
Towards a Reliable Hierarchical Android Malware
Detection Through Image-based CNN

Jhonatan Geremias∗, Eduardo K. Viegas†∗, Altair O. Santin∗, Alceu Britto∗, Pedro Horchulhack∗
∗Pontificia Universidade Catolica do Parana (PUCPR) — Graduate Program in Computer Science (PPGIa), Brazil

{jhonatan, santin, alceu, pedro.horchulhack}@ppgia.pucpr.br
†Secure Systems Research Center — Technology Innovation Institute (TII), Abu Dhabi

eduardo@ssrc.tii.ae

Abstract—The number of Android malicious applications
keeps growing as time passes, even paving their way to official
app markets. In recent years, a promising malware detection
approach makes use of the compiled app source codes (dex),
through convolutional neural networks (CNN) as an image
classification task. Unfortunately, current proposals often rely
on unrealistic datasets, focusing their detection on the mal-
ware families, while neglecting the detection of malware apps
in the first place. In this paper, we propose a reliable and
hierarchical Android malware detection through an image-based
CNN scheme, implemented twofold. First, Android malware
classification is performed in a hierarchically-structured local
manner, initially identifying malware apps, then, their related
family. Second, to ensure reliability and improve classification
accuracy, only highly confident classified apps are reported, in a
classification with reject option rationale. Experiments performed
in a new dataset with over 26 thousand Android apps, divided
into 29 malware families, compounding over 13 GB of app dex
images, have shown that current image-based CNN for malware
detection is unable to provide high detection accuracies. In
contrast, our proposed model is able to reliably detect malware
apps, improving the true-negative rates by up to 5.5%, and the
average true-positive rate of the malware families of accepted
apps by up to 12.7%, while rejecting only 10% of Android apps.

Index Terms—Android Malware, CNN, Hierarchical Classifi-
cation.

I. INTRODUCTION

Android is currently the most popular mobile operating
system, with estimations of 2.5 billion of active devices,
accounting for over 70% of the smartphone market share [1].
Unfortunately, the number of unwanted Android applications,
such as malwares, adwares, and bloatwares, is also increasing,
currently affecting up to 24% of all Android users [2]. Surpris-
ingly, 67% of all unwanted Android applications originated
from official app markets [2], demonstrating that current
Android malware detection approaches have been unable to
secure users.

Over the last years, several techniques have been proposed
for Android malware detection, through either dynamic-based
or static-based approaches [3]. On one hand, dynamic-based
schemes rely on executing the monitored Android app in a
sandbox environment, while continuously evaluating the app
behavior as time passes for malicious fingerprints [4]. As a
result, it can realistically evaluate the app behavior, however,
poses a great challenge concerning the generation of a proper

app stimulus for the triggering of malicious activities, with
reports of apps even being able to remain hidden as soon as
they detect their execution in a sandbox environment [5]. On
the other hand, static-based techniques evaluate the app char-
acteristics in an offline manner, according to the contents of the
Android Application Pack (apk) file, such as the requested app
permissions (manifest), native compiled codes (lib), or even
the Java compiled source files (dex) [6]. Such an approach
does not require the execution of the analyzed Android app
sample, significantly easing the detection process.

Several static-based techniques have been proposed for
characterizing malware apps in recent years. A promising
approach relies on the classification of the java compiled
source files (dex) as an image classification task [3]. In
such a case, the analyzed binary dex file is translated to an
image format, typically by representing each dex byte as an
image pixel, while the generated image is classified by a
convolutional neural network (CNN) [7]. To achieve such a
goal, a training dataset composed of a significant number of
malware and benign app samples is used for the CNN training
task. The built model can then be used in production to identify
new malicious Android apps.

However, although such techniques can provide state-of-
the-art accuracies in malware detection, proposed schemes are
often unreliable for real-world settings [7]. In practice, authors
mostly evaluate their model for the classification between
several malware families, neglecting the identification of a
malware app sample in the first place [3]. As a result, there is
no guarantee that the reported accuracy rates will be achieved
in real-world settings, when the built CNN model is used to
identify malware app samples. In addition, as image-based
malware detection is still in its beginnings, used evaluation
datasets are often unrealistic, in their majority collected from
a single source, thus, with generalization concerns.

