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Abstract— This paper proposes a new model for onboard
physical fault detection on autonomous unmanned aerial ve-
hicles (UAV) through machine learning (ML) techniques. The
proposal performs the detection task with high accuracies and
minimal processing requirements while signaling an unreliable
ML model to the operator, implemented in two main phases.
First, a wrapper-based feature selection is performed to de-
crease the feature extraction computational costs, coped with
a classification assessment technique to identify ML model
unreliability. Second, physical UAV faults are signaled through
a multi-view rationale that evaluates a variety of UAV sensors
while triggering alerts based on a sliding window scheme.
Experiments performed on a real quadcopter UAV with a
broken propeller use case shows the proposal’s feasibility. Our
model can decrease the false-positive rates up to only 0.4%,
while also decreasing the computational costs by at least 43%
when compared to traditional techniques. Notwithstanding, it
can identify ML model unreliability, signaling the UAV operator
when model fine-tuning is needed.

I. INTRODUCTION

Autonomous unmanned aerial vehicles (UAV) are prone to
physical failures without the operator’s supervision, which
may negatively affect their security and the safety of the
environment wherein they operate [1]. For example, UAVs
may be hit by birds or even collide with undetected nearby
objects, which, apart from introducing physical UAV faults
(e.g. broken propellers) put the environment at risk [2].
Therefore, ensuring a reliable onboard and real-time detec-
tion of UAV physical faults is a must.

Machine learning (ML) has reached a strong relation with
recently proposed UAV fault detection approaches due to
their promising reported results [3]. In such a case, an
ML model is built according to the behavior available in a
training dataset, while its performance is evaluated through a
test dataset. Although current ML-based schemes can provide
highly accurate UAV fault detection accuracies, these tech-
niques often imply in unfeasible associated computational
costs [4].

Modern UAVs are typically resource-constrained cyber-
physical systems (CPS) that must execute a variety of tasks
in real-time in addition to the to-be-deployed fault detection
scheme, such as object detection [5], object tracking [6],
and state estimation for example [7]. Surprisingly, current
proposals in their vast majority overlook their computational
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costs, resorting to resource-demanding deep learning archi-
tectures to increase detection accuracies [2].

Over the last years, UAV physical faults have been de-
tected through the evaluation of the inertial measurement
unit (IMU) data [2], while recent works have shown the
feasibility of using other UAV sensors, e.g. using an attached
microphone [8]. The data generated by the corresponding
sensor is continuously collected and used as input to the
detection module, which first extracts a predefined set of
features before applying the designed ML model, e.g. ex-
traction of a set of statistical values over the last 1 second
window of the accelerometer data. Thus, researchers must
also provide a lightweight feature extraction procedure apart
from using a lightweight ML model.

Fault detection in autonomous UAVs must be reliably
executed without the operator’s supervision. The reliabil-
ity of ML-based detection schemes relies upon using a
realistic training dataset, a requirement not easily feasible
considering the unforeseen situations of real-world UAV
environments [9]. In practice, untrained situations cause the
ML model error rate to increase, becoming primarily false
positives, which motivates operators to disable designed
fault detection techniques. Surprisingly, prior works assume
that the accuracies measured during the test phase will be
evidenced in real-world usage, considering the classification
reliability aspects an orthogonal challenge [2], [8].

This paper proposes a new reliable onboard physical fault
detection model for autonomous UAVs, implemented in four
stages. First, a multi-objective feature selection technique is
used to decrease the number of used features for lightweight
feature extraction without degrading the system’s accuracy.
Second, UAV fault detection is performed through classifica-
tion with a reject option, ensuring that our system rejects new
and potential misclassifications. Third, UAV fault detection
is performed through a multi-view procedure in a late fusion
setting, using several UAV sensors for detection. Finally, the
decision engine is implemented through a sliding window
scheme, signaling UAV faults according to a predefined
number of alerts. As a result, our scheme can significantly
decrease the computational costs associated with feature
extraction, increase detection accuracy, and adequately signal
ML model unreliability as time passes.

