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Abstract— Object detection techniques for autonomous Un-
manned Aerial Vehicles (UAV) are built upon Deep Neural
Networks (DNN), which are known to be vulnerable to adver-
sarial patch perturbation attacks that lead to object detection
evasion. Yet, current adversarial patch generation schemes are
not designed for UAV imagery settings. This paper proposes a
new robust adversarial patch generation attack against object
detection with UAVs. We build adversarial patches considering
UAV-specific settings such as the UAV camera perspective, view-
ing angle, distance, and brightness changes. As a result, built
patches can also degrade the accuracy of object detector models
implemented with different initializations and architectures.
Experiments conducted on the VisDrone dataset have shown
the proposal’s feasibility, achieving an attack success rate of
up to 80% in a white-box setting. In addition, we also transfer
the patch against DNN models with different initializations and
different architectures, reaching attack success rates of up to
75% and 78%, respectively, in a gray-box setting.
GitHub: https://github.com/SamSamhuns/yolov5 adversarial

I. INTRODUCTION

Over the past decade, the market for Unmanned Aerial
Vehicle (UAV) has significantly increased. According to a
recent 2022 report, its market value is expected to grow in
North America alone to 6.7 billion dollars by the end of
2026 [1]. UAVs have a wide range of applications, including
aerial reconnaissance, search and rescue, intruder detection,
and surveillance. To this extent, the manual operator control
of UAVs in these complex environments may limit their
application and decrease their mission efficiency. In light of
this, several works have proposed new promising techniques
towards the provision of autonomous UAVs, ranging from
path planning [2], obstacle avoidance [3], fault detection [4],
and even geolocation [5].

In such a case, object detection plays a key role in
enabling autonomous UAVs to fulfill their tasks [6]. To
achieve such a goal, the UAV camera feed is continuously
evaluated by a Deep Neural Network (DNN) model, which
reports the identified objects for the system decision-making
process, such as autonomously following an identified target
or reporting it back to the operator. In general, proposed
schemes focus on providing the most accurate DNN-based
object detector while demanding minimal processing re-
quirements [7]. Conversely, despite their decisive impact on
paving the way towards the provision of autonomous UAVs,
the literature often neglects the deployed object detector’s
reliability and resiliency to adversaries.

1The authors are with Secure Systems Research Center (SSRC) at
Technology Innovation Institute (TII), United Arab Emirates, Abu Dhabi
{samridha, saurabh, eduardo}@ssrc.tii.ae

(a) UAV object detection without ad-
versarial patches

(b) UAV object detection with adver-
sarial patches

Fig. 1: Impact of adversarial patches on the performance of UAV object
detection for Cars from the VisDrone dataset The adversarial patch was
generated by training against YoloV5 Small and used to transfer attack
YoloV5 Large.

In recent years, DNNs have been found to be vulnerable
to adversarial attacks [8]. In practice, adversaries can signif-
icantly bias the DNN model towards detection evasion with
minimal input perturbation efforts. A common attack practice
relies on the application of adversarial patches, in which
the adversary distorts the image pixels within a bounded-
size region [9]. The adversarial patch generation process
is usually optimized toward decreasing the target object
detector accuracy while also accounting for better patch
printability and variation aspects. The built adversarial patch
can then be printed and used to evade the DNN-based object
detector in the physical domain. Current adversarial patch
generation techniques have demonstrated the vulnerability
of general-purpose DNN-based object detectors, successfully
hiding detection of people [9], traffic sign [10], or even
cars [11].

In contrast, the reliability impact of the adversarial patch
attack on UAV-related object detection is still in its in-
fancy [12]. Surprisingly, current adversarial patch attacks on
aerial images overwhelmingly use satellite-related imagery,
which does not account for the challenges of UAV appli-
cations. UAV object detection must account for a higher
range of camera perspective, angle, distance, and brightness
changes, significantly increasing the adversarial patch gen-
eration efforts [11]. Correspondingly, there is still a lack of
understanding on how the adversarial patches may affect the
reliability of UAV object detectors. The current majority of
adversarial patch threat models usually operate in a white-
box setting where the adversary requires full access to
the target DNN model, including its architecture, weights,
and training data, with only a few reports of successful
transferable attacks in the literature [13]. Consequently, most
adversarial patches are only effective against a single DNN
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model, usually failing at transferring their ability to affect
the reliability of other object detectors.