In light of this, this paper proposes a new hierarchical
and reliable image-based CNN model for classifying Android
malware, implemented in two stages. First, Android malware
classification is performed through an image-based CNN in
a hierarchically-structured local classification setting. Thus,
analyzed apps are first classified as benign or malware samples
in a parent node, while the family of the malicious classified
apps is identified in a child node by a specialized CNN model.
Second, to improve the classification reliability, only highly

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

978-1-6654-9734-3/23/$31.00 ©2023 IEEE 242

20
23

 IE
EE

 2
0t

h
Co

ns
um

er
 C

om
m

un
ic

at
io

ns
 &

 N
et

w
or

ki
ng

 C
on

fe
re

nc
e

(C
CN

C)
 |

 9
78

-1
-6

65
4-

97
34

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CC

N
C5

16
44

.2
02

3.
10

06
03

81

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

confident classifications as performed by the parent CNN
node are passed to the child node, in a classification with a
reject-option approach. The insight of such a proposal is that
only highly confident malware samples must have their family
identified, thus, maintaining the system’s accuracy.

The main contributions of this paper are:
• A new Android malware dataset composed of over 29

thousand of benign and malware app samples, divided
into 29 families.

• An evaluation of current image-based CNN approaches
for Android malware classification, showing their unrelia-
bility to provide high accuracies when a more challenging
dataset is used.

• A new hierarchical and reliable image-based CNN model
for Android malware detection able to improve detection
accuracies when compared to related works.

II. PRELIMINARIES

Convolutional neural networks (CNN) have been success-
fully applied in several fields, typically for object detection,
image classification [8], [9], and even intrusion detection [10].
However, in Android malware app classification it is still in
its beginnings, wherein authors often apply it for classification
of the Java compiled source file, namely dex. To achieve such
a goal, the dex file of the analyzed Android app sample is
represented as an image. In practice, the image pixels are
often a direct representation of the dex file byte values [11].
Consequently, as the file size of each dex file may significantly
vary, the size of the output image also varies greatly. Thus,
image resizing is often applied before using it as input for a
CNN model.

To implement such a process, authors rely in four sequential
modules [12]. First, the Data Acquisition module extracts the
dex file of the analyzed Android app apk file. Second, the
Image Builder module depicts the dex file content as an image,
often by representing each byte as an image pixel, while
resizing the output image to a predefined dimension. Third,
the built image is classified by a Classification module, that
applies a previously trained CNN model. Finally, malware-
classified samples are signaled by an Alert module.

In recent years, due to its promising results reported in sev-
eral fields, many works have proposed highly accurate image-
based CNN schemes for Android malware classification [3]. In
general, proposed approaches classifies app samples according
to their malware family, while overlooking the identification
of malware samples in the first place [7]. Thus, even if they
can provide highly accurate CNN-based schemes, they can
only be used for classifying app samples already known to be
malware, leaving the detection performance between malware
and benign yet to be known [13].

The training procedure of CNN-based schemes requires
huge amounts of diverse and realistic training data to be
provided. Surprisingly, proposed approaches often make use of
a single dataset, that is collected through a single data source,
rendering the obtained results unrealistic. This is because, in
real-world settings, the built detection scheme must be able

to classify the analyzed app samples regardless of the app
data source. Even if the proposed scheme takes into account
the classification between malware and benign samples, due
to the limitations of the underlying used dataset, the obtained
results becomes unreliable.

III. RELATED WORKS

The detection of malware Android apps has been a widely
explored topic in the literature over the last few years [3]. In
general, proposed static-based schemes perform the classifi-
cation as a pattern recognition task, typically through machine
learning (ML) algorithms. For instance, J. Li et al. [14]
proposes an ML-based model for identifying malware Android
apps according to their requested permissions. Their model can
provide high accuracies in a single dataset, but, relies on only
the requested app permissions and overlooks the identification
of malware families. Z. Ma et al. [15] applies ML algorithms
according to the evaluated app source code control flow
graph. Their proposed scheme can provide high accuracies
for detecting in a two-class setting, thus, overlooking the
identification of malware families. In contrast, S. Xue et
al. [16] also uses the app source code control flow graph, but,
for the identification of the malware family. Their proposed
scheme, which relies on deep learning models, can provide
high accuracy rates, however, neglects the identification of
malware apps in the first place.

