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Machine Learning techniques for network-based intrusion detection are widely adopted in the scientific 
literature. Besides being highly variable, network traffic behavior changes over time, demanding proposed 
schemes to be periodically updated to ensure their reliability. Unfortunately, their efficiency is significantly 
limited in production environments. This paper proposes a new Federated Learning model for reliable network-

based intrusion detection with highly confident model updates over time. Our proposed scheme assesses the 
classification reliability in an unsupervised fashion and rejects potential misclassifications even when outdated. 
In addition, it significantly eases the model update cost by conducting it in a Federated Learning rationale. To 
evaluate the effectiveness of our solution, we conduct an experimental campaign with a new dataset, MAWIFlow, 
with over 7 TB of real network traffic spanning a year. The achieved results of our proposed model are striking. It 
respectively improves the average false-positive and false-negative rates by up to 12% and 9.6% when no model 
updates are conducted. If done so, it can further improve the false-positive rate by up to 13% while rejecting 
only 3.6% of events and demanding only 0.3% of events for model updates. Further, the comparison against 
the traditional Federated Learning approach confirms our model’s remarkable performance in several scenarios. 
Finally, the quality and viability of our solution do prove that our approach can be successfully adopted for 
improving the accuracy and efficiency of classification systems in real-world scenarios where outdated models 
are prevalent and pave the way for future research in the area.
1. Introduction

Despite the extensive research effort on developing new security so-

lutions, the number of reported cyberattacks continues to increase as 
time passes. For example, according to a security report, in 2022 (Statis-

tics, 2023), over 15% of Internet users have been targeted by a cyberat-

tack. In general, to detect this increasing number of threats, operators 
resort to Network-based Intrusion Detection Systems (NIDSs), imple-

mented through misuse-based or behavior-based approaches (Molina-

Coronado et al., 2020). On the one hand, misuse-based techniques iden-

tify misbehavior according to a database of previously known threats, 
hence, being unable to address new kinds of attacks (Viegas et al., 
2019). On the other hand, behavior-based techniques recognize miscon-

ducts according to the similarity to a previously modeled attack behav-

ior. As a result, the latter can detect new attacks as long as they behave 
similarly to the previously modeled behavior (Zoppi et al., 2023).
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In recent years, several works proposed new behavior-based NIDS 
through Machine Learning (ML) techniques to address the increasing 
number of cyberattacks (Molina-Coronado et al., 2020). To this aim, a 
behavioral ML model is built by evaluating the data available in a train-

ing dataset. To achieve optimal performance in the production environ-

ment, the training dataset must be composed of massive amounts (e.g., 
up to millions) of both normal and malicious network samples (Ramku-

mar et al., 2022).

In practice, the accuracy reliability of designed ML-based NIDSs re-

lies on the training data quality. It must adequately reflect the network 
properties of the production environment, including the behavior of 
the deployed network services, the characteristics of the network link, 
and even the expected attacks that will be experienced when the sys-

tem is used in production (Al-Hadhrami and Hussain, 2020). Indeed, 
building a reliable training dataset for NIDSs is a complex and time-

consuming task (Kilincer et al., 2021). Notwithstanding, to guarantee 
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that the designed ML-based NIDSs can detect a wide range of attack 
behaviors, the training dataset must present a considerable mixture of 
available network attacks. As a result, to adequately address such a 
challenge, ideally, network operators must have access to the training 
data adopted by multiple organizations (Campos et al., 2022). However, 
apart from the dataset-building challenges, collecting multiple network-

traffic datasets is difficult due to the privacy concerns that arise when 
the participant organizations’ Cyber Threat Intelligence (CTI) is publicly 
shared (Mills et al., 2022).

The behavior of network traffic is highly variable and non-stationary 
as time passes, a situation caused due to the provision of new kinds of 
services, the discovery of new categories of attacks, and even changes in 
the network link(s) (Zoppi et al., 2023). As a result, even if the network 
operator can build a “perfect” intrusion dataset, it cannot depict the non-

stationary nature of network traffic behavior as time passes (Li et al., 
2022). In such a case, to preserve the reliability of the designed systems, 
it is essential to conduct periodic model updates to the deployed ML-

based NIDSs (Viegas et al., 2019) Indeed, an outdated ML model will 
produce a higher rate of false alarms over time, considering that the 
current behavior of the monitored environment does not reflect those 
used during the model-building procedure.

The model update is a challenging task that requires the availabil-

ity of an updated and labeled training dataset and the execution of a 
resource-intensive model training process (Thakkar and Lohiya, 2021). 
On the one hand, as organizations cannot share CTI due to privacy con-

cerns, operators typically require unfeasible amounts of time to collect 
and label the newly occurring network traffic on their own (Viegas et 
al., 2019). On the other hand, the traditional ML update procedure dis-

cards the outdated model to build a new one based on the newly built 
dataset without considering the prior knowledge acquired from the pre-

vious training (Li et al., 2021). As a result, the model update task in 
NIDSs often demands several weeks or even months to be conducted, 
leaving systems unprotected from new kinds of threats.

An outdated ML model cannot provide the same level of reliability as 
those measured during the testing phase. The system’s false alarm rate 
increases, demanding the network operator to suppress further alerts. 
As model updates are time-demanding, designed systems must keep 
their reliability even when outdated while the building of a new ML 
model is still ongoing. Yet, most of the current approaches in the liter-

ature neglect the system reliability as time passes, assuming that a new 
ML model can be promptly provided (Lee et al., 2022). As a result, as 
current techniques often become unreliable shortly after their deploy-

ment, they are rarely deployed in production environments, remaining 
primarily as a research topic (Arp et al., 2021).

Contribution. In light of this, this paper proposes a new Federated 
Learning (FL) model that provides a reliable network-based intrusion 
detection over time, implemented in three phases. First, we perform the 
classification task with a reject option, which ensures that only highly 
confident, thus, more likely to be correctly classified samples are ac-

cepted by our system, even if the deployed model is outdated. Our main 
insight is to assess the quality of the performed classifications to ensure 
that our system only triggers alerts on highly confident network events, 
rejecting low-confident classifications. Second, we conduct the model 
training task through a FL scheme based on the rejected events over 
time. As a result, organizations can share their CTI while keeping their 
used training dataset private, easing the model training process and 
improving the built model’s quality. Third, model updates over time 
are implemented in a FL fashion based on the rejected events while 
leveraging the outdated deployed model following a transfer learn-

ing rationale. Therefore, the model update task is significantly eased, 
since we consider fewer events for the model building and use the 
prior model knowledge. The insight of such an approach is that FL can 
relax the model update task by sharing the organizations’ CTI while 
proactively selecting the new network traffic through the rejection ap-
2

proach.
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Table 1

Features set extracted at the network level for each feature 
grouping in a time window interval of 15 s.
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Number of Packets

Number of Bytes

Percentage of Packets (SYN Flag)

Percentage of Packets (ACK Flag)

Percentage of Packets (RST Flag)

Percentage of Packets (FIN Flag)

Percentage of Packets (CWR Flag)

Percentage of Packets (URG Flag)

Average Packet Size

Percentage of Packets (ICMP Redirect Flag)

Percentage of Packets (ICMP Time Exceeded Flag)

Percentage of Packets (ICMP Unreachable Flag)

Percentage of Packets (ICMP Other Types Flag)

In summary, the main contributions of this paper are:

• An evaluation of the classification performance over time of state-

of-the-art ML-based NIDSs. Our experiments, performed through a 
dataset of over 7 TB of real network traffic spanning a year, show 
that currently used approaches in the literature demand unfeasible 
periodic model updates to be conducted.

