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Abstract—Over the last years, several machine learning tech-
niques have been proposed for the condition monitoring of
physical assets based on audio. As a result, adversaries have been
trying to circumvent the reliability of deployed systems, typically
through the generation of maliciously altered audio samples that
are subsequently introduced as input by the model. However,
altering the input in production settings is not always feasible, on
the contrary, samples are often collected through a microphone,
significantly increasing the attack execution effort. In this paper,
we propose a realistic generative adversarial network attack for
an audio-based condition monitoring system. We first train a
generator and a discriminator with a joint objective of generating
audio samples corresponding to the difference between the two
classes, e.g., normal and faulty. Additionally, we test our approach
by overlapping our generated audio on the samples collected
by the microphone. Our main goal is the proposal of a GAN-
based attack capable of generating audio samples that when
overlaid with the original microphone-captured audio may induce
misclassification given a target class. Experiments performed
through our captured audio dataset from normal and broken
unmanned aerial vehicle propellers show that the proposed attack
achieved a mean success rate of 40%, decreasing the F-measure
concerning random noise by 13.3%, 20%, and 37.8% for ResNet-
18, AlexNet, and DenseNet-169 models, respectively.

Index Terms—Generative Adversarial Networks; Adversarial
Example; Audio Generation.

I. INTRODUCTION

Condition Monitoring Systems (CMSs), aligned with cyber-
physical systems, play an essential role in monitoring and
diagnosing various physical assets such as motors, pumps, and
fans. In recent years, several techniques have been proposed
for condition monitoring. Machine learning (ML) techniques
play a critical role in performing intelligent diagnostics from
data collected from various sensors such as cameras, ac-
celerometers, gyros, and microphones [1], e.g., microphones
can be used for fault detection of motors, engines, and
even propellers [2]. Due to the high criticality and financial
costs of monitored assets, adversaries are highly motivated to
circumvent the reliability of ML-based CMSs.

Proposed attack schemes on CMSs typically rely on genera-
tive adversarial networks (GAN) [3]. The GAN [4] framework
establishes a min-max adversarial game between a generative
model G and a discriminative model D. The discriminator
D(x) computes the probability that a point x in data space is a
sample from the data distribution rather than a sample from the
generative model. The generator G(z) maps samples z from

the prior p(z) to the data space. G(z) is trained to maximally
confuse the discriminator into believing that the samples it
generates come from the data distribution. The process is
iterated, leading to the famous minimax game between G and
D [4]. Therefore, given the data used to train an ML-based
CMS (or even the model itself), one may easily employ a
GAN-based attack strategy to generate samples that can induce
misclassification on the CMS. However, the attacker cannot
easily manipulate the sensor signal. For instance, to evade an
audio-based CMS, the attacker must be able to introduce tai-
lored audio artifacts that, when overlaid with the original audio
from the monitored asset and captured by the microphone,
affect the CMS’ performance, thus, significantly increasing the
attack execution efforts [5]. Surprisingly, the vast majority of
GAN-based techniques assume that the CMS’s input signal
can be manipulated as needed, despite the challenges related
to the execution of such attacks in real-world settings.

In this paper, we propose a more realistic GAN-based attack
for audio-based CMSs where the attacker aims to fool the
CMS into misclassifying collected audio samples. The attack
is based on the generated audio samples that, when overlapped
with the original audio produced by the monitored physical
asset, will result in poisoned audio that will be classified as a
given target class, e.g., a normal audio sample being classified
as faulty. In summary, the main contributions of this paper are
as follows:

• A GAN-based attack for audio-based CMSs that gener-
ates audio samples that, when overlaid with the original
microphone-captured audio, may induce misclassification
with a mean success rate of 40%.

• An extensive evaluation of audio-based CMSs for fault
detection in an unmanned aerial vehicle (UAV), more
specifically, UAV broken propeller detection. Experi-
ments have shown that current approaches are reliable to
external noises that may be captured by the system mi-
crophone. Regardless, with an SNR of 10, our proposed
attack decreased F-measure concerning the random noise
by 13.3%, 20%, and 37.8% for ResNet-18, AlexNet, and
DenseNet-169, respectively.