In recent years, due to their high reported accuracies, several
works have resorted to image-based approaches for Android
malware detection with CNN architectures [3]. For instance,
J. Singh et al. [17] converts several apk files into a grayscale
image and applies a CNN-based technique coped with a fusion
method for classifying malware app families. Their proposed
model was able to provide high accuracy rates, however,
relies upon a single dataset and neglects the detection of
malware apps in the first place. Another CNN-based model
was proposed by D. Vasan et al. [7] which converts the dex
file into a colored image format. The authors can improve
accuracy through their proposed CNN architecture, however,
overlooks the reliability of classification, and the hierarchy
of Android apps. Similarly, T. H. Huang et al. [18] proposes
a new CNN-based architecture for classifying malware apps
according to the built image from the dex file. Their proposed
model provided high accuracy rates for classifying malicious
Android apps, but, overlooks the detection of the malware
families.

IV. PROBLEM STATEMENT

CNN-based Android malware detection as an image classifi-
cation task is still in its beginnings. In this section, we evaluate
the performance of widely used schemes in the literature. More
specifically, we first introduce our new dataset with real-world
characteristics of Android malware samples, then, we evaluate
the performance of image-based CNN schemes over it.

A. A Realistic Image Android Malware Dataset
Current datasets used in the literature for image-based

classification of Android app samples cannot provide realistic

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

243
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

(a) Benign sample (b) Malware sample

Fig. 1: Sample images built from Android app dex files are
available in our new IAMD dataset in a 224x224 size.

TABLE I: Accuracy of the selected CNN architectures in a
two-class IAMD dataset (benign vs malware).

CNN Architecture TP (%) TN (%) F1 AUC
Resnet50 92.95 92.77 0.929 0.97

InceptionV3 94.36 92.34 0.934 0.98

characteristics of real-world environments. Authors generally
resort to a single dataset prone to the problem inherent in
its data source. Ideally, used datasets must be made of a
representative number of malware and benign samples that
were collected from a variety of sources throughout time.

To address such a shortcoming, we present the Image-
based Android Malware Dataset (IAMD). The built dataset
comprises benign and malware samples from two publicly
available datasets, namely CICMalDroid [19], and MaliIm-
ages [20]. The prior, CICMalDroid, is made of 17, 341 benign
and malware samples, divided into 4 malware families. The
former, MaliImages, is made of 9, 458 malware samples,
divided into 25 families. As a result, our dataset, IAMD, is
made of 26, 799 Android app samples, with 6, 815 benign
samples and 19, 984 malware samples divided into 29 families.
The collected Android apk files are represented as an image in
our dataset, using the same methodology used in the literature
(see Section II). Thus, the dex file is extracted from the apk
app file and converted to a grayscale image file in PNG format.
The images were generated through the Python Image Library
(PIL) API v.8.4.0. The dimensions of the built images vary
according to the dex file size, hence, all images were resized
to a 224x224 dimension before using them for the application
of CNN architectures. The IAMD dataset is made of over 13.4
GB of images. Figure 1 shows sample images from the IAMD
dataset.

B. Android Malware Detection as an Image Classification
Task

The evaluation aims at answering two main research ques-
tions: (RQ1) How do traditional CNN architectures perform
classifying malware and benign Android app samples? (RQ2)
How do traditional CNN architectures perform classifying
malware families?

(a) InceptionV3 (b) Resnet50

Fig. 2: Top N TP rate of selected CNN architectures for
classifying the malware family in a 29-class IAMD dataset.