Contributions. This paper proposes a new robust adver-
sarial patch-generation attack against UAV object detection,
implemented in two phases. First, we build adversarial
patches accounting for UAV-related characteristics, including
patch printability, brightness, and perspective changes. The
generated patches are built in a white box setting with
full access to a previously known DNN-based UAV object
detector. Second, based on our robust patch generation pro-
cess, we transfer the built patch to another DNN model and
architecture, which is unknown during the patch generation
process. As a result, our adversarial patch generation scheme
can operate in a gray-box setting, wherein the adversary only
requires access to a single DNN model, transferring the built
patch to other object detectors.

In summary, our paper’s main contributions are:

• We propose a new robust adversarial patch generation
procedure against UAV object detectors. Our proposed
scheme can build adversarial patches in a white-box
setting with up to 80% of attack success rate.

• We experimentally evaluate the reliability of object
detection on UAV domain. Our experiments have shown
that adversaries can transfer their adversarial patches
against different DNN models and architectures, reach-
ing attack success rates of up to 75% and 78%, respec-
tively.

Roadmap. The remainder of this paper is organized as
follows. Section II further describes the object detection
reliability on UAVs. Section III presents related works on
adversarial patch generation. Section IV elaborates on our
threat model, and Section V describes our proposed patch
generation model. Section VI evaluates our proposed scheme,
and Section VII concludes our work.

II. PRELIMINARIES

A. Object Detection on Unmanned Aerial Vehicle

Object detection on UAVs is a widely explored topic in
the literature [14], wherein related works usually conduct
such a task through the implementation of four sequential
modules, namely Image Acquisition, Image Preprocessing,
Object Detection, and Report. First, the Image Acquisition
module continuously collects the UAV camera images. The
UAV image feed is usually collected as available on the
Robotic Operating System (ROS). The image frame is then
evaluated by a Image Preprocessing module whose goal
is to preprocess the image before object detection occurs,
such as conducting the image’s decoding, normalization, and
resizing. The built image is then evaluated by a Object Detec-
tion module, which identifies the image objects by applying
a DNN-based object detector model. The detected objects
are identified through a bounding box, which represents the
location of the given object on the evaluated image. Finally,
the Report module adequately reports the set of identified
objects for subsequential decision-making on the UAV.

B. Patch Generation

Adversarial perturbations on the inputs of a DNN object
detection model can significantly affect their reliability [8].
In general, currently proposed schemes conduct such a task
by building adversarial patches as they can be printed and
used in the physical domain. To this extent, the adversary’s
goal is to alter the pixels within a bounded-size region to
achieve object evasion (misclassification or below detection
confidence threshold) against the target model.

Given an object detector f(x) : x → y that outputs
the identified object y on given an input image x. The
adversary’s goal is to find a patch P such that f(x+P ) ̸= y.
The patch P usually follows a square-sized setting where
P ∈ Rs×s×3 and s accounts for the patch size, e.g., within
30% of the target object bounding box. The adversarial patch
is applied on the target object bounding box according to the
adversary budget ϵ, which measures how well the adversary
is able to distort the image pixels. As a result, the adversarial
patch-building process is usually solved according to the
following equation:

P (x, l) = argmax
P∈{P ′:||P ′||∞≤ϵ}

L(h(A(x, l, P )); y) (1)

where h denotes the object detector, A(x, l, P ) a function
that applies the patch P on location l on input image x, y
the set of image objects and the bounding boxes, ϵ the attack
budget and L the object detector loss function. Consequently,
the adversarial patch optimization goal is finding a patch
that maximizes the object detector loss when applied to the
object-bounding boxes.

III. RELATED WORKS

The vulnerability of DNN to adversarial input perturba-
tions is a known and widely explored topic in the liter-
ature [15]. To this extent, adversarial patch attacks raise
significant concern for the research community as they are
also physically realizable [16]. S. Chen et al. [17] proposed
one of the prominent approaches to generating adversarial
patches against object detectors. Their work was able to
conduct targeted attacks of stop signs against a state-of-
the-art object detector in the physical domain. Similarly, S.
Thys et al. [9] presented an adversarial patch attack to evade
person detection in the physical domain. The authors conduct
several transformations on the patch, such as improving the
printability, and decreasing the pixel variation to create more
”printable” patches. In general, achieving a robust patch
that can be used in the physical domain is achieved using
better transformations. As an example, S. Komkov et al. [18]
generated a hat-style adversarial patch by applying rotation
and bending transformations on the built patch.