• A new FL model aiming at a reliable network-based intrusion de-

tection. Our proposed model can improve the false-positive rate by 
up to 12.9% when it is not periodically updated. In addition, model 
updates can be made using only 3.6% of instances while reaching a 
false-positive of only 3% in a FL manner without requiring organi-

zations to share their sensitive training data.

Roadmap. The remainder of this paper is organized as follows. 
Section 2 further describes the ML-based NIDS challenges. Section 3

presents related work on reliable intrusion detection. Section 4 evalu-

ates how network traffic behavior changes affect traditional ML-based 
NIDSs. Section 5 describes our proposed model. Section 6 evaluates our 
proposed scheme, and Section 7 concludes our work.

2. Preliminaries

This section further discusses the challenging aspects towards the 
design of a reliable ML-based NIDS.

2.1. Machine learning for network-based intrusion detection

In general, ML for NIDS is achieved through the implementation of 
four sequential modules (Molina-Coronado et al., 2020), namely:

1) Data Acquisition. Collect passing network events from the moni-

tored environment, e.g., collecting network packets from a given 
Network Interface Card (NIC).

2) Feature Extraction. Evaluate the collected data to compound a fea-

ture vector that adequately describes the behavior of the collected 
event. In general, network events in NIDS are represented through 
network flows, which summarize the communication history be-

tween the network entities in a given time window. Table 1 shows 
an example of a feature set that can be used to build a network 
flow.

3) Classification. Classifies the extracted feature set as either normal or 
attack through the application of a ML model.

4) Alert. Signals to the network operator network events classified as 
attack by the ML model.

Over the last years, several highly accurate and promising ML-based 

approaches were proposed for the classification task, wherein authors 
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typically resort to pattern recognition techniques (Zhang et al., 2022). 
To this aim, proposed schemes are implemented following a three-phase 
process, namely training, validation, and testing. The training phase goal 
consists of developing a ML model by evaluating a specified train-

ing dataset. To adequately perform such a task, the training dataset 
must contain huge amounts of network samples that are expected to be 
similar to those evidenced in production environments. The validation 
phase assists with the ML model fine-tuning task, such as performing 
feature selection and tuning the model hyper-parameters. Finally, at 
the testing phase, the model accuracy is estimated during the system 
deployment in the production environment.

2.2. On the challenge of realistic network traffic

The efficiency of a ML model relies on the use of realistic training 
data. Unfortunately, providing a training dataset that adequately rep-

resents the network environment behavior in production environments 
is not a trivial task (Zhang et al., 2022). On the contrary, the behavior 
of networked environments is highly variable and also changes as time 
passes. In practice, a realistic training dataset used for ML-based NIDSs 
building should provide the following characteristics:

• Real network traffic. The network traffic must include realistic com-

munication between the clients and the network service(s). The 
exchanged network traffic between the network entities must fol-

low the behavior in production environments.

• Valid network protocols. The available network traffic must strictly 
adhere to the network protocol specification as expected in produc-

tion environments.

• Diverse behavior. The network traffic behavior must be highly mixed 
according to the selected network protocols on the dataset. Net-

work traffic behavior in production environments varies signifi-

cantly over time.

• Realistic attack. The attacker’s behavior must be adequately rep-

resented in the dataset. The generated attacks must vary in their 
behavior and the attack type.

• Previously labeled. The collected network traffic must be adequately 
labeled as either normal or attack. The training task requires previ-

ously known labels associated with the input events.

• Publicly available. The built dataset must be publicly available to 
enable researchers to benchmark their proposed schemes.

• Non-stationary behavior. The behavior of network traffic changes 
as time passes. Therefore, the collected data must depict those 
changes.

As a result, building realistic intrusion datasets for ML-based NIDSs 
is challenging. Network operators generally build the training dataset 
in a controlled environment or collect it from their infrastructure (Yang 
et al., 2022). On the one hand, a controlled testbed usually fails to pro-

vide realistic and diverse network traffic behavior (Maseer et al., 2021). 
On the other hand, monitoring a network infrastructure provides real-

istic network traffic. However, it must address the labeling of collected 
events and can not be easily shared publicly (Papadogiannaki and Ioan-

nidis, 2021).

The adequate labeling of the collected network traffic poses a great 
challenge to the reliability of designed intrusion datasets (Yang et al., 
2022). A controlled testbed paves the way for automatically labeling 
network traffic, as the host’s behavior can be previously known (Yamin 
et al., 2020). In contrast, labeling real-world network traffic collected 
from production environments is not easily achievable, wherein au-

thors usually resort to misuse-based or unsupervised learning tech-

niques (Fontugne et al., 2010). On the one hand, the prior enables 
labeling previously known attack behaviors while failing at identify-

ing new attack variants. On the other hand, the latter is assumed to 
detect new attacks, usually at the expense of a high rate of false posi-
3

tives (Sommer and Paxson, 2010).
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Apart from the challenges related to dataset building, the behavior 
of network traffic changes as time passes, a situation usually overlooked 
in the literature. In practice, the network traffic behavior evolves, which 
can be pushed by discovering new attacks, providing new services, or 
even changes on the network communication link (Viegas et al., 2019). 
As a result, deployed ML-based NIDS demands periodic model updates 
to be conducted. Generally, this resource and time-consuming task re-

quires expert assistance for the data collection and labeling tasks (Zoppi 
et al., 2023).

2.3. Federated learning

The FL aims at conducting a collaborative learning process to en-

able information sharing between multiple and trusted peers (Hei et al., 
2020). In practice, the FL goal is to perform the model training lever-

aging the participant peers’ training data while keeping each peer-used 
data private. The FL scheme relies on a central server responsible for 
aggregating the local models into a global counterpart to achieve such 
a goal (Alghamdi and Bellaiche, 2023).

Given a classification function 𝑓 (𝑥) ∶ 𝑥 → 𝑦 that outputs the identi-

fied label 𝑦 on given an input feature vector 𝑥. The FL goal is to find 
an aggregated model 𝑤𝐺 to be used by the function 𝑓 , such that 𝑤𝐺 is 
built based on the training data {1, 2, ..., 𝑘}, where 𝑖 denotes the 
private training dataset from peer 𝑃𝑖, and 𝑘 represents the number of 
peers.

To achieve such a goal, FL is usually implemented following a four-

phase process, namely Initialization, Distribution, Local Training, and Ag-

gregation.

1) Initialization. The central server 𝑠 initializes a selected global clas-

sification model 𝑤𝑡
𝐺

where 𝑡 denotes the execution round. The 
selected model must enable the aggregation task to be conducted, 
e.g., using a neural network to aggregate its computed weights.

2) Distribution. At every communication round 𝑡, such that 0 ≤ 𝑡 ≤ 𝑇 , 
where 𝑇 denotes the upper limit of communication rounds, the cen-

tral server 𝑠 distributes the global model 𝑤𝑡
𝐺

to a selected number 
𝑚 of peers such that 0 ≤ 𝑚 ≤ 𝑘, where 𝑘 denotes the total number 
of participant peers.