Two widely used CNN architectures were evaluated, namely
Restnet50, and InceptionV3. The evaluated architecture were
executed for 1, 000 epochs, and their learning rate was set
empirically according to the resulting loss and a momentum
weight of 0.9. A random undersampling without replacement
is used in the training procedure to balance the occurrence
between the classes. For training purposes, the IAMD dataset
was split into train, validation, and test datasets, comprising
40%, 30%, and 30% of the original dataset, respectively. The
CNNs were implemented through keras API v.2.4.0, and
tensorflow API v.2.4.1. The classification performance was
measured according to their True-Positive (TP), True-Negative
(TN), F1-Score, and AUC metrics. The TP denotes the ratio of
malware instances correctly classified as malware, while the
TN denotes the ratio of benign instances correctly classified
as benign. The F1 score was computed as the harmonic mean
of precision and recall values while considering malware as
positive samples and benign as negative samples.

The first experiment aims at answering RQ1 and eval-
uates the classification performance of the selected CNN
architectures while classifying Android app samples as either
benign or malware, in a two-class setting. To achieve such a
goal, the selected architectures are trained with the training
dataset, randomly built with 40% of IAMD, regardless of the
underlying malware family, and also using benign samples.

Table I shows the classification performance of the selected
CNN architectures while classifying IAMD samples as either
malware or benign. Surprisingly, the evaluated approaches
were unable to provide significantly high classification accu-
racies. For instance, the InceptionV3 CNN, which provided
the highest AUC of 0.98, presented a TP rate of only 94.36%,
and a TN rate of only 92.37%. Thus, the experiment shows
that traditional CNN-based techniques cannot reliably identify
malicious Android app samples.

The second experiment aims at answering RQ2 and eval-
uates the classification performance of the selected CNN
architectures when used for the identification of the malware
family, as commonly made in the literature. To achieve such a
goal, the benign samples are removed from the IAMD dataset,
and the CNN architectures classify its input between one of
the 29 malware families. Thus, it assumes that the CNN input

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

244
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

is always a malware sample.
Figure 2 shows the malware family identification accuracy

as ordered from the most accurate to the least accurate.
It is possible to note that the selected architectures could
also not provide high accuracy for identifying the malware
family. For instance, on average, the selected architectures
presented a TP rate of only 79% and 81%. Thus, image-based
CNN classification of Android malware families can also not
provide reliability.

C. Discussion

Detection of malware Android apps through image-based
CNN is still in its beginnings. In this section, we have
introduced a new dataset, namely IAMD, with over 26 thou-
sand Android apps. Experiments with widely used detection
approaches have shown that current techniques cannot provide
high accuracies in their detection. Thus, when used for the
detection in a two-class setting, considering malware and
benign samples, or the identification of the malware family,
selected approaches cannot reach the desired level of reli-
ability, significantly degrading their accuracy. As a result,
current image-based CNN techniques for malware Android
app detection are unreliable for production deployment.

V. A HIERARCHICAL AND RELIABLE ANDROID MALWARE
DETECTION MODEL

To address the challenges above, we present a new reli-
able hierarchical Android malware detection through image-
based CNN. The insight of the proposal is that malware
classification accuracy can be improved through classification
with reject option rationale. In contrast, the malware family
can be identified in a hierarchical classification setting. The
proposed model is shown in Figure 3 and is composed by two
main steps, namely Android App Classification and Reliable
Malware Family Classification.

The proposal considers an Android malware image-based
CNN classification scheme, first aiming at the detection of
malware samples, and their family if a given app is classified
as malicious. The classification procedure starts with an An-
droid apk file as input for classification. The corresponding
apk dex file is extracted and represented in an image format.
Several techniques can be used to fulfill such a task, such
as those used in our IAMD dataset (see Section IV-A). The
built image is classified as either benign or malware by a
CNN module (Hierarchical Structure, Fig. 3), which outputs
a corresponding classification confidence value. Our scheme
uses the confidence value in a classification with a reject
option approach to improve detection accuracy. The insight of
such a proposal is that only highly confident classifications,
thus more likely to be correctly classified, are accepted by
our model, maintaining the system’s reliability. Our model
discards rejected classifications. In contrast, accepted mal-
ware-classified apps are classified by a child CNN model
(Hierarchical Structure, Fig. 3), for the proper identification
of the malware family.