In their vast majority, current approaches for adversarial
patch generation assume a white-box setting. The adversary
has full access to the target model, including its used
parameters, weights, and training dataset [19]. The main
challenge is that patch generation approaches often require
the computation of the target model loss (see Eq. 1), making
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Fig. 2: Proposed robust adversarial patch generation scheme against UAV object detectors. Adversarial patch transformations address printability, scene
intensity matching, and affine transformations for a more robust adversarial patch building.

the obtained patch specific to its targeted model [20]. As
a consequence, several works have been proposed for the
building of transferable adversarial examples. Z. Xiao et
al. [21] aimed the evasion of face recognition by making
the generated patches resemble facial expressions, improving
their transferability. C. Xie et al. [22] improved transferabil-
ity by applying several image input transformations before
the patch generation.

Surprisingly, despite the impressive advancements in ad-
versarial patch generation for general-purpose object detec-
tion, research on the UAV domain is still in its infancy [12].
Andrew Du et al. [11] proposed an adversarial patch gen-
eration for cars on aerial imagery. The authors conduct
a sequence of transformations to address the aerial-related
image aspects. Although the authors show the feasibility
of adversarial patches for cars, they use satellite-related
imagery, unable to depict the characteristics of visual data
from a UAVs. J. Lian et al. [12] proposed an adversarial
patch generation against aerial images of planes. Similarly,
their evaluation does not consider UAV-related imagery.

IV. THREAT MODEL

Our work considers the following threat model on adver-
sarial patches.
Adversary’s goal. The adversary’s goal is to evade a set of
objects from being identified as such by the UAV object
detector. To achieve such a goal, the adversary must decrease
the target object detection confidence below the object de-
tector threshold. For instance, by decreasing the target object
confidence to a value below 0.4.
Adversary’s capabilities. The adversary has complete ac-
cess to the target object detector, including its architecture,
weights, and used training dataset. The adversary uses ad-
versarial patches to evade the detection of target objects. The
adversarial patch must be physically-realizable and account
for the UAV characteristics. The adversarial patch must
be overlaid on the target object detection location and not
occlude the target object completely, for instance, by only
representing 30% of the bounding box size.

V. A ROBUST ADVERSARIAL PATCH GENERATION
SCHEME AGAINST UAV OBJECT DETECTORS

Our work goal is building adversarial patches to evade
UAV object detectors in a gray-box setting. We consider a
gray-box scenario wherein the attacker has white-box access

to a given object detection model and aims to transfer the
generated adversarial patches to another model in which
the adversary has no control. More specifically, the built
adversarial patches must be robust enough to be transferable
to object detectors not used during the training phase. In light
of this, our work formulates robust adversarial patch-building
in two phases, based on an improved set of transformations
and a more generalizable loss function. Figure 2 shows our
proposed adversarial patch-building scheme.

First, our adversarial patch transformation scheme aims
to improve patch printability and patch scene intensity
matching. In contrast to related works, our patch printability
loss is not designed considering a single camera setting,
which usually requires finetuning for the targeted device.
Conversely, we improve the patch printability by modeling
the printed colors as a multivariate linear gaussian mixture
of additive and multiplicative noises to the RGB image.
Notwithstanding, we perform contrast, brightness, and noise
adjustments on the generated patch to match it with the scene
intensity. As a result, the built patch is more generalizable
concerning the used adversarial patch printer and better
suited for different scenes.

Second, the adversarial patch is optimized for lower object
detector accuracy, smoother pixels, and lower brightness. Our
main insight is building generalizable adversarial patches
concerning printability and scene intensity matching to pave
the way toward their transferability between object detectors.

The following subsections further describe our proposed
patch generation mechanism, including its transformations
and implementation aspects.

A. Adversarial Patch Transformations

Our work makes use of adversarial patch transformations
to improve its robustness. The goal is to preprocess the adver-
sarial patch to replicate the physical environment conditions
before it is used against the object detector. To achieve such
a goal, our proposal conducts three sets of adversarial patch
transformations as shown in Fig. 2, namely Printability,
Scene Intensity Matching, and Affine Transformations.