3) Local Training. Each previously selected peer 𝑃𝑖 conducts the local 
training of the received global model 𝑤𝑡

𝐺
based on their private 

training data 𝑖, compounding a local model 𝑤𝑡𝑖.
4) Aggregation. The central server 𝑠 collects the local models from 

each selected peer to conduct the model aggregation task that com-

pounds a new global model 𝑤𝑡+1
𝐺

. The model aggregation task is 
a function that aggregates a series of models into a single coun-

terpart, e.g., through the Average Federated Learning (FedAVG) 
function (Zhou et al., 2021), implemented based on the following 
equation:

𝑤𝑡+1
𝐺

=
∑𝑚
𝑖=0𝑤
𝑡
𝑖

𝑚
(1)

where 𝑚 denotes the number of selected peers. Therefore, the Fe-

dAVG build the new global model 𝑤𝑡+1
𝐺

by computing the average 
of each local model 𝑤𝑡𝑖 weights.

Finally, if the execution round 𝑡 + 1 reaches the upper limit of 
rounds 𝑇 , the training is terminated; otherwise, a new Distribution

phase occurs.

As a result, the FL training procedure can build a robust ML model 
based on each organization’s training data while keeping it private dur-

ing such a process. The reason for this is that the training process is 
carried out locally based on each organization’s private data, while the 

aggregation only requires sharing the built local models.
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3. Related work

3.1. Intrusion detection reliability

Over the last decades, several works have proposed highly ac-

curate ML techniques for network-based intrusion detection (Molina-

Coronado et al., 2020; Yang et al., 2022). Despite the promising results 
reported in the scientific literature, proposed schemes are hardly de-

ployed in production environments, remaining mainly as a research 
topic (Arp et al., 2021). In general, related works do not address 
the challenges of their proposed schemes when they need to be de-

ployed in production, such as the evolving behavior of network traffic 
and the periodic model update procedure (Viegas et al., 2019). For 
example, Saba et al. (2022) presented a deep learning scheme for 
intrusion detection in resource-constrained devices. The proposed ap-

proach improves accuracy on an outdated dataset compared to other 
intrusion detection schemes. However, during their evaluation, they do 
not consider the network’s highly variable and non-stationary behav-

iors. In contrast, Zeng et al. (2022) addressed the lack of reliability 
in intrusion detection by aiming for higher model generalization ca-

pabilities. The authors proposed a deep causal stable learning system 
to identify causal relationships between different intrusion datasets. 
Their model achieved more stable accuracy rates throughout differ-

ent datasets, ensuring model generalization. Unfortunately, the authors 
consider the network traffic static without evaluating the changes in 
the causal relationship over time. Zhao et al. (2022) addressed non-

stationary behavior in intrusion detection systems through an out-of-

distribution detection approach. The authors build a system consider-

ing unknown behavior to their deployed model, enabling the identi-

fication of new events. Similarly, the authors do not consider (i) the 
changes in network traffic behavior as time passes and (ii) the model 
update challenge. Wahab (2022) highlighted changes in network traf-

fic by resorting to a concept drift detection mechanism. The proposed 
model assumes a supervised setting, wherein the event label can be 
provided as time passes: a condition unrealistic in production environ-

ments.

3.2. Model updates

Several works in Academia like (Li et al., 2022) assume that the ac-

curacy rate during the testing phase does not change over time. When 
considering model updates, researchers make use of incremental learn-

ing approaches. Mahdavi et al. (2022) proposed an active learning 
approach implemented through incremental model updates to address 
the evolving network traffic behavior. The authors identify new net-

work traffic behavior according to previously known event clusters, 
assuming that new traffic will differ significantly. However, the network 
traffic behavior may not present significant variations over time, even 
for new behaviors. Similarly, Huang and Ma (2023) presented incre-

mental learning in intrusion detection to merge new attack behaviors. 
Although their proposed model addresses the new type of attacks over 
time, it does not consider how the new network traffic behavior can be 
identified. Jiang et al. (2022) introduced incremental ensemble learn-

ing to improve prediction accuracy. The authors assume the easiness 
of signaling new traffic behaviors, without considering the challenge 
of new network traffic behavior identification. Wu et al. (2022) incre-

mentally adjusted an ensemble of classifiers based on newly occurring 
data. Their approach can improve the classification accuracy of new 
data batches. Similarly, they do not take into account the identification 
of the new network traffic behavior. Li et al. (2021) addressed intrusion 
model updates through a transfer learning rationale. The authors use 
the outdated model to decrease the computational costs during model 
updates. Their proposed scheme do not consider the identification of 
4

new network traffic behavior.
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3.3. Federated learning in intrusion detection

In the scientific literature, several FL approaches have been pro-

posed to address challenges in the network-based intrusion detection 
context (Campos et al., 2022). For instance, Yuan et al. (2021) aimed 
at decreasing communication overheads while sharing the federated 
models. The authors proposed a model based on gradient boosting and 
decision trees to decrease communication costs while providing high 
accuracy. Unfortunately, the authors do not consider the model update 
procedure over time and how their model performs while facing new 
network traffic behavior. Another approach aiming the easiness dur-

ing the model aggregation is proposed by Sun et al. (2020). Before 
building a globalized counterpart, the authors developed local models 
in each network segment. Although the proposed scheme can decrease 
the model aggregation costs, it does not manage the model update pro-

cedure and the classification reliability.

In general, FL has been used in intrusion detection to enable par-

ticipants to share intrusion knowledge without compromising the par-

ticipants’ data privacy. Mothukuri et al. (2022) proposed an intrusion 
detection model through FL to enable resource-constrained devices to 
share local data knowledge without sharing data content. The proposed 
model achieves similar accuracies compared to globalized traditional 
approaches. However, the authors do not consider the detection relia-

bility and the model update process over time. In contrast, Hei et al. 
(2020) aimed the application of blockchain to store the model local 
weights over time reliably. The authors proposed a scheme that can 
perform alert filtering without considering the model update procedure 
and its reliability.

3.4. Discussion

Network-based intrusion detection through behavior-based tech-

niques is a widely explored topic in the literature (Molina-Coronado et 
al., 2020; Yang et al., 2022), wherein the vast majority of approaches 
focus their efforts on increasing the system accuracy (Saba et al., 2022; 
Zeng et al., 2022). Unfortunately, network traffic behavior is highly 
variable and evolves as time passes, demanding systems to be designed 
accordingly. Surprisingly, the classification reliability is hardly consid-

ered. It is assumed that new network traffic behavior can be easily 
identified, while the event label can be readily provided in produc-

tion (Wahab, 2022; Zhao et al., 2022). On the contrary, event label is 
hardly available in reality, and designed techniques must operate in an 
unsupervised fashion.

To address the challenges related to detecting new network traffic 
behavior, researchers propose to adopt the incremental learning (Huang 
and Ma, 2023; Jiang et al., 2022; Mahdavi et al., 2022) or transfer 
learning (Li et al., 2021) approaches which ease the model update 
computational costs. However, (i) the detection reliability before the 
availability of the newly built model and (ii) the identification of the 
new network traffic is not correctly considered (Li et al., 2021; Wu et 
al., 2022). In such a context, FL-based approaches can ease the data re-

quirements during model updates, such as solving the communication 
overheads (Sun et al., 2020; Yuan et al., 2021) or decreasing the com-

putational costs (Mothukuri et al., 2022).

As a result, most of the current ML-based intrusion detection 
schemes cannot address the challenges of real-world networked envi-

ronments due to the high variability of network traffic and the model 
update procedure to address new network traffic behaviors.

4. Problem statement

Over the last years, proposed ML-based intrusion detection schemes 
did not consider the challenges related to the evolving behavior of net-

work traffic. In this section, we investigate how the changes in network 
traffic behavior over time may affect the classification performance of 

designed ML-based approaches. We introduce the dataset adopted in 
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Table 2

MAWIFlow dataset statistics.

