is a must that the manufac-
turer ensures the appropriate calibration of the CRS, which is
typically achieved by a proportional–integral–derivative (PID)
controller embedded in the Electronic Control Unit (ECU).
The main calibration goal is to ensure that the pressure of
the injection system reflects the required pressure signal from
the ECU. Therefore, CRS operation can be typically described
according to three main situations:

• Normal. Expected CRS injection system state wherein
the system injects the expected fuel amount as computed
by the PID controller. The CRS operates at the proper
pressure, resulting in no waste of fuel and no degradation
of the system components’ lifespan.

• Overshoot. Failure state wherein the CRS injection sys-
tem over-injects fuel. Fuel injection system pressure in-
creases, causing fuel waste and degradation of the engine
components’ lifespan.

• Undershoot. Failure state wherein the CRS injection
system under-injects fuel. Fuel injection system pressure
decreases beyond expected, affecting the engine reliabil-
ity and driving comfort.

B. Digital Twin

A digital twin (DT) aims to reproduce the behavior of a
complex physical product using a probabilistic function, which

Fig. 1: Common rail injection system (CRS) layout is consid-
ered in our work. The layout depicts a CRS in a real vehicle
as used in a commercial vehicle with a 2.0 liters diesel engine.

is used to mirror the behavior of its corresponding twin [7].
Its main goal is to act as a digital copy of a physical asset.
As a result, a DT can give assessments of how a system will
perform under production. Thus, it can be used to identify
and easily pave the way to efficiency improvements. A DT
is typically utilized at the initial phases of development and
design. It enables the precise reproduction of how specific
systems and subsystems will perform in a set of predefined
circumstances.

Several approaches have been proposed for the creation of
a DT in a variety of fields, including industry, medical, and
even for monitoring purposes [8], [9]. Authors generally resort
to machine learning (ML) techniques, yielding promising
reported results [10]. In such a case, an ML model is built
through a computationally expensive model training process,
which evaluates the data available in a training dataset. The
dataset must be composed of huge amounts of samples from
the environment, given that the ML model will be built
accordingly. As a result, the building of a realistic DT through
ML means becomes a challenging task. This is because the
data collected from the physical object sensors often cannot
correctly depict the behavior of the to-be-digitalized object
given that it must be monitored for a long time under a variety
of environmental conditions. In such a case, the built ML
model, acting as the DT, may present high accuracy in physical
object representations. However, at the same time, it does not
provide the expected level of realism to be used as a DT, e.g.,
to evaluate the physical object behavior under production or
even pave the way to efficiency improvements.

III. RELATED WORKS

Many researchers have proposed different approaches for
studying and implementing the digital twin concept. Ghan-
ishtha B. et al. [4] proposed the main three stages of DT
development in vehicle as archetype modeling, virtual sensors
modeling and parameter update. Focusing specifically on the
first stage, which contemplates the activities of standalone
model, many researches can be found in the literature on
applying artificial intelligence concepts to engine calibration
and fault detection [11]. For instance, Airamadan A. et al. [12]
showcased the strength of machine learning models in imitat-

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:17:04 UTC from IEEE Xplore.  Restrictions apply. 



(a) Fuel injection quantity vs. Pset (b) Undershoot and Overshoot failures (c) DTDED states in percentage

Fig. 2: Data distribution of the Digital-Twin Diesel Engine Dataset (DTDED).

ing the operation of an advanced engine concept - the gasoline
compression ignition at low loads.

Similarly, M. Hinrichs [13] used a traditional model-based
approach to detect faults of a heavy-duty diesel engine based
on the injected fuel. The author presented that despite achiev-
ing satisfactory results, there are limitations in such traditional
models. For example, the results can be biased considering
the difficulty of applying the model in different scenarios of
engine functionality. A. di Gaeta et al. [14] proposed a model-
based gain scheduling approach for controlling the common-
rail system for gasoline direct injection engines, aiming for
best performance concerning emissions, fuel economy, drive-
ability, and diagnostics. J. Zheng et al. [15] studied the
possibility of using a classification algorithm to diagnose faults
of the injector used in a diesel engine CRS, with promising
results but not focusing on the calibration process itself. W.
Chatlatanagulchai et al. [16] proposed a quantitative-feedback
theory controller designed and applied to a CRS of a diesel-
dual-fuel engine. The resulting controller is robust to model
uncertainties and external disturbances. A quantitative measure
of the achieved robustness is also provided and confirmed
in simulation via experiments but without considering the
effects of cylinder interactions. As a result, the possibilities
of applying machine learning and digital twin concepts into
engine development stages are evidenced. Yet, despite the
promising prediction capabilities of the presented works, these
models do not support the calibration process and do not
anticipate possible faults.