In summary, our paper’s main contributions are:
• A new publicly available dataset3 with over 2 hours of

flight data collected from a real autonomous Holybro
x500 UAV. The dataset depicts a defective quadcopter

3https://github.com/tiiuae/UAV-Fault-Dataset
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UAV flying with a variable number of broken propellers.
• A new reliable and lightweight UAV fault detection

scheme with less processing demands (up to 94% less)
and better false-positive rates (up to only 0.4%);

• A prototype of our model implemented over ROS2 with
minimal processing footprint (≈ 1.1ms/event);

II. PRELIMINARIES

Over the last years, several works have been proposed for
detecting UAV physical faults [2], [8], typically making use
of simulation environments due to the challenges related to
building a realistic UAV dataset. In such a case, physical
faults are injected unrealistically, unable to depict a real
defective UAV, such as those caused by a broken/deformed
propeller or even frame deformation [10].

In general, UAV faults are identified through data-driven-
oriented approaches, either using machine learning (ML)
or deep learning (DL) techniques [11], [12]. A common
yet effective strategy evaluates the UAV IMU’s data using
the gyroscope, which measures the UAV rotational velocity,
and the accelerometer, which measures the UAV gravity-
compensated linear acceleration. IMU-based techniques de-
tect faults based on the UAV motion [12]. Due to the high
data generation frequency, IMU-related data is summarized
in time intervals through statistical-based features [13], e.g.
standard deviation of the X-axis acceleration values col-
lected over the last 1 second interval. These hand-designed
features are used as input to an ML or DL model, where
usually most of the research effort is spent on finding the
classification scheme that provides the best accuracy. Besides
IMU-oriented techniques, additional UAV sensors have also
provided high detection accuracies in recent works, such as
audio-based detection of faults [14]. The mentioned approach
mounts a microphone on the defective UAV and use it
to capture the emitted UAV audio signals. The generated
data is then converted to a to-be-classified format (e.g.
spectogram [15] or Mel-Frequency Cepstral Coefficients
(MFCCs) [16]), before being used as input to the classifi-
cation scheme.

III. PROBLEM STATEMENT

This section further investigates the aspects that make
real-time detection of physical faults in autonomous UAVs
challenging. We first introduce the dataset with real UAV
faults built in our work, then we evaluate how approaches
used in the literature perform over it.

A. A Realistic UAV Physical Fault Dataset

To build a more comprehensive dataset, our work presents
a new dataset, namely the Realistic UAV Physical Fault
Dataset. The built dataset was collected in a real setting
considering a defective UAV with a broken propeller use
case. To achieve such a goal, we collect the data generated
by a Holybro X500 UAV equipped with an Intel UP Xtreme
i7 8665UE mission computer, with a mounted Seeed Studio
ReSpeaker Mic Array for audio data collection purposes, as
shown in Figure 1. The UAV executes autonomous flights as

(a) UAV Propellers (b) Holybro X500 UAV

Fig. 1: UAV configuration used in our testbed. The broken region of the
defective UAV propeller is highlighted with a red circle.

managed by the PX4 Autopilot. Each flight flies the UAV
in randomly defined way-points following an eight-shaped
setting for ≈ 2 minutes. The UAV data is continuously
collected throughout the mission execution via the Robot
Operating System (ROS2) v. galactic. Each flight execution
operates the UAV in a normal or fault setting. The first flew
the UAV with 4 undamaged propellers. The latter flew the
UAV with 1 up to 4 of its propellers broken. The broken
propeller cases are generated by cutting ≈ 1 centimeter of
the propeller edge (see Fig. 1a).

A total of 100 flights were executed compounding over
2 hours of total flight time, out of which 20 flights are in
normal UAV setting and 80 flights are in fault UAV setting.