Printability. A printed image will not have the same
coloration as its digital counterpart. The degree of variation
occurs due to several factors, ranging from the type and
quality of used paper, the printing device, and even the used
ink. Related works address this challenge through a Non-
Printability Score (NPS) added to the adversarial patch loss

3258

Authorized licensed use limited to: Pontifica Universidade Catolica do Parana. Downloaded on May 02,2024 at 18:38:37 UTC from IEEE Xplore.  Restrictions apply. 



computation [23]. As a result, the patch is finetuned to a
single printing process in a controlled process for a specific
target.

We address such a challenge using a probabilistic approach
to increase the adversarial patch robustness. We model the
printed colors as a multivariate linear gaussian mixture of
additive and multiplicative noises to the RGB image. Let P
be the square-sized in a 3-channel color adversarial patch
such that P ∈ [0, 1]s×s×3 where s denotes the patch size.
We first apply the multivariate linear gaussian mixture to the
adversarial patch x∗ based on the following equation:

P = Gm × x∗ +Ga (2)

where Gm and Ga denote the multiplicative and additive
multivariate linear gaussian mixture weights, such that Gm ∈
R3 and Ga ∈ R3. The multiplicative distribution Gm reduces
the intensity and contrast of the patch, whereas the additive
distribution Ga changes the color distribution. As a result,
the built patch is adjusted to an easier-to-be-printed format.

Scene Intensity Matching. The quality of UAV-related
imagery is subject to several variations according to the
scenario wherein it is collected. As a result, the used ad-
versarial patch must adequately reflect the scene quality that
it will be used. To address such a challenge, we conduct
a scene intensity matching that adjusts the adversarial patch
contrast, brightness, and noise. Based on the built printability
adversarial patch (Eq. 2), we conduct the scene intensity
matching using the following equation:

P = ((P × scenec) + sceneb) + scenen (3)

where scenec denotes the level of scene contrast, sceneb
the scene brightness, and scenen the added uniform noise.
The scene intensity matching parameters can be finetuned
or randomly varied to improve the built adversarial patch
robustness. Henceforth, it is possible to ensure that the built
adversarial patch can bias the target model in a wider range
of scene characteristics.

Affine Transformations. Finally, the built adversarial
patch must be adjusted for the input image object dimen-
sions. We adjust the built patch through a scaling and rotation
procedure. On the one hand, the scaling aims at adjusting
the built adversarial patch to fit the target object bounding
box based on a given size s. For instance, by resizing
the adversarial patch to 30% of the target object bounding
box. On the other hand, the rotation procedure attempts to
reproduce the UAV camera variations on perspective and
angle aspects.

B. Adversarial Patch Loss

Our patch optimization goal is to improve the attack
success rate of the built adversarial patch while ensuring
its printability and robustness. To achieve such a goal, our
patch optimization is implemented through the computation
of three losses, as follows:

• Total Patch Variation (Ltv). The total variation loss
aims to ensure that the patch pixel colors are smoother

and with a better transition between them. Therefore,
we compute it according to the following equation:

Ltv =

√∑s
i

∑s
j(Pi,j − Pi+1,j)2 + (Pi,j − Pi,j+1)2

N
(4)

where N denotes the number of pixels on the given
adversarial patch P . The Ltv value is lower for similar
neighbor pixels but higher for divergent ones.

• Total Patch Saliency (Lsal). We use sRGB space
color saliency loss that favors patches towards less
vibrant or saturated colors through a quantified color
metric derived from a psycho-physical color scaling
user study [24]. This metric is more informative for
colorfulness than saturation, which would overempha-
size the patch’s dark areas, helping it become less
conspicuous to humans or automatic patch detection
systems. We compute the total patch saliency according
to the following equation:

rg = R−G

yb = 0.5 ∗ (R+G)−B

Lsal =
√
σ2
rg + σ2

yb + 0.3 ∗
√
µ2
rg + µ2

yb

(5)

where rg and yb are variables derived from the color
channel R, G, and B values of the patch. µ and σ
represent the mean and standard deviation of the sup-
plementary variables respectively.