IV. PROBLEM STATEMENT

This section further investigates the calibration challenges
of a CRS from a real diesel engine (see Section II-A). More
specifically, we first introduce the dataset built on our work,
and then the failures evidenced due to a miss-calibration on
the CRS.

A. Dataset

Current DT datasets used in the literature often do not depict
the complexities of the DT domain. This is because as a DT
aim at building a digitalized copy of a physical object, the
representation of a realistic behavior of the to-be-digitalized

object requires the data collection to be made for a significant
time, ensuring that even failures can be adequately collected.
In contrast, in general, current datasets in the literature either
generate the data in a simulated environment or monitor the
to-be-digitalized object in unrealistic settings, thus, without
data related to failure states.

This paper presents a new DT dataset namely Digital-
Twin Diesel Engine Dataset (DTDED). One of the first of its
kind, the dataset depicts the data collected from a real diesel-
based engine. More specifically, DTDED was built through the
data collected in a real commercial vehicle with a 2.0 liters
diesel engine 4×4 model, still in the validation phase. The
data collection took place from the CAN network (controller
area network) responsible for managing all the information
transmitted in the vehicle, from commands sent from the ECU,
to the reading of data from sensors spread across the other
vehicle systems.

Data collected in the automotive context follows the Associ-
ation for the Standardization of Automation and Measurement
Systems (ASAM) definitions. Therefore, the data is made
available in the Measurement Data Format version 4 (MF4)
format, capable of supporting the recording of a high volume
of attributes with a high acquisition rate. The data consists of
1, 347, 340 instances with 208 attributes each. Sample rates
range from 1 second, 100 milliseconds, and 10 milliseconds.
The collection of DTDED took place in a total period of 10
minutes of vehicle operation.

In practice, DTDED showcases a miscalibration in a diesel-
based engine. The miscalibration occurs due to bad operation
by the Common Rail System (CRS), which can result in
a Normal, or Overshoot/Undershoot failure situation (see
Section II-A). Undershoot situations are characterized when
the fuel injection system’s real pressure (Preal) is at least 5%
less than the fuel injection system’s desired pressure Pset.
Overshoot situations are characterized when the Preal is at
least 5% higher than the engine Pset. The fuel injection system
Pset is computed according to Equation 4.

Kp = a ∗Kpcrit (1)

Ki = b ∗Kp ∗ 2π ∗ fcrit (2)
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Kd = Kpcrit ∗ (c− a) (3)

Preal = Pset + (Kp +Ki +Kd) (4)

Where:

Kp = proportional gain
a = factor in avoiding Kpcritical
Kpcrit = proportional gain value that excites the system

at a resonant frequency
Ki = integral gain
b = factor in maintaining correlation-ship between

gains
fcrit = frequency equal or close to natural frequency
Kd = derivative gain
c = factor in maintaining correlation-ship between

gains
Preal = real fuel injection system pressure
Pset = desired fuel injection system pressure

B. How frequent are failures observed in DTDED dataset?

In this section, we investigate the data distribution of
DTDED dataset. More specifically, we first evaluate how
the amount of fuel injection from the engine relates to the
pressure of the fuel injection system (Pset, Eq. 4), as shown
in Figure 2a. In practice, the engine fuel injection amount
is highly correlated with the fuel injection system pressure,
reaching a correlation value of 0.94. However, it is possible
to note a significant dispersion in the collected values caused
by the collection of real values from a real diesel-based engine.

We further investigate how the failures in DTDED dataset
occur. Figure 2b shows a data fraction sample collected
from our dataset, showing the occurrence of Undershoot and
Overshoot failures as time passes. It is possible to note that
such a failure continues to occur for a period in time, given
the time needed for the Preal to reach the Pset. Figure 2c
shows the data distribution of our DTDED dataset according
to the considered failure states (see Section II-A). Considering
both Overshoot and Undershoot, failure states account for only
8.14% of the total number of samples.

Such data distribution disparity is expected from real diesel
engines, since failures must occur rarely to ensure proper
engine operation. Unfortunately, the rarity of failures affects
the construction of realistic DTs, since, in general, prior
works relies on collecting data over a small time window, or
even making use of simulated environments. As a result, the
DTDED dataset allows operators to construct realistic DTs,
given that the engine faults are properly represented in the
original dataset.