Fig. 3: Proposed reliable hierarchical Android malware detec-
tion through image-based CNN.

The next subsections further describe our proposed classi-
fication scheme and verification process.

A. Android App Classification

In general, image-based Android malware proposals aim
for the classification of malware samples among a variety
of families. Therefore, the input of the proposed schemes
is assumed to be malware. However, in a real-world setting,
Android apps must first be identified as malware or benign.
Only then, if a given malware is signaled, can its family be
identified.

In light of this, our proposed model performs the classifi-
cation of Android apps considering a hierarchically-structured
local classification manner. The rationale of such a scheme is
that Android apps can be classified in a parent node as either
benign or malware and only then, the malware family can be
identified in a child node. To achieve such a goal, our proposed
model relies on two CNNs, that perform the classification in
a hierarchical manner (Hierarchical Structure, Fig. 3). On one
hand, the scheme input is classified as benign or malware
by a two-class CNN model (Malware CNN, Fig. 3). On the
other hand, malware-classified apps, with high confidence in
their classification, are also classified according to their family
(Family CNN, Fig. 3).

As a result, our proposed scheme can properly identify
malware and its related family. This is because the hier-
archical classification scheme first identifies malware apps,
before using them to identify the malware family. However, to
provide such identification, our proposed model must ensure
classification reliability.

B. Reliable Malware Family Classification

Identifying Android malware apps is a challenging task,
wherein detection schemes are subject to a high rate of false
positives (see Table I). Therefore, proposed schemes must
ensure that only correct classifications are used to trigger
malware alerts, otherwise, the user may ignore additional
alerts. To provide such a level of reliability, our model copes
with the aforementioned hierarchical classification with a
verifier module. The module goal is to ensure that only highly

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

245
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

confident classifications are used to alert users, thus, improving
the system classification accuracy. Therefore, classification is
performed through the reject option approach, wherein the low
confident classification is not used to trigger alerts.

As shown in Figure 3, the classification procedure starts
with a to-be-classified Android app apk file. The Data Acqui-
sition module extracts the dex file for further analysis. The
obtained dex file is input by an Image Builder module, which
compounds a correlated image. Several approaches can be
used to fulfill such a task, such as the technique used to build
our IAMD dataset (see Section IV-A), which represents each
dex file byte as an image pixel. Then, the built image is clas-
sified by the Malware CNN, as either malware or benign, and
outputs a corresponding classification confidence value. The
Verifier module assesses the classification confidence value to
ensure that the desired level of classification confidence thresh-
old is met. Our model rejects low confident classifications.
In contrast, highly confident classifications are used to alert
users, a situation wherein highly confident malware-classified
apps are also used as input by a second CNN, following our
hierarchical structure (Family CNN, Fig. 3). Finally, accepted
classifications are sent to the Alert module, reporting the found
malware family or attesting benign apps.

VI. EVALUATION

The evaluation aims at answering two main research ques-
tions: (RQ3) How does the proposed classification assessment
approach improves the malware classification model? (RQ4)
How does the proposed model perform at classifying accepted
malware families?

A. Model Building

The proposed model (Fig. 3) was implemented and eval-
uated on top of our built dataset, namely IAMD (see Sec-
tion IV-A). Similarly, the two used CNN architectures were
also evaluated in our proposal, namely Resnet50, and Incep-
tionV3. The evaluated architecture was executed for 1, 000
epochs, and its learning rate was set empirically according to
the resulting loss and a momentum weight of 0.9. A random
undersampling without replacement is used in the training
procedure to balance the occurrence between the classes. For
training purposes, the IAMD dataset was split into train,
validation, and test datasets, comprising 40%, 30%, and 30%
of the original dataset, respectively.

B. A Reliable Hierarchical Classification

The first experiment aims at answering RQ3. It evaluates
the classification performance of our proposed model while
making use of the Verifier module for the assessment of the
performed classifications in a two-class setting (Malware CNN,
Fig. 3). Figure 4a shows the ROC curve of the selected CNN
architectures. Then, making use of the two selected CNNs, we
evaluate the proposed Verifier module for the assessment of the
performed classifications. The classification thresholds were
defined through the Class-Related-Threshold (CRT) approach,

(a) ROC Curve without Verifier
module

(b) Error vs. reject with Verifier
module

Fig. 4: Proposed scheme accuracy performance and error-
reject tradeof for the classification of benign and malware
samples (Malware CNN, Fig. 3).

