
2040 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Reinforcement Learning for Intrusion Detection:
More Model Longness and Fewer Updates

Roger R. dos Santos, Eduardo K. Viegas , Member, IEEE, Altair O. Santin , Member, IEEE,
and Vinicius V. Cogo

Abstract—Several works have used machine learning tech-
niques for network-based intrusion detection over the past few
years. While proposed schemes have been able to provide high
detection accuracies, they do not adequately handle the changes
in network traffic behavior as time passes. Researchers often
assume that model updates can be performed periodically as
needed, although this is not easily feasible in real-world sce-
narios. This paper proposes a new intrusion detection model
based on a reinforcement learning approach that aims to sup-
port extended periods without model updates. The proposal is
divided into two strategies. First, it applies machine learning
scheme as a reinforcement learning task to long-term learning
- maintaining high reliability and high classification accuracies
over time. Second, model updates are performed using a transfer
learning technique coped with a sliding window mechanism that
significantly decreases the need for computational resources and
human intervention. Experiments performed using a new dataset
spanning 8TB of data and four years of real network traffic indi-
cate that current approaches in the literature cannot handle the
evolving behavior of network traffic. Nevertheless, the proposed
technique without periodic model updates achieves similar accu-
racy rates to traditional detection schemes implemented with
semestral updates. In the case of performing periodic updates
on our proposed model, it decreases the false positives up to
8%, false negatives up to 34%, with an accuracy variation up to
only 6%, while demanding only seven days of training data and
almost five times fewer computational resources when compared
to traditional approaches.

Index Terms—Intrusion detection, reinforcement learning,
network traffic, machine learning.

I. INTRODUCTION

THE NUMBER of cyberattacks has increased significantly,
currently accounting for almost a fifth of worldwide

Manuscript received 10 February 2022; revised 10 June 2022 and 30 August
2022; accepted 5 September 2022. Date of publication 15 September 2022;
date of current version 6 July 2023. This work was partially sponsored by
the Brazilian National Council for Scientific and Technological Development
(CNPq), grant n◦ 304990/2021-3, and the FCT through the LASIGE Research
Unit, ref. UIDB/00408/2020 and ref. UIDP/00408/2020. The associate editor
coordinating the review of this article and approving it for publication was
N. Z.-Heywood. (Corresponding author: Altair O. Santin.)

Roger R. dos Santos and Altair O. Santin are with the Graduate
Program in Computer Science, Pontificia Universidade Catolica do
Parana, Curitiba 80215-901, Brazil (e-mail: roger.robson@ppgia.pucpr.br;
santin@ppgia.pucpr.br).

Eduardo K. Viegas is with the Graduate Program in Computer Science,
Pontificia Universidade Catolica do Parana, Curitiba 80215-901, Brazil,
and also with the Secure Systems Research Center, Technology Innovation
Institute, Abu Dhabi, UAE (e-mail: eduardo@ssrc.tii.ae).

Vinicius V. Cogo is with the LASIGE, Departamento de Informática,
Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
(e-mail: vvcogo@fc.ul.pt).

Digital Object Identifier 10.1109/TNSM.2022.3207094

network traffic [1]. According to a recent security report,
the number of network-based attacks in the first quarter of
2022 increased 4.5 times compared to the same period in
the previous year [2]. Network administrators must access
security solutions that can reliably detect this growing num-
ber of network attacks. Intrusion detection systems (IDS) are
widely deployed to monitor and identify network attacks,
classify malicious activities, and neutralize them in a given
environment [3]. Solutions from the literature often rely upon
two main approaches to accomplish this intrusion detection
task [4]. On one hand, misuse-based approaches aggregate
well-known attack patterns and signatures for identifying
them in the passing network traffic. However, they only
detect previously known signatures [5], leaving systems unpro-
tected against zero-day attacks, for instance. On the other
hand, Behavior-based approaches analyze the players’ conduct
within a given network environment to signal misconducts,
for instance, by applying a machine learning (ML) model.
Solutions adopting this approach usually can detect new intru-
sions, but only if they behave likewise those previously known
attacks used to build the behavioral model [6], [7].