V. A MACHINE LEARNING BASED DIGITAL TWIN MODEL
FOR ENGINE CALIBRATION

This paper proposes a new machine learning-based digital
twin model to assist operators with engine calibration and
predicting the pressure in the fuel injection system to help the
common rail injection system (CRS). The overall proposal is
shown in Figure 3.

Fig. 3: A digital twin model based on machine learning to
predict the pressure in the fuel injection system, helping in
the common rail injection system (CRS).

The proposal considers a diesel engine with a CRS module
that manages the fuel injection system pressure. The CRS
module uses a digital engine twin that continuously evaluates
the engine sensors’ data to predict pressure level in the fuel
injection system. The main insight of such an approach is
that our proposal, based on a digital twin implementation,
can predict pressure failure states in the fuel injection system
(Overshoot and Undershoot) to assist the CRS module in
proactively taking countermeasures. As a result, based on the
digital engine twin, the proposal enables the CRS module to
avoid situations wherein the fuel injection system pressure may
affect the engine’s reliability.

A. Engine Digital Twin

The proposal assumes that a diesel engine should not exceed
or fall below a preset pressure in the fuel injection system. The
engine manufacturer defines the pressure set-point to ensure
the reliability of the engine over time. The CRS module must
be calibrated to meet the manufacturer’s standards, ensuring
that the intended pressure levels in the fuel injection system are
met. However, the calibration task requires a lot of engineers’
time to achieve such a goal. As a result, CRS modules often go
to the production line without proper calibration, generating
under- and over-pressures in the fuel injection system over
time (see Section IV).

Our proposal aims to integrate a digital twin model to
forecast undesired pressure levels in the fuel injection system.
The digital twin aims to replicate the diesel engine behavior
as time passes, providing the CRS module with an indicator
of undesired pressure levels. The operation of our proposed
scheme starts with the data collection by a Data Acquisition
module (Figure 3). The module continuously collects engine
sensor data through a CAN (Controller Area Network) bus.
The collected sensors data values are used as a representation
of the diesel engine’s current state. The data is used as input
by a Time-series Feature Extraction module, which aims to
compound a feature vector that depicts the historical behavior
of the diesel engine. The module builds a feature vector
through a sliding window of events rationale (further described
in Section VI). As a result, the built feature vector depicts the
diesel engine state in a given time window, thus, representing
the engine behavior as time passes. The built time-series sensor
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TABLE I: Features values for the diesel engine used by our digital twin, after applying the feature selection technique.

Feature Groups Description Number of features
Sensors and actuators
of high pressure pump

Data collected from sensor and signals
sent from ECU to control the high pressure pump 28

Sensors and actuators
of CRS

Data collected from sensor and signals
sent from ECU to control the Common Rail System 22

Vehicle
drivability

Data collected from sensors regarding
driving behavior of the running vehicle 9

Environmental
conditions

Data from external sensors in the vehicle.
(e.g. external temperature, altitude, etc) 4

Injection strategy Data collected from sensor and signals sent from ECU to control
injectors and their strategy. (e.g. moment and duration of fuel injection) 7

values are used as input by a Time-series Pressure Prediction
module. The module, in turn, acts as the digital engine twin
to forecast pressure levels in the fuel injection system. To
achieve such a goal, it applies a machine learning model,
which predicts, within milliseconds in advance, the pressure
levels in the fuel injection system. Finally, the CRS module can
use the prediction outcome to take counteractions before the
pressure level in the fuel injection system reaches undesired
states.

Consequently, the proposed machine learning model for
building a diesel engine digital twin enables operators to
improve the operation of CRS modules. Nevertheless, CRS
calibration can be facilitated during the engine development
process since calibration inadequacy can be identified and
fixed during CRS operations

VI. PROTOTYPE

A proposal prototype was implemented considering the
previously described DTDED dataset (see Section IV). A
traditional machine learning process is considered for building
our proposed digital twin (Figure 3). The DTDED dataset
was split into training, validation, and testing datasets, each
composed of 40%, 30%, and 30%, respectively, of the original
dataset. Each dataset depicts the diesel engine operation in a
given time window. The dataset sensor values were normalized
through a min-max normalization procedure.