TABLE II: Proposed scheme accuracy performance for the
classification of benign and malware samples (Malware CNN),
according to the rejection rate (Fig. 4b).

CNN TP (%) TN (%) F1 Rejection (%)

R
es

ne
t

50

92.95 92.77 0.929 0.00
96.25 98.27 0.972 5.00
96.54 98.30 0.970 10.00
97.00 98.33 0.977 15.00

In
ce

pt
io

n
V

3
94.26 92.34 0.934 0.00
93.08 95.60 0.943 5.00
95.59 96.59 0.959 10.00
97.51 97.12 0.975 15.00

which searches for the optimum acceptance threshold for each
class.

Figure 4b shows the error vs reject tradeof of the two
selected CNN architectures for the classification in a two-
class setting (Malware CNN, Fig. 3). It is possible to note
a relationship between the error rate and the rejection rate,
thus, a higher rejection of the evaluated Android apps can
decrease the average error rate of our proposal. Table II shows
the accuracy performance of our model coped with the Verifier
module according to a variety of rejection rate. It is important
to note that the operation point must be chosen according to
the user’s discretion. For instance, rejecting only 10.0% of in-
stances, our proposed model can improve the TP rate by 3.6%
and 1.33% for the Resnet50 and InceptionV3, respectively. As
a result, the proposed scheme that evaluates the classification
confidence values through the Verifier module can improve the
system’s reliability in malware detection.

The second experiment aims at answering RQ4 and evalu-
ates our proposed model for the classification of the malware
families accepted by our Verifier module. To achieve such a
goal, we evaluate the classification accuracy for identifying
the 29 families in the IAMD dataset, using only the accepted
apps according to the used rejection operation point (10%
Rejection, Table II). Figure 5 shows the malware family
identification accuracy of our proposal (Family CNN, Fig 3) as
ordered from the most accurate to the least accurate from our

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

246
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

(a) InceptionV3 (b) Resnet50

Fig. 5: Top N TP rate of selected CNN architectures with
Verifier module (Operation Point, Fig. 4b) for classifying the
malware family of accepted malware classified apps.

Fig. 6: Comparison of the TP rate distribution for identifying
the malware families of our proposal versus their counterparts
without the classification assessment.

proposal. In such a case, our proposed scheme can improve the
classification of the accepted malware families significantly.
More specifically, by rejecting only 10% of evaluated apps,
our proposed model improves the average TP rate of malware
family identification by 12.75% and 11.81% for the Resnet50
and InceptionV3 respectively (Fig. 2 vs 5).

We further investigate the impact of our proposed classifi-
cation assessment approach in Figure 6. In such a case, our
proposed model, when rejecting only 10% of Android apps,
classifies 75% (22 out of the 29) of malware families with at
least 98% and 94% of TP rate. In comparison, the traditional
approach identifies the same number of families with at least
77% and 88% for the InceptionV3 and Resnet50, respectively.

VII. CONCLUSION

Android malware detection as an image classification task
through CNNs is still in its beginnings. In this paper, we have
proposed a new reliable and hierarchical Android malware
detection through image-based CNN for the detection of ma-
licious apps as well as their family. Our proposed scheme can
improve the detection of malware apps while only rejecting
a small subset of app samples. In addition, it can improve
the average detection rate of the accepted malware families
compared to traditional techniques.

ACKNOWLEDGMENT

This work was partially sponsored by Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq), grant nº 304990/2021-3.

REFERENCES

[1] T. inMobi, “Understanding android users worldwide,”
2021. [Online]. Available: https://www.inmobi.com/blog/2021/08/09/
understanding-android-users-worldwide

[2] P. Kotzias, J. Caballero, and L. Bilge, “How did that get in my phone?
unwanted app distribution on android devices,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, May 2021, p. 53–69.