• Total Patch Objectiveness. (Lconf score). We compute
the effectiveness of the adversarial patch attack against
the target objective detector. To this extent, we assess
the loss of the model objectiveness and classification
score as follows:

Lconf score =

∑N
i conf(h, x∗

i , y)× obj(h, x∗
i , y)

N
(6)

where conf and obj measure the object detector class
confidence score and objectiveness score for the object
class y for a given input adversarial image x∗

i .
Finally, we formulate our adversarial patch optimization

process based on the following equation:

Lpatch = αLtv + βLsal + γLconf score (7)

where α, β, and γ are hyper-parameters that denote the
weights for each of our adversarial patch loss terms.

VI. EVALUATION

The proposal evaluation aims at answering the following
Research Question (RQ):

• (RQ1) How does our adversarial patches affects the
reliability of UAVs object detectors?

• (RQ2) Does our proposed robust adversarial patch
building enables the attack transferability?

The following subsections further describe the proposed
model-building procedure and its evaluation.
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TABLE I: Mean Average Precision (mAP) at an intersection over union
threshold (IoU) of 0.5 for Yolov5 on VisDrone-2019 dataset test subset.
Adversarial patches are built targeting All classes in a white-box setting.

DNN Init Patch Classes
Car Truck Bus People All

Y
ol

oV
5

Sm
al

l C
O

C
O Patchless 0.87 0.46 0.64 0.68 0.66

Random 0.70 0.14 0.25 0.53 0.40
Adv. 0.27 0.03 0.09 0.03 0.11

-
Patchless 0.86 0.43 0.63 0.66 0.64
Random 0.71 0.13 0.23 0.52 0.40

Adv. 0.30 0.04 0.11 0.10 0.14

Y
ol

oV
5

L
ar

ge C
O

C
O Patchless 0.88 0.56 0.66 0.73 0.71

Random 0.75 0.15 0.30 0.58 0.45
Adv. 0.41 0.04 0.13 0.06 0.16

-
Patchless 0.88 0.51 0.67 0.71 0.69
Random 0.73 0.14 0.28 0.58 0.43

Adv. 0.30 0.03 0.13 0.05 0.13

A. Model Building

We consider a use-case of UAV-based surveillance to
evaluate the effectiveness of our proposed adversarial patch-
building scheme. To this extent, the UAV conducts the
object detection on the camera feed for the identification
of Car, Bus, Truck, and People objects. Our adversarial
patches aim to hide the four mentioned classes from being
detected as such by the UAV object detector (see Section IV).
In our experiments, we consider the VisDrone-2019 [25]
dataset, which has over 10 thousand static images in various
resolutions and scenes acquired using a UAV platform and
split across separate train, validation, and test datasets. To
ensure the availability of a reasonable patching area on all the
objects, we preprocess the data before training by removing
objects that occupy less than 0.05% of the image area. We
normalize the image values between 0 and 1 for all our
experiments while using an image size of 640x640. We pad
the resized images with gray pixels to keep the aspect ratio
unchanged.

According to the available computational resources, we
conduct the experiments based on two distinct UAV object
detection platforms. On the one hand, one UAV is a resource-
constrained device that uses YoloV5 Small object detector
implemented with 7.2M parameters[26]. On the other hand,
the other UAV conducts object detection without consider-
ing the processing constraints, hence, is implemented us-
ing the YoloV5 Large object detector model with 46.5M
parameters[26]. The models can be initialized with the pre-
trained weights from the well-known COCO benchmark [27]
or from scratch. The models are trained using SGD optimizer
with a momentum of 0.937 and a weight decay of 4e−4.
The learning rate is linearly increased from 0.001 to 0.1
in the first three training epochs and then linearly reduced
after every epoch with a learning rate scheduler that stops
training if there is no improvement in the validation accuracy
over 100 epochs. The object detection model was trained for
300 epochs with a batch size of 16 and implemented using
PyTorch API, v.1.13.1.

We first investigate the performance of the selected object
detectors on the VisDrone dataset according to the selected
object classes (Car, Bus, Truck, and People). Table I shows

TABLE II: Proposed adversarial patch building parameter variation through-
out patch training phase.