The remainder of the paper is organized as follows. Section II
provides the necessary background concerning audio-based
CMSs and adversarial machine learning. Section III reviews
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and discusses previous relevant works on GAN-based attack
schemes. Section IV describes our proposed attack scheme,
model architecture, loss functions, and adversarial training
strategy. Section V presents the experimental analysis. Finally,
Section VI concludes this paper.

II. PRELIMINARIES

This section further describes the application of audio-based
techniques for condition monitoring tasks and how adversaries
can explore such properties to circumvent the reliability of
developed approaches.

A. Audio-based Condition Monitoring

Audio-based techniques for condition monitoring of phys-
ical assets are typically implemented through four sequen-
tial modules [6], namely data acquisition, pre-processing,
classification, and alert. First, the data acquisition module
continuously collects audio samples, often divided into a
predefined time window. The built audio samples are then used
as input to a pre-processing module. The goal is to extract a
representation that can be used for classification tasks, such as
spectrograms considering an audio-base CMS case. The pre-
processed samples are then used as input by a classification
module, typically composed of a DL model, which performs
feature extraction, and finally classifies it as either normal or
abnormal.

B. Adversarial Machine Learning

In recent years, several works have been proposed to
circumvent the reliability of ML systems, wherein proposed
schemes are implemented following two main strategies [7]:
(i) causative, and (ii) exploratory. Causative attacks poison
the training data to introduce patterns that may induce the
built model to incorrectly classify the attacker desired events.
As a result, it assumes that the attacker has access to the
training dataset, significantly increasing the attack execution
efforts. Exploratory attacks perturb the system input to evade
the deployed ML model. Consequently, the attacker only needs
to be able to affect the ML model input, significantly easing
the attack execution efforts.

In light of this, several approaches have been proposed for
exploratory attacks in ML systems, wherein authors typically
rely on GAN techniques [3]. To achieve such a goal, the
trained model generates “adversarial examples” that can be
used to evade ML-based systems. Despite promising results,
most proposed schemes assume that attackers can change the
CMS’ input as needed. In contrast, in production settings,
the system input is strongly bound to the used sensor (e.g.,
microphone); thus, the attacker must be able to first introduce
the needed artifacts to the sensor collected values to adequately
produce the ML desired input. Surprisingly, only recently
related works have considered such a challenge, such as
proposing printing physical patches to evade a camera-based
ML system [5].

III. RELATED WORK

Exploratory adversarial attacks on ML systems have been
a widely explored topic over the last few years. For instance,
Liu et al. [8] proposed a GAN-based technique to attack data-
driven strategies with a success of 70%. The authors assume
structured data and knowledge of the input shape. The attack is
not on the sensor level, and the adversarial strategy implements
multiple generators for each class. Bai et al. [9] proposed
a GAN approach that generates more training samples to
enhance the performance of membership inference attacks.
The model increases efficiency by 23% by generating samples
that are used to train an attacking model while not generating
additive injections. Jia et al. [10] proposed a GAN-based
strategy that successfully generates new video streams to fool
gait recognition systems. While this is an excellent example
of the application of GANs as an attacking tool, this method
requires access to the data pipeline and swapping the original
input video stream for the generated video.

Usama et al. [11] proposed a GAN-based attack strategy to
alter network traffic data. The generated data only modifies the
non-functional contents of the network traffic. Their proposed
attack succeeds in lowering the accuracy of a black box
intrusion detection system. While they assume a black box
model, their approach completely swaps the generated content
for the original content. Abdullah et al. [12] proposed a
perturbation engine to fool voice processing systems (VPSs).
They managed to generate samples that get accepted and
transcribed incorrectly by 7 VPSs. In some situations, samples
were rejected for being distorted beyond recognition. In the
context of speech-to-text transcription, Carlini and Wagner
[13] proposed a method for generating small perturbations to
the original audio to cause misclassification. They successfully
performed an attack on DeepSpeech in multiple scenarios.
Their work assumes white-box settings.