Property Value

Average Daily Network Packets 105 Millions

Average Daily Network Flows 19 Millions

Average Daily Throughput 610 Mbps

Average Daily Anomalous Flows 1.8 Millions

Average Daily Dataset Size 19.7 GB

Total Network Packets 27.72 Billions

Total Network Flows 6.14 Billions

Total Dataset Size 7.1 TB

our work to achieve such a goal, and then we experimentally evalu-

ate the classification performance when the network traffic behavior 
changes over time.

4.1. MAWIFlow dataset

The design of a realistic network-based intrusion detection dataset 
is challenging because the features needed during the dataset build-

ing are not readily achievable (see Sec. 2.2). Current approaches in 
the literature assume only a static network traffic behavior without 
accounting for its changes, i.e., they leveraged the same training and 
testing dataset environment (Gates and Taylor, 2006). In practice, us-

ing outdated datasets with several known flaws is common.

Our work resorts to the MAWIFlow dataset to address such a chal-

lenge. The dataset comprises one year of real network traffic collected 
daily in a 15 minute interval. The network traffic is collected from a 
transit link connecting Japan and USA, as provided by the MAWI net-

work traffic archive (MAWI, 2023). For our evaluation, we select the 
network traffic that occurred through 2014, due to a higher available 
network data samples. The resulting dataset comprises ≈ 7 TB of data 
with over 6 billion network flows. The collected network traffic shows 
a realistic behavior of production environments, with realistic network 
attacks experienced as time passes. The dataset presents a wide range of 
network-level attacks, such as service scan, UDP scan, TCP scan, denial-

of-service, and even web server attacks.

We resort to an unsupervised ML technique to address the labeling of 
the collected network events. In detail, we label the MAWIFlow dataset 
events through MAWILab (Fontugne et al., 2010) technique, which la-

bels the input events as either normal or attack in an unsupervised 
fashion. MAWILab uses several unsupervised ML algorithms to iden-

tify anomalous events that occurred on the MAWI archive daily without 
requiring human assistance. As discussed previously (see Sec. 2.2), un-

supervised ML techniques may introduce false positives. To address 
such a challenge while accounting for the changes in network traffic be-

havior as time passes MAWILab builds its unsupervised ML algorithms 
daily. Therefore, as the dataset goal is to enable the evaluation of the 
reliability of designed ML-based NIDSs over time, the changes in the 
network traffic behavior will also be depicted on the produced dataset.

We label the identified anomalies as attack on MAWIFlow dataset, 
while the remaining events are considered as normal network traffic. To 
perform the feature extraction, we use the BigFlow (Viegas et al., 2019) 
tool, which extracts network flows in intervals of 15 seconds while ex-

tracting 40 flow-based features (Dromard et al., 2017) for each exported 
flow. Table 1 shows a summary of the extracted set of features in our 
dataset, while Table 2 shows the MAWIFlow dataset statistics.

The built dataset can adequately address the challenges related to 
a realistic intrusion dataset. The used network traffic is real, valid, and 
highly diverse as it is collected from a real-world network transit link. 
The available network attacks are realistic as the attack behavior is 
extracted from production environments. We address the previous la-

beling of events through an unsupervised technique, which can label 
the network events without human assistance. The network traffic is 
non-stationary as we consider a considerable recording period spanning 
5

an entire year. Finally, the dataset is provided in a publicly available for-
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mat. It does not contain sensitive information because MAWI removes 
the network packet payload and anonymizes the network packet head-

ers. As a result, our dataset provides a benchmark to evaluate proposed 
intrusion detection techniques concerning their reliability under real-

world conditions of networked environments.

4.2. The reliability of ML-based NIDS

Due to the challenge of the impact related to the changes in the 
network traffic behavior over time on designed ML-based NIDSs, we 
evaluated the performance of widely used ML classifiers in the litera-

ture when applied on MAWIFlow dataset. Our experiments adopt four 
ML classifiers, namely Random Forest (RF), k-Nearest Neighbor (kNN), 
Bagging (Bag), and Ensemble (Zhang et al., 2022). The RF classifier 
uses 100 decision trees as its base learner, each using 𝑔𝑖𝑛𝑖 as the node 
split quality metric. The kNN classifier is implemented with 5 neigh-

bors as the 𝑘 parameter while computing the distance between the 
events through the euclidean distance formula. The Bag classifier uses 
10 decision trees as its base learner, with each learner trained on the 
entire training dataset with the samples randomly selected with re-

placement. The Ensemble classifier makes use of the three previously 
described classifiers (RF, kNN, and Bag) combined through a majority 
voting procedure. To ensure the proper model training, as most events 
on MAWIFlow dataset are normal (see Table 2), we apply a random un-

dersampling without replacement at every training task. The classifiers 
are implemented through scikit-learn API v0.24 (scikit-learn, 2023).

We evaluate the selected classifiers using the following classification 
performance metrics:

• True Positive (TP): number of attack samples correctly classified as 
an attack.

• True Negative (TN): number of normal samples correctly classified 
as normal.

• False Positive (FP): number of normal samples incorrectly classified 
as an attack.

• False Negative (FN): number of attack samples incorrectly classified 
as normal.

Further, we measure the F-Measure according to the harmonic mean of 
precision and recall values while considering attack samples as positive 
and normal samples as negative, as shown in Eq. (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝐹 -𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Our performed experiments aim at answering two Research Ques-

tion (RQs):

• (RQ1) Is classification performance affected by network traffic behav-

ior changes over time?

• (RQ2) Does model update address the network traffic behavior 
changes?

Our first experiment aims at answering RQ1. In such a case, we 
evaluate the classification accuracy of the four selected classifiers over 
time without performing periodic model updates, as usually made in 
the literature. The four selected classifiers are trained based on the data 
collected in the first month of the MAWIFlow dataset (January) while 
measuring its accuracy throughout the year. As a result, we evaluate the 
classification performance as time passes if no model updates are per-

formed periodically. Although the network traffic behavior is expected 
to change over time, the impact on classification accuracy of designed 

ML-based techniques is often not considered.
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Fig. 1. Monthly accuracy behavior of selected classifiers in MAWIFlow dataset without periodic model updates. Classifiers are trained using January data and not 
updated as time passes.

Fig. 2. Monthly accuracy behavior of selected classifiers in MAWIFlow dataset with monthly model updates. Classifiers are updated monthly with the data that 
occurred in the preceding month.
Fig. 1 shows the classification performance of the selected classifiers 
over time without periodic model updates. All the evaluated approaches 
can provide significantly high detection accuracies in January, i.e., the 
period in which they were trained. However, their measured error rates 
significantly increase after the training time. For example, just a month 
after the training period (February), the measured FP rate increases by 
27%, 24%, 20%, and 21% for the RF, kNN, Bag, and Ensemble classifiers, 
respectively. Notwithstanding, if no model updates are performed, clas-

sification error can increase up to 87% (Fig. 1a, November). Even the 
best-performing classifier (Fig. 1d, Ensemble) significantly degrades its 
accuracy as time passes, presenting an average of 33% and 3% of FP 
and FN rates respectively, an increase of 31% and 1% when compared 
to its training period.

Accordingly, ML-based NIDSs must conduct periodic model updates 
to ensure their reliability. Our experiments show that the selected tech-

niques must keep their classification reliability in the face of new net-

work traffic behavior. However, there still needs to be more research 
on how the changes in network traffic over time affect designed tech-

niques, despite, as evaluated, posing a significant challenge to designed 
approaches.