[3] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A survey of
android malware detection with deep neural models,” ACM Computing
Surveys (CSUR), vol. 53, no. 6, pp. 1–36, Feb. 2021.

[4] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox,” in Proceedings of the 28th Annual ACM Symposium
on Applied Computing. ACM Press, 2013, pp. 1808–1815.

[5] T. Vidas and N. Christin, “Evading android runtime analysis via sandbox
detection,” in Proceedings of the 9th ACM symposium on Information,
computer and communications security. ACM, Jun. 2014, pp. 447–458.

[6] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and
M. Conti, “Similarity-based android malware detection using hamming
distance of static binary features,” Future Generation Computer Systems,
vol. 105, pp. 230–247, Apr. 2020.

[7] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
“IMCFN: Image-based malware classification using fine-tuned convo-
lutional neural network architecture,” Computer Networks, vol. 171, p.
107138, Apr. 2020.

[8] J. Geremias, E. K. Viegas, A. S. Britto, and A. O. Santin, “A motion-
based approach for real-time detection of pornographic content in
videos,” in Proceedings of the 37th ACM/SIGAPP Symposium on Ap-
plied Computing. ACM, Apr. 2022.

[9] F. Ramos, E. Viegas, A. Santin, P. Horchulhack, R. R. dos Santos, and
A. Espindola, “A machine learning model for detection of docker-based
APP overbooking on kubernetes,” in ICC 2021 - IEEE International
Conference on Communications. IEEE, Jun. 2021.

[10] B. B. Bulle, A. O. Santin, E. K. Viegas, and R. R. dos Santos, “A host-
based intrusion detection model based on OS diversity for SCADA,”
in IECON 2020 The 46th Annual Conference of the IEEE Industrial
Electronics Society. IEEE, Oct. 2020.

[11] J. Geremias, E. K. Viegas, A. O. Santin, A. Britto, and P. Horchulhack,
“Towards multi-view android malware detection through image-based
deep learning,” in 2022 International Wireless Communications and
Mobile Computing (IWCMC). IEEE, May 2022.

[12] R. R. dos Santos, E. K. Viegas, A. O. Santin, and V. V. Cogo, “Reinforce-
ment learning for intrusion detection: More model longness and fewer
updates,” IEEE Transactions on Network and Service Management, pp.
1–17, 2022.

[13] P. Horchulhack, E. K. Viegas, and A. O. Santin, “Toward feasible
machine learning model updates in network-based intrusion detection,”
Computer Networks, vol. 202, p. 108618, Jan. 2022.

[14] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3216–3225, Jul. 2018.

[15] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, “A combination method for
android malware detection based on control flow graphs and machine
learning algorithms,” IEEE Access, vol. 7, pp. 21 235–21 245, 2019.

[16] S. Xue, L. Zhang, A. Li, X.-Y. Li, C. Ruan, and W. Huang, “AppDNA:
App behavior profiling via graph-based deep learning,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
Apr. 2018, pp. 1475–1483.

[17] J. Singh, D. Thakur, T. Gera, B. Shah, T. Abuhmed, and F. Ali,
“Classification and analysis of android malware images using feature
fusion technique,” IEEE Access, vol. 9, pp. 90 102–90 117, 2021.

[18] T. H.-D. Huang and H.-Y. Kao, “R2-d2: ColoR-inspired convolutional
NeuRal network (CNN)-based AndroiD malware detections,” in 2018
IEEE International Conference on Big Data (Big Data). IEEE, Dec.
2018, pp. 2633–2642.

[19] S. Mahdavifar, A. F. A. Kadir, R. Fatemi, D. Alhadidi, and A. A.
Ghorbani, “Dynamic android malware category classification using
semi-supervised deep learning,” in 2020 IEEE Intl Conf on Dep., Aut.
and Secure Computing (DASC). IEEE, Aug. 2020, pp. 515–522.

[20] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in Proceedings of the
8th international symposium on visualization for cyber security. ACM
Press, 2011, pp. 1–7.

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

247
Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:24:41 UTC from IEEE Xplore. Restrictions apply.