Alzantot et al. [14] explored gradient-free approaches for
generating adversarial examples. The proposed method suc-
ceeds in generating samples successfully to fool the target
model. While their approach assumes a black box setting, it
requires access to the outputs of the specific model they are
trying to attack. Also, this work does not overlap noise on
top of the original samples but instead generates a new audio
sample. Our considered pipeline is practical since we do not
have to tamper with the collected samples but rather perform
the attack on the sensor level before data acquisition. Several
works have tried to exploit ML capabilities in generating their
adversarial examples. Most of the works were directed toward
the field of computer vision [15], while most audio-based
attacks assumed either white-box settings or access to the
model’s outputs/predictions. Our work generates realistic noise
that can be overlapped physically with actual audio samples
with no knowledge of the underlying model performing the
classification task.

IV. METHODOLOGY

The proposed model considers an adversary whose goal is
to circumvent the reliability of an ML-based CMS used to
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monitor a given target physical asset, e.g., the detection of
broken UAV propellers. The CMS analyzes the audio samples
from the physical asset through a DL model, which signals
undesired asset conditions accordingly. In this context, the
attacker aims to make the deployed DL model misclassify the
collected audio sample. The attacker must be able to generate
audio samples that, when overlaid with the original audio,
will result in poisoned audio that will be classified according
to the attacker’s desired class, e.g., the normal audio sample
being classified as faulty. Our proposed scheme extends Fre-
GAN [16], a GAN originally designed to reconstruct audio
samples from their perspective spectrogram.

Our proposed model considers a realistic attack scenario
for audio-based CMSs. More specifically, we consider an
attacker with the following capabilities: (1) the CMS inter-
nals is not known to the attacker (black-box), including the
used feature extraction algorithm and the ML model weights;
(2) the attacker can continuously collect the audio sounds
emitted from the monitored physical asset; (3) the attacker
can generate audio sounds through an audio reproduction
device, e.g., stereo-speaker; (4) the audio sounds emitted by
the attacker audio reproduction device will be captured by the
CMS microphone and overlaid to the audio sounds emitted
by the monitored physical asset; (5) the attacker has audio
samples corresponding to both states of the targeted system.

A. Audio Pre-processing

We consider a CMS with binary DL classifiers or anomaly-
based approaches [17] that categorizes audio from UAV
propellers as either normal or broken/faulty. Based on the
assumptions above, we can access the drone’s audio samples
corresponding to both classes. Therefore, we consider audio
samples recorded with a sampling rate of 16kHz, where
each audio sample is a second long. The mel-spectrogram is
produced with a window size of 1024, a hop size of 256,
1024 fast Fourier transforms, and a total of 80 mel-banks. We
pad some zeros to the end of the audio segment to ensure no
sample loss in the conversion back and forth.

B. Model Architecture

In our proposal, the generator and discriminators are trained
on a min-max adversarial game. The discriminator computes
the probability of a point in the data space (the difference
between normal and faulty) rather than the samples produced
by the generative model. The generator maps a normal audio
sample into the data space. It is iteratively trained to maximally
confuse the discriminator into believing that the samples it
generates come from the data distribution. Our proposed model
extends Fre-GAN [16]. Figure 1 shows an overview of the
proposed approach. In our approach, a forward pass uses three
inputs—the waveform, the mel-spectrogram of a base class,
and a waveform of a target class. The base class can be
either of the two classes, while the target class will always be
the opposite of the base class. Our proposed approach aims
to generate noise samples that best represent the difference
between the target and base class’s audio.

Data Acquisition
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Audio Sample
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Audio Sample

Generator Noise
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Fig. 1: Proposed realistic generative adversarial network attack
for audio-based CMSs.