Our second experiment goal is to answer RQ2 and experimentally 
verify if periodic model updates can provide detection reliability to ML-

based NIDSs over time. To achieve such a task, we conduct monthly 
model updates according to the network data that occurred in the pre-

ceding month. For example, on March 1st, we update the model using 
the network flows that occurred throughout February as training data. 
We aim to reproduce a model update setting where the network oper-

ator conducts monthly model updates, considering a one-month model 
lifespan, regardless of the current network traffic behavior. In practice, 
the network operator cannot quickly assess when model updates should 
be conducted in production settings, as the label of events in network 
environments is not previously known.

Fig. 2 shows the classification performance of the selected classifiers 
when we conduct monthly model updates. The classifier’s accuracies 
6

are measured according to the classification performance on a given 
month using the model trained on the data that occurred in the pre-

ceding month. In contrast to their no-update counterpart, the monthly 
updated classifier improved the classification accuracy significantly by 
keeping the error rates similar to those obtained in January. For exam-

ple, in November, the RF classifier shows an FP rate of only 1.3%, as 
opposed to 87% compared to its no-update counterpart. In addition, the 
Ensemble classifier (Fig. 2d) achieved and average of 8% and 4% of FP 
and FN rates respectively. In practice, periodic model updates improved 
the classification accuracy of all selected classifiers, showing that model 
updates are necessary to address the network traffic behavior changes.

As a result, to keep their reliability, ML-based NIDSs must be pe-

riodically updated. Our experiments have shown a direct relationship 
between model reliability and model lifespan. Unfortunately, model 
updates are not easy to be conducted in NIDSs, thus, posing a great 
challenge for the deployment in production environments (see Sec. 2.1).

4.3. Discussion

The evolving behavior of network traffic poses a significant chal-

lenge to designed ML-based NIDSs, which can significantly affect the 
accuracy of used intrusion detection schemes. This section has experi-

mentally evaluated how the changes in the network traffic behavior as 
time passes may affect the reliability of ML-based intrusion detection. 
The performed experiments have shown that the selected classifiers de-

creased their accuracy just a month after the training period (Fig. 1). In 
practice, current ML-based techniques significantly decrease their error 
rates as time passes. In such a context, model updates can address the 
changes in the network traffic if performed according to a given model 
lifespan (Fig. 2). However, there is a significant number of challenges to 
achieve this goal. Model updates require the provision of a new train-

ing dataset with properties that ensure its authenticity (see Sec. 2.2). 
Therefore, it must be executed without demanding significant efforts 
for the network operator while guaranteeing that the deployed model 

is reliable.
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Fig. 3. Proposed federated learning model for reliable model updates on network-based intrusion detection.
5. A federated learning model for reliable model updates on 
network-based intrusion detection

This section describes our proposed reliable network-based intru-

sion detection model based on a FL strategy. Our solution addresses the 
evolving behavior of network traffic as time passes by conducting the 
classification with a reject option while leveraging model updates im-

plemented following a FL rationale. The main proposal goal is to ease 
the network operator’s burden to update the deployed intrusion detec-

tion model while keeping the system reliable. The proposed model is 
implemented in two phases, namely Reliable Classification, and FL-based 
Model Update, as depicted in Fig. 3.

We consider a FL architecture composed of a central server 𝑠 and a 
set of peers 𝑃𝑘, where 𝑘 denotes the number of peers such that 𝑘 > 1. 
Each peer 𝑃𝑖 is an organization that aims at conducting reliable intru-

sion detection while easing the model update procedure. We assume 
that the central server 𝑠 is benign and trusted by all peers. The central 
server is responsible for compounding the global model 𝑤𝐺 , executing 
the tasks of initialization, distribution, and aggregation (see Sec. 2.3). Con-

versely, each FL peer 𝑃𝑖 executes the local training task based on their 
private labeled dataset 𝑖.

Each peer executes the Reliable Classification module (Fig. 3) for con-

ducting network-based intrusion detection on his infrastructure. Our 
proposal aims to achieve classification reliability by performing the 
classification with a reject option rationale. Our main goal is to iden-

tify unreliable classifications based on the confidence values output by 
the deployed classifiers as time passes. It is worth noticing that classi-

fication confidence is classifier agnostic. For instance, the RF classifier 
usually outputs its classification confidence values according to the ra-

tio of individual decision trees that classify the input event for a given 
label. We assume that low-confident classifications have a higher prob-

ability of producing a false alarm; therefore, they should be rejected by 
our system. Rejected events are used twofold for alert suppression and 
model updates. Rejected events, due to their low classification confi-

dence, do not generate alerts to the network operator, as they are more 
likely to produce a false alert. Nonetheless, rejected events are assumed 
to be new behaviors unknown to the deployed ML model, hence, they 
are stored for the following model updates. As a result, our scheme can 
keep its classification reliability as time passes while proactively select-
7

ing which events should be used for model updates.
To address the non-stationary behavior of network traffic, our pro-

posal uses a FL-based Model Update module, which aims at easing the 
model update twofold. First, as time passes, each peer 𝑃𝑖 conduct peri-

odic model updates through a FL rationale by updating the global model 
𝑤𝑡
𝐺

at each execution round 𝑡 to build a global model 𝑤𝐺 jointly. As a 
result, each participant organization can decrease the costs related to 
the model update task by sharing their CTI knowledge without affect-

ing their privacy. The training data needed to conduct model updates 
can be significantly decreased as organizations share the knowledge ob-

tained from their local data. Second, we conduct periodic model updates 
through a transfer learning approach by employing the FL rationale for 
each peer’s rejected events ∅

𝑖 . Thus, our proposed model can signifi-

cantly decrease the computational costs during model updates as each 
peer collaborative rebuilds the outdated global model. These assump-

tions will reduce the data needed to conduct such a task by making the 
model update burden easy for the network operator.

The following subsections further describe our proposed FL model 
and the implementation details.

5.1. Reliable classification

The behavior of real-world network traffic is highly variable as time 
passes. This phenomenon affects the reliability of designed ML-based 
NIDSs schemes by increasing the measured error rate when compared 
to their training period (see Fig. 1). To address such a challenge, the 
network operator must conduct periodic model updates, which usually 
require weeks or even months to be fulfilled. As a result, designed classi-

fication schemes must be able to keep their reliability for more extended 
periods while an updated model is still being designed.

Our proposed model aims to solve this problem by implementing the 
classification task as a classification with a reject option. Our proposed 
scheme uses the rejector to identify two types of incorrect predictions, 
namely ambiguity and novelty. On the one hand, ambiguity refers to de-

cisions that the predictor cannot perform with high reliability, e.g., 
because they are closer to the predictor’s decision boundary. On the 
other hand, novelty handles decisions that are highly different from 
those experienced during model training, e.g., because they are a new 
kind of behavior. Fig. 3 shows the classification pipeline with the added 
rejector module. It follows a traditional network-based intrusion detec-

tion pipeline (see Sec. 2.1) with an added rejector module implemented 

before the alert module.
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A ML model with a reject option combines the used predictor 𝑤
with a rejector 𝑟 to implement the rejection decision function on a 
given input event. Given a model 𝑤 that outputs a pair of classification 
confidence values 𝛼 = {𝛼𝑛𝑜𝑟𝑚𝑎𝑙, 𝛼𝑎𝑡𝑡𝑎𝑐𝑘} for every input event 𝑥. Where 
𝛼 measures the event confidence to be either normal or attack classes, 
respectively, such that 𝛼 ∈ ℝ[0, 1]. The rejector’s 𝑟 goal is to reject or 
accept the classification based on its associated confidence values 𝛼, 
according to the following function:

𝑤(𝑥)

{
∅ if 𝑟(𝛼) = 𝑟𝑒𝑗𝑒𝑐𝑡
𝑤(𝑥) otherwise

(5)

where ∅ marks input events likely to be incorrect decisions the predictor 
performs. As part of the problem, we need to identify and adequately 
address misclassifications performed by the predictor due to the evolv-

ing behavior of network traffic. We assess the predictor’s classification 
confidence values 𝛼 to implement the rejector in a classifier agnostic 
rationale to achieve such a goal. Equation (7) shows the rejector imple-

mentation function in our proposal.