Parameter Set Parameter Value

Pa
tc

h
Tr

an
sf

or
m

at
io

ns Printability Gm N(µ = 0.5, σ = 0.1)
Ga N(µ = 0.0, σ = 0.001)

Scene Matching
scenec [0.8, 1.2]
sceneb [−0.1, 0.1]
scenen [−0.1, 0.1]

Affine Rotation [−20◦, 20◦]
Scaling 30%

Pa
tc

h
L

os
s Ltv α 2.5

Lsal β 1.2
Lconf score γ 1

the object detection accuracy on the VisDrone dataset for
YoloV5 Small and Large counterparts when no adversarial
patches are considered (Patchless). We compute the Mean
Average Precision (mAP) considering an Intersection over
Union (IoU) threshold of 0.5. The selected object detectors
generally reached an mAP higher than 0.64 when considering
All classes (Table I). Notwithstanding, larger models can
provide better detection accuracies, with an average improve-
ment of 0.05 on their mAP compared to their lightweight
counterparts. Finally, the mAP accuracy is usually related to
the object occurrence on the training dataset, as noted by a
higher accuracy on Car and People classes.

B. Adversarial Patches

Our second experiment aims to answer RQ1 and evaluates
how our proposed adversarial patch-building scheme impacts
the previously evaluated object detectors’ accuracy. To this
extent, we implement our proposed model (see Section V) to
optimize our loss function (Eq. 7) using the Adam optimizer
with a learning rate of 0.04, betas of (0.9, 0.999), an ϵ
of 1e−8 for 500 epochs. We finetune the adversarial patch
transformations and loss parameters to improve their robust-
ness throughout the experiments. We vary the printability,
scene matching, and affine patch transformation parameters
to achieve such a goal while optimizing the adversarial patch.
Table II shows the parameters used throughout the adversar-
ial patch experiments. The parameters were empirically set.

Our first proposal evaluation aim at building an adversarial
patch in a white-box setting that targets All classes (Car, Bus,
Truck, and People). The adversary has complete access to the
object detection model and training dataset. We also compare
our proposed model against a Random patch, which is filled
with random noise. The goal is to measure if the accuracy
drop is caused due to the added adversarial patch or due to
the object occlusion. Figure 3 shows the image examples for
the built adversarial patches in a white-box setting.

Table I shows the object detection accuracy with ad-
versarial and randomly generated patches where different
patches are generated based on the target class, the model
architecture, and model initializations. It can be observed that
adversarial patches significantly affect the reliability of the
selected object detectors. The presence of adversarial patches
incurred in an average mAP decrease of 0.54, representing a
degradation of almost 80% for all classes across all models.
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(a) YoloV5 Small (COCO)
Patch Free

(b) YoloV5 Small (-)
Patch Free

(c) YoloV5 Large (COCO)
Patch Free

(d) YoloV5 Large (-)
Patch Free

(e) YoloV5 Small (COCO)
Adv. Patch

(f) YoloV5 Small (-)
Adv. Patch

(g) YoloV5 Large (COCO)
Adv. Patch

(h) YoloV5 Large (-)
Adv. Patch

(i) Adv. Patch for
YoloV5 Small (COCO)

(j) Adv. Patch for
YoloV5 Small (-)

(k) Adv. Patch for
YoloV5 Large (COCO)

(l) Adv. Patch for
YoloV5 Large (-)

Fig. 3: YoloV5 performance samples on several VisDrone scene conditions with and without adversarial patches for the Car class. The evaluated object
detection model can be trained from scratch (-) or based on the COCO dataset.
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Fig. 4: Accuracy behavior of YoloV5 Small (COCO) on VisDrone test
dataset for the Car class when subject to our proposed adversarial patch
building technique.

The built adversarial patches can decrease the mAP by up
to 0.67 in the worst case (Table I, YoloV5 Large (COCO),
People). Additionally, it presented a similar accuracy impact
regardless of the target object detector architecture and ini-
tialization parameters. For instance, it degrades the mAP by
0.53 and 0.55 for the YoloV5 Small vs. its Large counterpart,
respectively. Compared to the randomly generated patches,
which reduce the target object detector mAP by 37% on
average, our proposed adversarial patches reduce the mAP by

80% on average, showing a 116% increase in mAP reduction.
In essence, the results show that the accuracy decrease is not
necessarily caused by the object occlusion but rather by the
effectiveness of the added adversarial patch.