We implement two families of discriminators: (i) multi-
period discriminator (MPD) and multi-scale discriminator
(MSD). The goal of the discriminators is to maximize the
distance measured between the generated audio and the ground
truth. The two discriminators aim to learn periodic and se-
quential features in the passed audio samples. For the MPD,
the audio samples are reshaped into a 2D representation.
It constitutes five periodic discriminators with periods of
[2, 3, 5, 7, 11]. On the other hand, the RSD contains three scale
discriminators that process the whole audio at its original
sampling rate, a 2x downsampled audio, and finally, 4x down-
sampled audio, respectively. Both discriminators use discrete
wavelet transforms (DWT) to account for higher and lower
frequencies and implement residual connections. Note that our
architecture follow very closely those introduced by Kim et al.
[16], see (Kim et al. [16], §2) for more details.

C. Advesarial Training

Given the target audio sample xT and the base class audio
xB, our proposed training objective for the discriminator and
generator are respectively given by

LD =

4∑
n=0

E
[
∥DP

n (x
T − xB)− 1∥2] + ∥DP

n (x̂)∥2
]

+

2∑
m=0

E
[
∥DS

m(ϕm(xT − xB)− 1)∥2

+ ∥DS
m(ϕm(x̂))∥2

]
,

(1)

and

LG =

4∑
n=0

E
[
∥DP

n (x̂)− 1∥2 + λfmLfm(G;D
P
n )

]
+

2∑
m=0

E
[
∥DS

m(x̂)− 1∥2 + λfmLfm(G;D
P
n )

]
+ λmelLmel(G),

(2)
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where x̂ denotes the generated audio, DP and DS denotes the
RPD and RSD discriminators, and ϕm represent the m-level
discrete wavelet transform. The hyper-parameters λfm and λmel
(fixed to λfm = 2 and λmel = 45 as suggested in [16]) controls
the balance between the feature matching loss Lfm and the
mel-spectrogram loss Lmel, given by

Lfm(G;Dk) = E
[Q−1∑

i=0

1

Ni
∥D(i)

k (xT−xB)−D(i)
k (x̂)∥1

]
, (3)

where Q denotes the number of layers in the discriminator.
D

(i)
k refers to the ith layer feature map of the kth sub-

discriminator, Ni is the number of units in each layer, and

Lmel(G) = E
[
∥ψ(i)

k (xT − xB)− ψ
(i)
k (x̂)∥1

]
. (4)

where ψ is the STFT function to convert raw audio to the
corresponding mel-spectogram.

The generator’s loss is composed of three main elements:
(i) first takes the discriminator’s feedback score into account
(ii) the second takes into consideration discrepancies in feature
maps; (note that the discriminators generate 12 feature maps
in total, and that ensures that the same low and high-level
audio features are present in the generated sample) (iii) the
last element considers differences in the spectrograms of
the generated samples and that of their ground truths. By
minimizing those three elements, the generator’s sample will
be as close to the ground truth’s nature as possible. On the
other hand, The discriminators will produce a real/fake score.
They will maximize the distance between those scores for
ground truth and the corresponding generated image. This is
also equivalent to minimizing equations 1.

D. Model Execution

The deployment of our previously described model (see
Section IV-B) considers an attacker equipped with an external
sound device (e.g., stereo-speaker) used to affect the audio
samples collected by the system. To achieve such a goal, the
attacker collects the monitored physical asset sound through
a microphone and uses the collected sample as input to a
previously trained generator. The generator outputs an audio
difference that can be used by the attacker’s sound device to
affect the audio sample collected by the CMS.

V. EXPERIMENTAL EVALUATION

This section evaluates the effectiveness of our proposed
GAN-based attack for audio monitoring systems. The con-
sidered test-bed and UAV propeller audio-based dataset and
implementation details are described in Section V-A. Sec-
tion V-B investigates how naturally occurring noises affect
the performance of audio-based classification methods applied
for condition monitoring. Finally, Section V-C assesses the
approach’s effectiveness and how it affects the classification
accuracy of CMSs.

(a) UAV Propellers (b) Holybro X500 UAV

Fig. 2: UAV configuration used in our testbed. The broken
region of the deffective UAV propeller is highlighted with a
red circle.