𝑟(𝛼, 𝑡)

{
∅ if 𝛼 ≤ 𝑡

𝛼 otherwise
(6)

𝑑(𝛼, 𝑡)

⎧⎪⎪⎨⎪⎪⎩

Normal Classified
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑟(𝛼𝑛𝑜𝑟𝑚𝑎𝑙, 𝑡𝑛𝑜𝑟𝑚𝑎𝑙) if 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 > 𝛼𝑎𝑡𝑡𝑎𝑐𝑘

𝑟(𝛼𝑎𝑡𝑡𝑎𝑐𝑘, 𝑡𝑎𝑡𝑡𝑎𝑐𝑘)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Attack Classified

otherwise
(7)

where 𝑡 denotes the pair of acceptance threshold values for each class 
such that 𝑡 ∈ℝ[0, 1], and 𝑑 a decision function coped with the proposal 
ejector module.

Thus, the input events acceptance is established according to their 
classification confidence level 𝛼 evaluated against an acceptance thresh-

old 𝑡. Low-confident classifications are more likely to be related to 
ambiguity or novelty events, which are assumed to occur due to the 
evolving behavior of network traffic. Therefore, low-confident classifi-

cations are rejected by our system and adequately stored for later model 
updates. In contrast, high-confident classifications are assumed to be 
network events known to the underlying deployed ML model, thus, can 
be reliably accepted by our system. Therefore, our proposal solves the 
following equation to implement the rejector’s threshold optimization.

𝑇 (𝑤,, 𝑦) = argmin
𝑡×2∈ℝ[0,1]
𝛽𝐸(𝑤,, 𝑦, 𝑡) + 𝛾𝑅(𝑤,, 𝑦, 𝑡) (8)

where 𝑇 (𝑤, , 𝑦) is an acceptance threshold search function for a ML 
model 𝑤, on a given dataset , with an associated label 𝑦. The func-

tion goal is to find an acceptance threshold 𝑡 that minimizes the sum of 
the functions 𝐸(𝑤, , 𝑦, 𝑡) and 𝑅(𝑤, , 𝑦, 𝑡), where 𝐸 measures the error 
rate on the accepted events using threshold 𝑡, and 𝑅 measures the re-

jection rate with the used threshold. The error and rejection rates are 
multiplied by previously defined 𝛽 and 𝛾 values based on the network 
operator’s needs. A higher rejector threshold can improve the system’s 
reliability while increasing the number of rejected events as a trade. 
In contrast, a lower rejector threshold decreases the number of rejected 
events while affecting the system’s reliability as time passes. Our insight 
is to identify network events unknown to the deployed ML model and 
update it based on the newly identified behavior. As a result, we can sig-

nificantly decrease the computational costs during model updates and 
reduce the number of network events that require labeling.

The proposal classification pipeline employs a traditional ML-based 
NIDS deployment on the FL peers (Fig. 3, Reliable Classification). In such 
a context, the network events are collected through a Data Acquistion

module, while the behavior of the collected events is extracted by a 
Feature Extraction module. A Classification module uses the built feature 
vector as input, which applies the ML model and outputs an associ-

ated classification confidence value. The classification confidence value 
8

is used as input by our Rejector module, which evaluates if a given 
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Algorithm 1 Reliable Classification Pipeline.

Require:

Model 𝑤𝐺
Event 𝑥 = {𝑓1 , 𝑓2 , ..., 𝑓𝑁}
Threshold 𝑡 = {𝑡𝑎𝑡𝑡𝑎𝑐𝑘, 𝑡𝑛𝑜𝑟𝑚𝑎𝑙}
procedure CLASSIFICATION(𝑤𝐺 , 𝑥, 𝑡)
𝛼← 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦(𝑤𝐺, 𝑥)
if 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 > 𝛼𝑎𝑡𝑡𝑎𝑐𝑘 and 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 ≥ 𝑡𝑛𝑜𝑟𝑚𝑎𝑙 then

𝑎𝑙𝑒𝑟𝑡(𝑥, 𝑛𝑜𝑟𝑚𝑎𝑙)
else if 𝛼𝑎𝑡𝑡𝑎𝑐𝑘 ≥ 𝑡𝑎𝑡𝑡𝑎𝑐𝑘 then

𝑎𝑙𝑒𝑟𝑡(𝑥, 𝑎𝑡𝑡𝑎𝑐𝑘)
else

𝑟𝑒𝑗𝑒𝑐𝑡(𝑥)
end if

end procedure

classification confidence threshold is met according to Eq. (7). Highly 
confident classifications are accepted by our model and can be used to 
trigger alerts. In contrast, low confident classifications are rejected by 
our model and stored in a dataset ∅

𝑖 for latter model updates within 
each FL peer (see Sec. 5.2).

Algorithm 1 shows our reliable classification pipeline procedure 
(Fig. 3, Reliable Classification). It receives as input a ML model 𝑤, an 
instance 𝑥 represented by a feature set 𝑓 , and an acceptance threshold 
𝑡 associated with each class (normal or attack). The model classifies the 
input instance, outputting a pair of classification confidence value 𝛼. 
According to the classification confidence, the event triggers alerts if it 
surpasses a previously defined rejector threshold. Otherwise, the event 
is rejected and used by our model update pipeline (see Sec. 5.2).

As a result, our proposed classification pipeline can ensure the sys-

tem’s reliability over time, even in the presence of an outdated ML 
model. Notwithstanding, our proposed scheme can also proactively 
identify new kinds of network traffic behavior that should be used for 
model updates. This is because our model will reject new network traf-

fic in an unsupervised fashion due to the low classification confidence.

5.2. FL-based model update

The model update is a challenging task in ML-based NIDSs. This 
is because model updates require the provision of an updated labeled 
dataset and the execution of a computationally expensive model train-

ing process. On the one hand, building a new training dataset usually 
requires the collection of new network traffic behavior and human as-

sistance for adequate labeling. On the other hand, model training is a 
usually computationally expensive process.

Our proposed scheme implements periodic model updates in a three-

phase process to address such a challenge. First, model updates are con-

ducted in a FL rationale, improving the quality of the built model while 
enabling network operators to leverage the participant organizations 
CTI. Second, model updates are performed using the system’s previ-

ously rejected events (see Sec. 5.1). Consequently, we can significantly 
reduce the number of events that must be used for model updates. Our 
main assumption is that model updates can be performed only using 
the events that the ML model could not classify reliably, fine-tuning 
the system as time passes. Third, model updates are conducted follow-

ing a transfer learning approach, using the outdated model to reduce 
the computational costs and leverage the previously trained knowledge 
available on the model.