B. Detection of Physical UAV Faults

Our performed experiments aimed at answering the fol-
lowing research questions (RQ): (RQ1) What is the accuracy
performance of traditional techniques for detecting UAV
faults? (RQ2) What are the processing costs of selected
techniques?

We evaluate two sets of classification techniques based
on traditional ML and the more recent DL [17], [12].
The classifiers are evaluated using a different view (feature
set): Accelerometer, Gyroscope, and Audio. Based on the
collected values, the classification goal is to detect UAV
physical faults in real-time.

The ML-based approaches were implemented through a
Random Forest (RF), and a Gradient Boosting based on
XGBoost (XGB) The ensemble classifiers were implemented
with 100 decision trees as their base learners, each using gini
as the node split quality metric. The XGB classifier relies
upon a 0.3 learning rate value, with deviance as the loss
function. The traditional ML makes use of hand-designed
features for each view, as follows:

• Accelerometer. 96 statistical features in a 1-second
periodicity (samples generated in 100hz frequency).

• Gyroscope. 96 statistical features in a 1-second period-
icity (samples generated in 100hz frequency).

• Audio. 640 MFCC features for every 1-second sampled
UAV microphone audio.

The DL approaches were evaluated with Transformer
Encoder (TrEnc) architecture and a Long-Short Term Mem-
ory (LSTM) [18]. In contrast to the traditional ML, the
DL-based techniques evaluate the raw data based on 100
timesteps, which account for 1-second of data. At the same
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TABLE I: Accuracy and processing time of traditional UAV fault detection
techniques. Processing time is based on the average event processing
for feature extraction and classification on our implemented prototype
(Section V)

.
View Cls. F1 FPR FNR Proc. Time (ms)

(Feat. Ext., Class.)

Acc.

RF 0.82 4.5 17.9 1.72 (99.2%, 0.80%)
XGB 0.82 4.5 18.2 1.71 (99.65%, 0.35%)
LSTM 0.80 4.9 17.4 17.4 (100%, -)
TrEnc 0.79 5.1 19.2 7.80 (100%, -)

Gyro.

RF 0.76 5.9 22.5 1.72 (99.08%, 0.92%)
XGB 0.79 5.2 20.1 1.71 (99.62%, 0.38%)
LSTM 0.72 6.8 26.8 17.65 (100%, -)
TrEnc 0.72 6.7 24.8 6.60 (100%, -)

Audio

RF 0.73 6.8 27.7 10.53 (99.42%, 0.58%)
XGB 0.74 6.6 26.4 10.35 (99.67%, 0.33%)
LSTM 0.74 6.4 24.6 26.87 (38.37%, 61.63%)
TrEnc 0.79 5.1 19.3 24.61 (58.10%, 41.90%)

time, the audio-based approach also evaluates the MFCC
features. The LSTM was implemented with the following
architecture: (I) Input: 32-sized embedding layer; (II) LSTM:
two bidirectional 32-sized LSTM layers. (III) Output: a
5-unit dense layer. The TrEnc was implemented with the
following architecture: (I) Input: 128-sized embedding layer;
(II) TransformerEncoder: two transformer encoder layers
with 512 units and 16 heads. (III) Output: a 5-unit dense
layer. The implemented architectures used the categorical
crossentropy as loss using adam optimizer, with 100 epochs
and a batch size of 64.

The parameters of the selected techniques were empiri-
cally set. The dataset was split into train, test, and validation,
each respectively composed of 60%, 20%, and 20% of the
original flights from our testbed. A random undersampling
without replacement is used in the training procedure to
balance the occurrence between the classes. The ML clas-
sifiers were implemented through scikit-learn API v0.24,
while the DL was implemented on top of PyTorch API
v1.12.1. The implemented prototype is further described in
Section V. The classifiers were evaluated according to their
F1, False-Positive (FPR), False-Negative (FNR) rates. The F1
was computed as the harmonic mean of both sensitive and
recall metrics. The FPR denotes the ratio of normal instances
correctly classified as a fault, while the FNR denotes the ratio
of fault instances correctly classified as normal.