A. Broken Propeller Dataset and Implementation Details

This work considers an audio-based CMS designed to detect
physical faults in Unmanned Aerial Vehicles (UAVs). To
reproduce such a scenario, we set up a controlled testbed with
a Holybro X500 UAV equipped with a PX4 flight controller.
The UAV carries a mission computer that runs a UP Xtreme
i7 8665UE with a Seeed Studio ReSpeaker Mic Array for
audio data collection for condition monitoring purposes. The
testbed was executed for a total of 4 hours, with several
execution rounds, wherein two hours were related to normal
UAV conditions and two hours with faulty UAV conditions.
In a normal UAV scenario, all of the 4 UAV propellers were
undamaged. In contrast, from one to four UAV propellers
are damaged in a faulty UAV scenario. Figure 2 shows a
normal and a faulty UAV propeller used in the testbed for
the dataset generation. For each testbed execution, the UAV
autonomously flies (≈ 5 minutes) in an eight or four-shape
configuration, as controlled by the PX4 flight controller. The
audio was collected with a sampling rate of 16kHz and a 16
bit integer representation. The collected audio is divided into
1-second long audio samples. Over 432 thousand samples of
1 second long audio were collected. Finally, the inputs are
represented by an 80-band mel-spectrogram transformed with
1024 of window size, 256 of hop size, and 1024 points of
Fourier transform built over the 1 second long audio sample,
making use of the Python package librosa 0.9.2.

Three widely known neural network models were evaluated
to play the role of the DL-based CMS, namely ResNet-18,
AlexNet, and DenseNet-169. Each model was implemented
using PyTorch 1.8 and trained for 1000 epochs using Adam
optimizer with default parameters and a learning rate of 0.001.
The models’ input is given by the pre-processing described in
Section IV-A. The dataset described above was randomly split
into training, testing, and validation datasets, each composed
of 60%, 30%, and 10% of samples, respectively. We use
F-Measure, false-positive rate (FPR), and false-negative rate
(FNR) as evaluation metrics. The FPR denotes the ratio of
normal UAV audio samples incorrectly classified as faulty. In
contrast, the FNR denotes the ratio of faulty audio samples
incorrectly classified as normal.
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TABLE I: The impact on the audio-based CMS’s performance
when subject to noise.

Deep Learning Scenario F-Measure FPR FNR

ResNet-18 Noise-free 0.96 0.058 0.0167
Added Noise 0.9 0.16 0.04

AlexNet Noise-free 0.96 0.06 0.03
Added Noise 0.9 0.15 0.05

DenseNet-169 Noise-free 0.97 0.04 0.02
Added Noise 0.9 0.13 0.08

TABLE II: The impact on the audio-based CMS’ performance
when subject to our proposed generated attacks.

Deep Learning Scenario F-Measure FPR FNR

ResNet-18
FPR Increase 0.75 0.18 0.29
FNR Increase 0.86 0.25 0.06
Error Increase 0.78 0.15 0.27

AlexNet
FPR Increase 0.68 0.94 0.01
FNR Increase 0.79 0.04 0.32
Error Increase 0.72 0.08 0.39

DenseNet-169
FPR Increase 0.53 0.22 0.56
FNR Increase 0.73 0.06 0.39
Error Increase 0.56 0.08 0.57

B. Robustness of Audio-based UAV CMS

Our first experiment aims to evaluate the impact of addi-
tional noises on the performance of the selected techniques,
e.g., in a city environment, the UAV may be exposed to
significantly loud noises such as drilling or car engines.
Recall that the audio data collected was not subject to various
natural noises that may occur in the real world. Therefore, we
evaluate the robustness of audio-based condition monitoring
when exposed to naturally occurring audio (such as voices,
cars, and engines) from the Microsoft Scalable Noisy Speech
(MSNS) dataset [18]. We overlay on the UAV audio samples
audio segments of noise from the MSNS dataset to achieve
an SNR of 10. Table I shows the classification accuracy of
the selected techniques when subject to production settings
audio noises given the added noise. It is possible to note
that the selected approaches are robust to the added audio
noises, as commonly experienced in production settings. More
specifically, the added noise scenario decreased the F-Measure
by up to 0.08 for the DenseNet-169 DL model. Results
show that traditional audio-based approaches are robust to
production environment settings, presenting similar accuracy
rates even when subject to additional audio noises that the
microphone may capture.