Our proposed FL-based model update pipeline is shown in Fig. 3. 
It considers a central server 𝑠 and a set of 𝑘 Peers 𝑃𝑖. The centralized 
server is assumed to be benign and is responsible for conducting the 
tasks of Initialization, Distribution, and Aggregation. Each peer 𝑃𝑖 is re-

sponsible for conducting the Local Training task, and holds an Unreliable 
Dataset 𝐷∅𝑖 that stores the previously peer rejected events ∅ (see Eq. (7)) 
since the last execution of the model update. Each peer 𝑃𝑖 is responsi-

ble to conduct the Unreliable Dataset labeling to compound a Labeled 
Dataset 𝑖. The dataset labeling can be conducted by automated misuse-
based intrusion detection tools or through network operator assistance.
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Algorithm 2 Reliable Peer Update.

Require:

Model 𝑤𝑡
𝐺

⊳ Global Round Model

Unreliable Dataset ∅
𝑖 ⊳ Peer 𝑖 rejected events

Label Provider 𝑙 ⊳ Network Operator

procedure PEERUPDATE(𝑤𝑡
𝐺

, ∅
𝑖 , 𝑙)

𝑖 ← 𝑙𝑎𝑏𝑒𝑙(∅
𝑖 , 𝑙) ⊳ Label rejected dataset

𝑤𝑡𝑖 ← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑤
𝑡
𝐺
, 𝑖) ⊳ Update model

𝑒𝑥𝑝𝑜𝑟𝑡(𝑤𝑡𝑖) ⊳ Export to central server

end procedure

The model update task is periodically executed, e.g. every month by 
the central server 𝑠 (Fig. 3, Global Update Trigger). The procedure ini-

tially distributes the global round model 𝑤𝑡
𝐺

to all FL peers. Without 
sharing their private data, each peer 𝑃𝑖 updates their local model ac-

cording to their previously rejected and labeled events 𝑖. The labeled 
dataset 𝑖 is used to update the 𝑤𝑡

𝐺
model to compound a local model 

𝑤𝑡𝑖 following a transfer learning rationale, fine-tuning the model to the 
events that were previously rejected by the peer reliable classification 
pipeline. The updated local model 𝑤𝑡𝑖 is returned to the central server, 
which performs the model aggregation task, outputting a global model 
𝑤𝑡+1
𝐺

. The model update procedure is repeated until 𝑇 execution rounds 
are reached. Finally, the built global model 𝑤𝐺 is sent back to all FL 
peers, finalizing the model update task.

Algorithm 2 shows the model update procedure. It is executed on 
every participant peer, on every global round model update execution, 
it receives as input a model 𝑤𝑡

𝐺
, an unreliable dataset ∅

𝑖 containing the 
peer 𝑖 rejected events, and a label provider 𝑙. Recalling that the label 
provider can be conducted using automated misuse-based intrusion de-

tection tools or network operator assistance. The label provider 𝑙 labels 
the rejected dataset ∅

𝑖 to compound a labeled dataset 𝑖. The labeled 
dataset 𝑖 updates the received model 𝑤𝑡

𝐺
resulting in a local model 𝑤𝑡𝑖. 

Finally, the peer-updated classifier 𝑤𝑡𝑖 is exported to the central server 
to aggregate a global model counterpart.

As a result, the benefits of our FL-based model update task are 
twofold. First, participants do not need to share their private data while 
still being able to use other participants’ knowledge, as represented 
by their local models. Therefore, several participants can collaborate 
during the model update task without involving a huge amount of train-

ing data. Second, the model update procedure is based on the rejected 
events over time. Thus, the training data used throughout updates sig-

nificantly decreases while the model is fine-tuned according to the 
previously rejected events. Such a characteristic enables operators to 
fine-tune their deployed ML model based on the newly network traffic.

6. Evaluation

The proposal evaluation aims at answering the following RQ:

• (RQ3) How does the traditional FL perform when facing new network 
traffic?

• (RQ4) How does the proposed rejector technique assist in improving the 
classification reliability?

• (RQ5) How does our proposed model perform over time with periodic 
model updates?

The following subsections further describe the proposed model-

building procedure and its evaluation.

6.1. Model building

The proposed model is evaluated by using a Multilayer Perceptron 
(MLP) classifier implemented with 500 hidden neurons, a relu activation 
function, and adam optimization. The parameters are defined empiri-

cally. The classifier is implemented through scikit-learn API v0.24 (scikit-

learn, 2023). We adopt the MLP for the FL implementation, aggregating 
9

the local models into a single global counterpart. Thus, we implement 
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Fig. 4. Classification performance of the traditional FL implementation without 
model updates over time. System is only trained with January data.

the global model aggregation by computing the average of local MLP 
weights by leveraging the FedAVG algorithm.

Following, we describe the steps of our implemented FL-based train-

ing and model update procedure (see Sec. 2.3 and Fig. 3):

1) Initialization. If it is proposal initialization, the central server 𝑠 ran-

domly initializes a global round model 𝑤𝑡
𝐺

. Conversely, if a model 
update is conducted, the previously trained global model 𝑤𝐺 is 
used.

2) Distribution. Global round model 𝑤𝑡
𝐺

is sent to all FL peers.

3) Local Training. Each peer executes Algorithm 2 and updates the re-

ceived model 𝑤𝑡
𝐺

to compound a model 𝑤𝑡𝑖. The model is fine-tuned 
using 500 epochs. If it is the initial training, each peer 𝑖 updates the 
received model 𝑤𝑡

𝐺
with randomly selected events from the train-

ing dataset. Conversely, if a model update is conducted, training is 
performed based on the peer 𝑖 rejected events stored on the dataset 
𝑖.

4) Aggregation. The built model 𝑤𝑡𝑖 is sent to central server 𝑠. The cen-

tral server executes the FedAVG algorithm to compound a global 
model 𝑤𝑡+1

𝐺
. If 𝑡 ≤ 10, another round of the model training or update 

is executed (phase 2 to 4). Otherwise, model training is finalized, 
and the built global model 𝑤𝐺 is sent to peers for intrusion detec-

tion purposes.

We consider a proposal deployment scenario with 10 FL peers 
(Fig. 3, Peers). We adopt a random undersampling without replacement 
to balance the occurrence between the classes during the initial training 
procedure.

6.2. Reliable federated learning

Our first experiment aims at answering RQ3 and investigates the 
accuracy performance of the traditional FL. We execute the training 
procedure by considering a 10 peers scenario implemented through the 
FedAVG without using our proposed scheme. We perform the tradi-

tional FL by randomly splitting, in a stratified manner, the January data 
throughout peers. Each peer builds their local model while the global 
model is built by the central server based on each peer’s local model 
(see Sec. 6.1).

Fig. 4 shows the classification accuracy of the traditional FL scheme 
without periodic model updates. Compared with the traditional tech-

niques (see Fig. 1), we notice a decrease in the FL model accuracy when 
we do not perform model updates as time passes. For example, the non-

updated traditional FL scheme reaches a FP rate of 64% in June, while 
the traditional kNN reaches 58% (Fig. 4 𝑣𝑠. 1b). Similarly, the accuracy 

decrease is experienced a month after the training phase, increasing the 
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Fig. 5. Error-reject tradeoff of our proposed classification verification tech-

nique. Classifier is trained on January data and evaluated in February.

FP rate in 22%. As a result, the traditional FL cannot keep its reliability 
as time passes, demanding the execution of periodic model updates.

Our second experiment aims to answer RQ4, and it evaluates how 
our proposed verification technique can improve the system’s classifi-

cation accuracy even without performing the model update procedure. 
To achieve such a goal, we implement our proposed rejector’s thresh-

old optimization (see Eq. (8)) considering a variation on threshold 𝑡
in a 0.01 interval. We compute the MLP classifier confidence value 𝛼
through the predict proba function from scikit-learn API (Eq. (7), 𝛼). As 
the rejector operation point must be defined according to the network 
operator’s needs, we implement the optimization considering 𝛽 = 1.0
and 𝛾 = 1.0. Hence, rejection and error account for the same weight 
during the threshold-finding process. We first evaluate the error-reject 
tradeoff in February using the January-trained model (shown in Fig. 4).