Before building our DT model, a linear interpolation pro-
cedure was used, given that the dataset was made of 208
feature values collected from a variety of sensors. Each with
a sample rate ranging from 1 second (e.g., fuel temperature),
to 10 milliseconds (e.g., current amount of injected fuel). The
resulted dataset depicts the engine values in a 10 millisecond
interval.

We perform feature selection based on information gain on
the collected sensor values. Thus, we select the features with a
strong correlation to the current fuel injection system pressure
for the building of our DT (information gain ≥ 0.8), resulting
in 70 selected features, as shown in Table I. The DT Time-
series Pressure Prediction module was implemented through a
linear regression model. The model receives as input a feature
vector built by the Time-series Feature Extraction module
(see Figure 3). The feature vector was built by concatenating
the previously selected 70 features considering a 3 sample
window.

TABLE II: Regression performance for predicting Preal.

Prediction
Time (s) RMSE R2 MAE

0.1 0.057 0.949 0.037
0.2 0.058 0.948 0.038
0.3 0.059 0.947 0.039
0.4 0.062 0.941 0.040
0.5 0.063 0.940 0.041

The model and the previously described data preprocess-
ing were implemented through scikit-learn API v.1.1.1, and
pandas API 1.4.2. The model was evaluated through the
Root Mean Square Error (RMSE), Adjusted R Square (R2),
and Mean Absolute Error (MAE), as usually made in related
works.

VII. EVALUATION

The evaluation aims at answering the following research
questions (RQ): (RQ1) How does our proposed DT model
work for predicting pressure levels in the fuel injection system?
(RQ2) What is the prediction performance of our model for
a longer prediction time for the pressure levels?

A. A Digital Twin Model

The first experiment aims at answering RQ1 and evaluates
the prediction performance of our proposed DT model for
pressure levels in the fuel injection system. We consider a DT
model that aims to predict the pressure level in the fuel injec-
tion system for the engine CRS 0.1 seconds before it occurs.
This prediction time was defined based on calibration expert
experience. Other prediction times will also be evaluated (see
Section VII-B).

Table II shows the proposal error rates for predicting pres-
sure level 0.1 seconds ahead. In such a case, our proposal
reached an RMSE of only 0.057, thus, enabling the application
of the proposed DT model to assist the CRS module. Figure 4
shows the performance of our proposal in a variety of DTDED
dataset settings.

Our proposed scheme was able to provide similar prediction
performance when utilized under Overshoot and above Under-
shoot to the Normal situation. For instance, in an Overshoot
setting, our proposed scheme was able to properly detect the
future undesired pressure level in the fuel injection system,
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Fig. 4: Proposal performance under different Digital-Twin Diesel Engine Dataset (DTDED) settings. The goal is to detect
ahead (0.1 seconds) the pressure levels in the fuel injection system (Preal).

with a normalized pressure error of only 0.005 (Figure 4c, at
≈ 50 seconds). Similarly, our scheme can detect an Under-
shoot setting with a pressure error of only 0.005 (Figure 4b,
at ≈ 60 seconds).

B. Prediction of Pressure Levels in the Fuel Injection System

To answer RQ2, we further investigate how the fuel injec-
tion system pressure’s prediction time impacts our proposed
scheme’s prediction performance. Specifically, we vary our
model’s pressure level prediction time from 0.1 to 0.5 seconds
for the fuel injection system. This is because the prediction
time for pressure, in the fuel injection system, must be defined
according to the expert’s needs and may vary according to
the used engine configuration. Table II shows the prediction
performance of our model according to the future prediction
time. It is possible to note that the prediction time directly
relates to our proposal measured error rates. For instance,
the RMSE is increased by 0.006 (+10.6%) when the future
prediction time increases from 0.1 to a 0.5 second setting. As
a result, the proposed scheme can be by the CRS module to
assist in the pressure management for the fuel injection system
even if a higher future pressure time is needed.

VIII. CONCLUSION AND FUTURE WORK

Digital twin is the critical technology to fully fusion phys-
ical and virtual models. This paper has proposed a digital
twin model based on machine learning techniques to assist
the vehicle engine development task. The proposed scheme
predicts pressure levels in the fuel injection system of a real
diesel-based vehicle engine. As a result, it can be used to
assist the Common Rail System (CRS) module in preventing
unwanted pressure levels in the fuel injection system, avoiding
the engine from premature wear. As future works, we plan to
extend the proposed dataset to include additional vehicles and
incorporate the proposal in an actual engine.
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