Our first experiment aims at answering RQ1 and evaluates
the accuracy performance of selected techniques for UAV
fault detection. Table I shows the accuracy performance of
selected techniques according to the used feature set. Widely
used approaches in the literature cannot reach low FPR and
FNR rates. For instance, the most accurate model (Acc-based
RF, Table I) presented an FPR of 4.5% and an FNR of 17.9%.
As a result, the selected approaches cannot be reliably used
in autonomous UAVs, as an FP may unintentionally trigger
the UAV landing. In contrast, an FN may allow a defective
UAV to put the environment where it operates at risk.

Our second experiment aims at answering RQ2 and evalu-
ates the processing costs of the selected UAV fault detection
techniques. Table I shows the average event processing
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Fig. 2: Overview of our proposed model for reliable and lightweight onboard
fault detection in fully autonomous UAVs.

time according to the used classifier and feature set. The
feature extraction task is generally responsible for the most
processing-demanding part of the detection scheme. For
example, accounting for an average processing part of the
RF-based detection of 99.2%, 99.08%, and 99.42% for the
accelerometer, gyroscope and audio detection approaches
respectively. Therefore, to provide a lightweight detection
scheme, proposed fault detection approaches must also ad-
dress the processing costs related to the feature extraction
task.

IV. RELIABLE AND LIGHTWEIGHT ONBOARD FAULT
DETECTION IN AUTONOMOUS UAVS

To address the aforementioned challenges, we propose a
new reliable and lightweight onboard fault detection in au-
tonomous UAVs. Our proposal aims to decrease the computa-
tional costs of both feature extraction and classification tasks
while maintaining classification reliability. The overview of
our model is shown in Figure 2 and is implemented in
four main steps, namely Multi-objective Feature Selection,
Classification Verification, Fusion Learning, and Window
Alert.

The Multi-Objective Feature Selection and Classification
Verification are performed at a single view (feature set) level.
The first aims at selecting the best subset of features that
can be used to decrease the feature extraction computational
costs, while also improving the system accuracy. The main
insight of such an approach is to consider the feature
extraction computational costs during the model development
process for detecting UAV faults. The latter aims to ensure
that our proposed model only uses highly confident classifi-
cations. We assess the classification confidence values as a
metric of classification correctness, rejecting low-confident
decisions.

To improve our system accuracy and reliability, our
model uses Fusion Learning and Window Alert. The Fusion
Learning evaluates the classification outcome following a
multi-view procedure (Fig. 2, Reliable View 1 to 3). Thus,
our scheme can improve the classification reliability while
decreasing the rejection rate caused by our Classification
Verification scheme. Finally, the Window Alert signal faults
following a sliding window approach, ensuring that the UAV
only acts if a given predefined set of alarms are triggered.

The following subsections further describe our proposed
model, including the modules that implement it.
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A. Reliable Lightweight Classification

Fault detection in autonomous UAVs must be performed
with minimal processing requirements while maintaining
classification accuracy and reliability. To address such a
challenge, we execute the model building with a multi-
objective feature selection task, coped with a verification
technique.

The multi-objective feature selection aims at building a
classification model that decreases the computational costs
of the feature extraction task while maintaining classification
accuracy. More specifically, the model-building procedure is
implemented through a wrapper-based multi-objective fea-
ture selection aiming at minimizing the following objectives:

objectiveprocessing(f) =

n∑
i=1

processingT ime(fi) (1)

objectiveerror = 1−

sensitivity︷ ︸︸ ︷
TP/(TP+FN)+

specificity︷ ︸︸ ︷
TN/(TN+FP )

2

(2)

where f denotes the set of used features, processingTime is a
function that computes the processing cost for the extraction
of a given feature fi, TP the number of true-positive samples,
and TN the number of true-negative samples. Thus, our
multi-objective feature selection aims to decrease the feature
extraction computational costs (Eq. 1, objectiveprocessing),
as well as the classification error (Eq. 2, objectiveerror), as
computed by the inverse average of sensitivity and speci-
ficity.