C. Attacking Audio-based UAV CMS

Here we analyze the effectiveness of our proposed approach
to circumvent the reliability of audio-based CMSs in a realistic
setting. To achieve such a goal, we consider an adversary
that reproduces generated audios with a SNR ≈ 20. More
specifically, we consider a CMS which collects the monitored
physical asset sound ≈ 20 louder than those generated by
an attacker reproduction device. We consider three attack
scenarios, as follows:

• FPR Increase. Overlaid generated samples lead normal
audio samples to be misclassified as faulty.

• FNR Increase. Overlaid generated samples lead to faulty
audio samples being misclassified as normal.

• Error Increase. Overlaid generated samples target both
misclassifications, e.g., normal to be misclassified as
faulty, and faulty to be misclassified as normal.

Under each attack mode described above, we trained and
generated malicious samples to evaluate the effectiveness of
our approach given each setting. As previously mentioned,
the generator’s samples exhibit specific characteristics, such
as frequency and amplitude, that it deems most effective
as additive noise. For comparison, we overlay the generated
samples at a 10 SNR (analogous to the noise level presented
in Table I). Table II shows the impact on the audio-based
CMS’ performance when subject to our proposed scheme.
Our proposed model significantly decreased the accuracy of
the selected techniques compared to the added noise from the
MSNS dataset. For instance, given the FPR increase scenario,
the proposed attack was able to increase the FPR rate to up
to 0.36% for the ResNet-18 model, a further degradation of
0.3% when compared to the natural added noise presented in
Table I. In contrast, in the Error Increase case, our proposed
attack significantly affects the F-measure, decreasing it by up
to 0.33 for the DenseNet-169 model. One of the drawbacks of
our proposed approach is that by adding noise to the original
sample, frequency bins in a spectrogram representation end
up having higher energy levels, allowing the detection of such
attacks by examining energy levels in spectrogram bins against
a threshold. Typically in audio pre-processing, as in most ML
applications, inputs are often normalized, or features are scaled
to enhance the performance of gradient descent. This approach
is considered a viable attack in a typical audio pre-processing
pipeline.

We further examine the impact of the proposed attack on the
CMS’ F-measure given generated attack audio samples with
SNR in [0, 40]. Figure 3 shows the impact of the proposed
attack on the considered metric given different SNRs, where
an SNR of 0 refers to the original audio. The baseline
(denoted by a red line) shows the CMS’ performance under
overlaying of noise from the MSNS dataset. The three black
lines correspond to the overlap of generated audio given the
three attack modes. Our proposed attack significantly degrades
the CMS’ performance compared to the baseline. For the Error
Increase scenario with an SNR of 10, the random noise case
degrades the CMS’ F-measure by 6.25%, 6.25%, 7.21% for
the ResNet16 and AlexNet, and DenseNet-169 respectively.
On the other hand, our proposed attack degrades it by 18.75%,
25%, and 42.26%. This is an improvement of 13.33%, 20%,
and 37.8% for each considered model.

VI. CONCLUSION

Over the last few years, several works have proposed
techniques for evading ML-based CMSs. Proposed schemes
are inadequate for real-world settings, negligently assuming
that generated data can be indiscriminately introduced to
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Fig. 3: CMS’ F-measure as a function of SNR. Higher SNR means lower attack sound volume.

the CMS’ input. This paper has proposed a new generative
adversarial network for audio-based attacks on CMSs. The
proposed scheme can generate audio samples that can be used
to overlay with the original audio produced by the monitored
physical asset and evade the deployed audio-based ML model
responsible for classification in the CMS. Experiments per-
formed using audio samples for fault detection of UAVs have
shown the proposal’s feasibility. The proposed attack achieved
a mean success rate of 40%, decreasing the F-measure for
“random noise” experiments by 13.3%, 20%, and 37.8% for
ResNet-18, AlexNet, and DenseNet-169, respectively.
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