Fig. 5 shows the error 𝑣𝑠. rejection rate tradeoff in February when 
we adopt our proposed rejection technique using our implemented 
threshold finding approach (Eq. (8)). It is possible to note that the 
proposed verification technique can improve detection accuracy by as-

sessing the classification confidence values. For instance, the network 
operator can decrease the system’s error rate by 10% if a 20% rejec-

tion rate can be tolerated. Notwithstanding, a rejection of only 5% can 
decrease the system’s error rate by 4%. As a result, our proposed ver-

ification technique can be used to guarantee the system’s reliability as 
time passes, even when model updates are not conducted.

Leveraging the verification technique, we evaluate the detection ac-

curacy of our model if we do not assume the involvement of model 
updates. Indeed, we use the verification technique to perform such a 
task and suppress classifications with low confidence values during the 
accuracy computation. To achieve such a goal, we consider a rejection 
operation point of 5%, which uses an 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 of 0.92 and 𝛼𝑎𝑡𝑡𝑎𝑐𝑘 of 0.87
(Algorithm 1). It is important to note that the rejection operation point 
must be defined according to the network operator’s needs. On the one 
hand, we can improve detection accuracy by rejecting more instances. 
On the other hand, we can classify additional instances if we tolerate a 
certain degree of error rate. Our evaluation considers a realistic scenario 
wherein the network operator tolerates only 5% of rejected events.

Fig. 6 shows the classification accuracy of our proposal without 
periodic model updates, coped with the rejector module using the previ-

ously selected acceptance thresholds. Our proposed model can improve 
detection accuracy when assessing the input event classification reliabil-

ity. In detail, the verification technique can enhance the average FP rate 
in 12.9%, while only rejecting an average of 13.5% of instances when 
compared to its no-update counterpart (Fig. 4 𝑣𝑠. 6). The proposed ver-

ifier module can keep the system reliable for extended intervals even 
when no model updates are not considered.

To answer RQ5, we further investigate how the execution of peri-
10

odic model updates based on rejected events can enhance the system’s 
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Fig. 6. Proposed model without updates using verification.

Fig. 7. Proposed model with monthly updates and verification.

accuracy (Algorithm 2). To this aim, we perform monthly FL-based 
model updates according to the events rejected by each peer (Fig. 3, 
Unreliable Dataset (∅

𝑖 )). At the same time, the central server 𝑠 per-

forms the aggregation task as depicted by the FedAVG algorithm (see 
Sec. 6.1). Similarly, model updates are executed monthly, as evaluated 
with the traditional approaches.

Fig. 7 shows the classification accuracy of our model with periodic 
monthly model updates. Our proposed scheme significantly improves 
detection accuracy while decreasing the number of rejected events. 
More specifically, when compared to its no-update counterpart (Fig. 6

𝑣𝑠. 7), the proposed scheme can provide an average FP rate of only 
3.3% while rejecting only 3.6% of instances, i.e., a 9.9% rejection rate 
reduction. As a result, the model update task based on the rejected in-

stances could fine-tune the model as time passed. Notwithstanding, by 
performing model updates through a FL rationale, organizations can 
execute such a task more frequently, given that the participants will 
collect more network traffic and share their CTI.

Moreover, we investigate how our scheme performs when com-

pared to traditional techniques. Fig. 8 shows the F-Measure throughout 
the time of our scheme vs. the traditional approaches. Our proposed 
model improves classification accuracy with and without considering 
the model updates. On average, in a no-update setting (Fig. 8a), our 
scheme provides an F-Measure of 0.89, an increase of 0.23 and 0.13 when 
compared to the RF and kNN, respectively. Assuming to use the model 
updates (Fig. 8b), we reach an average F-Measure of 0.96, improving it 
by 0.03 and 0.04 when compared to the RF and kNN, respectively.

The main advantage of our scheme concerns the amount of data 
that must be labeled to conduct model updates as time passes. Fig. 9a 
shows the cumulative number of network events that must be labeled as 
time passes for each selected technique. Our proposal required an aver-

age of only 6.5% of events when compared to the traditional approach 
(Proposal FL vs. Traditional FL). Considering the events required after 

the initial training in January, our proposed scheme significantly im-
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Fig. 8. Accuracy behavior of selected techniques on MAWIFlow dataset.

Fig. 9. Proposed model operational comparison with traditional techniques in 
terms of used events and processing costs during training phase.

proves the traditional approach, demanding an average of only 0.3% of 
events to be labeled as time passes. Notwithstanding, as organizations 
can share their CTI due to the application of FL, we can further decrease 
the needed training data according to the number of available peers.

We further investigate the training processing costs of our solution 
when compared to traditional techniques. To achieve such a goal, we 
measure the training time as time passes used by our proposal with the 
verifier and monthly updates (Fig. 7) 𝑣𝑠. the monthly updated Ensemble 
approach (Fig. 2d). The experiments were executed in a 10-node cluster, 
each equipped with an 8-core Intel i7 CPU, 16GB of memory, intercon-

nected through a gigabit network, running on top of an Ubuntu v.22.04
OS. The traditional Ensemble technique uses the entire node processing 
capabilities, while our proposed model uses the entire cluster process-

ing when available. Fig. 9b shows the cumulative training processing 
costs of our solution when compared to the Ensemble monthly updated 
technique (Fig. 2d). Our proposed scheme significantly decreases pro-

cessing costs when compared to the traditional technique. Our proposal 
requires in average only 10% of processing costs per node compared 
to the traditional Ensemble approach. This is because our proposal 
can proactively select which events should be used for model updates 
(Fig. 9a), significantly easing the processing costs for model updates as 
time passes.

Finally, we investigate how our proposed scheme can relax the 
frequency with which model updates are conducted. We vary the fre-

quency of conducting the model update on the rejected instances to 
achieve such a goal. Fig. 10 shows the classification performance ac-

cording to the model update periodicity in our proposal. Our proposal 
is not significantly affected by a longer model lifespan, with a marginal 
impact on the system’s accuracy. For instance, the monthly updated 
model provides an average F-Measure of 0.96, while its counterpart, up-

dated every semester, reaches 0.90, an impact of only 0.06. The longer 
model lifespan significantly benefits a realistic operational deployment 
11

of ML-based NIDS. This is because the network operator can use their 
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Fig. 10. Proposed model performance according to model lifespan, i.e. fre-

quency of model updates.

built ML model for longer periods before a model update is conducted, 
and when made so, fewer events must be provided and fewer processing 
costs will be required.

7. Conclusion

Over the past decades, several works have proposed highly accurate 
ML-based techniques for NIDSs, yet, their actual deployment on produc-

tion environments is hardly observed. This paper has shown that the 
non-stationary behavior of network traffic makes ML-based NIDS un-

reliable months after the training phase, demanding unfeasible model 
updates to be periodically conducted. To address such a shortcoming, 
we proposed a FL model aiming the reliability of NIDS. Even in the pres-

ence of new network traffic behavior, classification reliability is ensured 
through classification with a reject option rationale. Notwithstanding, 
model updates are conducted through FL-based training on the rejected 
events over time. As a result, organizations can share their network traf-

fic knowledge extracted from their private data without affecting data 
privacy.
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