We use classification with a reject option to ensure clas-
sification reliability when our UAV fault detection scheme
is used in autonomous settings. Thus, we assess the clas-
sification confidence values of classified events through a
verifier module (Fig. 2, Verifier), rejecting low-confident and
potentially misclassified events. The classification confidence
is classifier agnostic, e.g., the RF classifier computes the
classification confidence according to the ratio of decision
trees that classified a given instance as the assigned class.

Our main insight is using classification confidence as a
classification correctness measure in production deployment,
ensuring that only highly confident classified events are
used for triggering alerts. Notwithstanding, it can be used
as a ML model quality measure, signaling the operator’s
unreliable model deployed in the UAV. The classification
rejection threshold must be defined according to the oper-
ator’s needs. A higher rejection threshold can increase the
system’s accuracy while rejecting more samples as a trade-
off. In contrast, a lower rejection threshold can increase the
number of classified events, however, it is prone to higher
error rates.

B. Fusion Learning

Several techniques have been proposed for UAV fault
detection, ranging from increasing the classifier complexity
to relying on a different data source. Yet, proposed schemes

cannot meet high detection accuracies to be reliably used
in autonomous UAV settings. In light of this, our proposed
model performs the classification task in a fusion learning
setting, following a multi-view rationale.

The proposal classification procedure is shown in Figure 2.
It starts with the continuous collection of raw data from
multiple UAV sensors, e.g. accelerometer, gyroscope, and
audio. The collected data is used as input to a feature
extraction module, which extracts, for each view, the set
of features selected by our multi-objective feature selection
procedure (see Section IV-A). The extracted feature sets
are classified by the associated classifier, which outputs a
corresponding classification confidence level. The verifier
module evaluates the classification confidence output and
accepts highly confident classifications based on a predefined
threshold. Finally, accepted classifications are used as input
by a late fusion module, which goal is to evaluate the ac-
cepted classifications for a final decision. The module defines
the event label based on the highest sum of the classification
confidence scores of accepted instances, according to the
following equation.

latefusion(c) = max(

n∑
i=1

cnormal
i ,

n∑
i=1

cfaulti ) (3)

where c is a vector of classification confidence of accepted
views, n the number of accepted views, cnormal

i , and cfaulti

the classification confidence at the ith view, for the normal
and fault classes respectively. Thus, our late fusion module
establish the event label based on the used set of views
in a reliable manner, as we also consider the classification
confidence scores. To ensure that misclassifications are not
used to signal alerts, we use a sliding window for decision-
making (Fig. 2, Window Alert). Therefore, the UAV only
performs a decision when a given predefined number of fault
or normal events are surpassed over the last classified events.

C. Discussion

Our proposal aimed at enabling reliable onboard and
lightweight fault detection in autonomous UAVs. A multi-
objective feature selection is used to decrease the computa-
tional costs of the feature extraction task without trade-offs
on accuracy. Classification with a reject option approach is
used to improve classification reliability, suppressing poten-
tial misclassifications, while also indicating to the operator
the UAV model quality. Late fusion with a multi-view pro-
cedure is used to provide better classification accuracy and
higher reliability, decreasing system rejection by leveraging
several UAV sensors. Finally, a sliding window of alerts is
used to suppress potential misclassifications as time passes.
As a result, our proposed model can provide reliability in
UAV fault detection while maintaining system accuracy with
significantly reduced processing requirements.

V. PROTOTYPE

We implemented a proposal prototype on top of our previ-
ously described UAV (see Section III), as shown in Figure 3.
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Fig. 3: Proposed model prototype overview.