We further investigate the accuracy impact on the evalu-
ated object detectors. Figure 4a shows the accuracy curve of
one of the object detectors (YoloV5 Small (COCO)) when
subject to our adversarial patch attack. It is possible to
note that it dramatically impacts the target object detection
accuracy compared to its randomly generated counterpart.
Figure 4b shows the tradeoff on the adversarial patch scaling
(size with respect to the object bounding box) vs. Attack
Success Rate (ASR). To achieve such a goal we vary the
Scaling parameter during the adversarial patch-building task
(Table II). We measure the ASR according to the ratio of
the previously identified objects that are not identified due
to the added adversarial patch. An increase in the adversarial
patch scaling significantly improves the adversary ASR. For
instance, the adversary can almost double the ASR impact
from 41% to 78% when increasing the adversarial patch size
from 20% to 30% of the bounding box area.

C. Adversarial Patch Transferability

To answer RQ2, we further investigate the robustness
of the built adversarial patches towards the transferability
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Fig. 5: Transferability evaluation of the built adversarial patches on VisDrone
test dataset for the Car class. The adversarial patch is built in a white-
box setting targeting a YoloV5 Small architecture with a COCO-pretrained
weight initialization approach. The resulting adversarial patch is then used
against other object detector initialization and architectures.

between different object detector model initialization and
different architectures. We use the adversarial patch built
against the YoloV5 Small architecture for the Car class
against a different object detector model initialization and
architecture to achieve such a goal. We choose the Car class
since it represents nearly 60% of data samples from our
filtered VisDrone dataset while the other classes have very
small visual sizes, i.e. people, or have fewer samples in the
dataset, i.e. truck, bus.

Figure 5a shows the ASR of our built adversarial patch
when used against the same object detector architecture but
with a different initialization procedure. The sustained ASR
across the YoloV5 Small models shows the transferability of
our adversarial patch against an object detector with different
initializations. Transferring the adversarial patch to another
model caused a non-significant reduction in the ASR of only
3.1% from 78.1% to 75.7%. As a result, the adversary only
needs prior knowledge about the object detector architecture
implemented on the UAV. This is because the attacker can
transfer the adversarial patch built against the same archi-
tecture, but implemented with different initialization criteria,
thus, with different weights. This enhanced robustness of our
proposed adversarial patch-building approach significantly
increases the threat against autonomous UAVs.

We also investigate if the built adversarial patches can
be transferred to another object detector architecture of a
similar family. Figure 5b shows the ASR when we ap-
ply the adversarial patch from YoloV5 Small initialized
from COCO-pretrained weights against the YoloV5 Large
architecture. We observe the built adversarial patches are
robust against different object detector architectures. In this
case, using the adversarial patch built for YoloV5 Small
architecture against YoloV5 Large incurs in a ASR drop of
11.6% from 78.1% to 69.0% for the scratch initialized and
a non-significant increase of 1.2% from 78.1% to 79.0% for
COCO pre-trained model. These changes in ASR are within
the error thresholds of our repeated experiments signifying
no significant reduction or increment in patch effectiveness
across different models of similar architectural families. This
transferability is most likely due to the fact that even different
models of similar architectural families (i.e. YoloV5 Small vs

YoloV5 Large) tend to use similar detection heads and necks
but with a varying number of feature extraction layers which
ultimately attend to similar features in images. Consequently,
our proposed adversarial patch against object detectors is
robust against variations not only on the used object detector
initialization scheme but also on different architectures.

VII. CONCLUSION

DNN-based object detection is essential for processing the
huge amounts of image data generated by autonomous UAVs
systems. To this extent, ensuring their safety, resiliency, and
robustness against adversarial attacks is a must. This paper
has proposed a new adversarial patch-building procedure
against UAV object detection to improve the built patch’s
robustness in a more realistic setting where an attacker does
not have access to the target model’s internal parameters. Our
experiments, using a UAV imagery dataset, have shown that
our proposed technique can significantly affect the reliability
of current UAV object detectors. Furthermore, the built
adversarial patches can also be transferred to DNN models
with different initializations and different architectures, sig-
nificantly increasing the real threat posed by such adversarial
patches and easing the attacker’s job to evade detection from
these UAV systems. Our findings have significant impli-
cations for the security of autonomous UAV-based object
detection systems and provide insights into the weakness
of DNN models against adversaries in UAV applications.
In future works, we plan to port the generated adversarial
patches across different object detector architecture families
and to the physical domain.
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