The prototype is executed on the Intel UP Xtreme i7 8665UE
UAV mission computer running an Ubuntu OS v20.04. The
UAV performs autonomous flights as managed by the PX4
flight controller, connected to the mission computer via an
RTPS bridge. The prototype evaluates three different views
based on the accelerometer, gyroscope, and audio-collected
data. The accelerometer and gyroscope sensors are connected
to the PX4 and generate samples at a 100hz frequency.
The audio is collected through a Seed Studio ReSpeacker
Mic Array connected by a serial connection to the mission
computer. The generated data is sent to the associated topic
in ROS2 v.galactic.

Our prototype continuously ingests the data by subscribing
to the related topics using the rospy API. The accelerometer
and gyroscope data are ingested through the /sensorcombined
topic, while their statistical features are extracted through
python implementation (see Section III-B). The audio is
collected through the /audio topic, having the MFCC features
extracted by the librosa API. The features are extracted in a
1-second periodicity and classified using the ML algorithm
implemented through scikit-learn API v.0.24. The Verifier
module evaluates the classification confidence values through
the predict proba function. Finally, the Window Alert module
decides to land the UAV in a fault-detected setting through
a publish on the /control topic using the rospy API.

VI. EVALUATION

Our evaluation aims at answering the following research
questions (RQ): (RQ3) Does our proposed multi-objective
feature selection improve the system’s performance? (RQ4)
Does our proposed verifier module improve the system classi-
fication accuracy? (RQ5) What is the accuracy performance
of our scheme with late fusion? (RQ6) What is the proposed
model processing performance?

The experiments use the same dataset used previously (see
Section III-A)

A. Reliable Lightweight Classification

Our first experiment aims to answer RQ3 and evaluates
how our proposed multi-objective feature selection can de-
crease the feature extraction computational costs while main-
taining the systems’ accuracy. We implement our scheme as
a wrapper-based feature selection using the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [19] on top of pymoo
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computer.
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Fig. 5: Verifier module performance with the proposed multi-objective
optimization (Fig. 4) with the XGB classifier.

API. The NSGA-II uses a 500 population size, 200 genera-
tions, a crossover of 0.3, and a mutation probability of 0.1.
The multi-objective feature selection aims at decreasing the
objectiveprocessing (Eq. 1) and objectiveerror (Eq. 2) as
measured on the validation dataset.

Figure 4a shows the pareto curve of the feature selec-
tion technique for the XBT classifier (see Table I, best
ML model). Our proposed multi-objective feature selection
significantly decreased the feature extraction processing costs
with a marginal effect on accuracy. Figure 4b shows the
average event processing time for each view according to the
used operation point (see Fig. 4a). Our proposal decreased
the computational costs by up to 95% (Acc. view), with an
accuracy impact of as little as 0.03 in F1 (Gyro. view).

Our second experiment answers RQ4 and evaluates our
proposed classification confidence assessment technique
(Fig. 2, Verifier). We evaluate the error vs. reject trade-
off for the selected operation points (closest to 0% in
both objectives) using the Class Related Threshold (CRT)
technique. More specifically, we vary the rejection threshold
for each class (normal and fault) in a 0.001 interval.

Figure 5a shows the error vs. reject tradeoff for the
XBT classifier using the selected multi-optimization oper-
ation points (Fig. 4a). Our proposed scheme that assesses
the classification confidence can significantly decrease the
classification error. As the rejection operation points should
be defined according to the operator’s needs, we select three
operation points, namely No-rejection, Low-rejection, and
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TABLE II: Proposed model accuracies and rejection rates (M.O.=Multi-
objective).

View Method OP F1 FPR FNR Rej.

Late Fusion
No 0.88 3.1 12.2 -

Low 0.88 2.9 11.6 1.76
High 0.90 2.5 9.7 11.5

Acc.
M.O. - 0.83 4.5 16.3 -
M.O. + Verifier Low 0.86 3.4 13.2 5.0
M.O. + Verifier High 0.99 0.2 1.4 35.0

Gyro.
M.O. - 0.76 6.1 24.0 -
M.O. + Verifier Low 0.81 4.6 18.3 11.0
M.O. + Verifier High 0.93 1.7 8.0 40.0

Audio
M.O. - 0.72 7.0 27.6 -
M.O. + Verifier Low 0.76 5.9 24.4 11.0
M.O. + Verifier High 0.87 3.2 17.1 40.0

High-rejection empirically set for each view based on their
performance. Figure 5b shows the accuracy improvement
obtained by our verification technique according to the used
rejection operation points. Our proposed model can improve
the F1-Score by up to 0.16 with a rejection of 35% (Acc.
view, High-rejection).

B. Fusion Learning

To answer RQ5 we investigate our proposed model per-
formance with the implemented multi-objective optimiza-
tion, classification assessment, and late fusion technique
(Fig. 2). More specifically, we apply our proposed late
fusion technique (Eq. 3) to the accepted instances by our
verifier module. Table II shows the accuracy and rejection
rates obtained by our proposed model (Late Fusion). Our
proposed scheme can significantly decrease the rejection
rate while also improving the accuracy rates obtained by
traditional approaches. For instance, with a Low rejection
operation point, our late fusion technique rejects only 1.76%
of instances while presenting an FPR of only 2.9% and an
FNR of only 11.6%.

Finally, we evaluate our model implemented with our
proposed Window Alert module. We trigger alerts if a given
predefined number of events are classified as a fault by our
late fusion technique, further improving our model accuracy
(Fig. 2). Figure 6 shows the FP and FN rates according to the
used window alert size. Our scheme was able to improve the
obtained accuracies when compared to traditional techniques
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Fig. 7: Average event processing time of evaluated techniques on the
UAV mission computer platform (lower is better). Event processing time
measured as average per event on UP i7 8665UE UAV mission computer.

significantly. For instance, with a window size of 5 events
and a high rejection operation point (Fig. 6b), our scheme
can reach an FPR of only 0.4% and an FNR of 0%, reducing
the mentioned metrics by 4.1 and 17.9 when compared to
the most accurate traditional approach (Acc. RF, Table I).

C. UAV Performance

We evaluate the processing performance of selected tech-
niques when executed on the UAV mission computer (see
Section V). Figure 7 shows the average event processing time
of selected techniques. Our proposed model decreased the
computational costs in both evaluated platforms significantly.
For instance, traditional techniques demand at least 1.5×
more processing time when compared to our approach. In
practice, when compared to the most accurate traditional
model (Table I, ACC. RF), our scheme improves the F1 in
0.17, FPR in 4.1, and FNR in 17.9 (Fig. 6b vs. Table I),
while demanding only 1.11ms of processing time, a 43%
decrease.

D. Discussion

Our model provided reliable, lightweight, and onboard
UAV fault detection in autonomous settings. The reliable
lightweight classification was achieved through a multi-
objective feature selection that decreases feature extraction
computational costs (up to 95%), coped with a verification
technique, and was able to improve F1-Score (up to 0.17).
Notwithstanding, our proposed late fusion technique signifi-
cantly decreased the rejection rate (from 35% to only 1.76%)
while providing significantly high accuracy rates (only 0.4%
of FPR in a 5-second long window size). The prototype
has shown the proposal’s feasibility, requiring only 1.1ms
of average event processing time.

VII. CONCLUSION

This work proposed a new reliable and lightweight UAV
fault detection scheme for onboard execution. The proposed
model significantly improved the classification accuracy, de-
creasing processing costs compared to traditional techniques.
Notwithstanding, our scheme provides a model quality metric
for fully autonomous settings, enabling operators to identify
unreliable ML models deployed in fully autonomous UAVs.
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