The ever-increasing number of newly identified attacks has
motivated the proposal of several works (e.g., [3], [8], [9])
for behavior-based intrusion detection, usually making use
of ML through pattern recognition techniques. These solu-
tions usually build their ML model based on massive datasets
containing billions of events that must dependably represent
the expected behavior of the respective production environ-
ments [6]. Although the extracted ML model can signal events
associated with previously unknown attacks, using these mas-
sive datasets implies in computationally-expensive training
phases and several challenges related to the labeling of such
events [10].

The behavior of network environments can vary consid-
erably over time due to the exploitation of new attacks,
and the emergence of new services, among other reasons
[6], [7]. This non-stationary nature of network production
environments quickly renders the ML model outdated, requir-
ing systems administrators to perform frequent and expensive
model updates [6]. The rationale for this requirement is that
an outdated ML model cannot maintain the accuracy rates
obtained during the testing phase, becoming unreliable and
putting production environments at risk [7]. In practice, the
IDS alerts will escalate and become primarily false positives,
motivating administrators to disregard them while an updated
ML model is not yet available. In the literature, authors often
assume periodic model updates will be performed, but they

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5050-6363
https://orcid.org/0000-0002-2341-2177
https://orcid.org/0000-0002-1299-8950

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2041

either consider it an orthogonal problem or overlook the chal-
lenges posed by model retraining task [11]. Model updates
for pattern recognition demand the collection of up-to-date
events, expert assistance for event labeling, and the mentioned
computationally-expensive model retraining [3].

All procedures mentioned above can take weeks or even
months of expert assistance—which may be unavailable
in some organizations or entail high costs to them [12].
Therefore, providing an ML model that can reliably withstand
long periods is a must, as model updates are neither easy nor
cheap.

Traditional pattern recognition and classification approaches
usually are not designed to last long-term [7]. Previous work in
general seeks higher classification accuracies, with significant
tradeoffs on the model’s generalizability, resulting in severe
decreases in its detection performance [6]. Unfortunately, ML
intrusion detection techniques in the literature still neglect to
evaluate the reliability of their ML model as time goes [13].

An outdated ML model must be updated as soon as pos-
sible. However, identifying expired models is a challenging
task [11] as the network administrator must manually evaluate
whether the current model’s accuracy still meets the accuracy
measured at the test phase. In general, proposed approaches
for such tasks rely upon supervised settings (e.g., drift detec-
tion mechanisms) that assume the proper event label is always
available [14]. The problem is that, contrary to the test phase,
the label of events is not previously known in production.
Current approaches either neglect when the current ML model
will become outdated, or the impact of their model’s lifespan,
presuming that periodic model updates are performed without
considering their costs [6].

Ideally, model updates should demand the lowest computa-
tional resources as well as the minimum amount of data due
to the high costs associated with the event labeling task [6]. In
contrast, traditional pattern recognition solutions discard their
active model and build new ones based on the newly obtained
training data at each model update procedure. The execution
of such a task demands significant amounts of data to reliably
extract the new ML model while also consuming excessive
processing resources. The training data size must be as big as
the original (despite prior knowledge from the outdated dis-
carded model) [3]. As a result, ML-based intrusion detection
schemes remains mostly as a research topic, as they are rarely
used in production due to network traffic’s evolving behavior
and the challenges it incurs to deployed ML-based techniques.

This paper proposes a new intrusion detection model based
on reinforcement learning (RL) that aims to extend the model’s
longness to increase its lifespan, reduce the accuracy variation
as time passes, and facilitate model updates. The first goal is
achieved by exploring the insight that a long-lasting model
can be reached if the model training pursues high accuracy
and correctness. Our proposal measures the model correct-
ness according to the classification confidence distance to the
proper event label. The main assumption is that the classifier
classification confidence can be used to attest to the correctness
of the performed classification. We thus build our first objec-
tive, with the obtained model aiming for higher classification
correctness across all classified events rather than improving it

only on a subset of those in the training phase. Our second goal
is reached because the model will be more accurate and also
more reliable, decreasing its accuracy variation over time. The
third goal is achieved by performing model updates consider-
ing a sliding time window to decrease the number of labeled
data that must be provided when the active model becomes
outdated. Notwithstanding our proposed model update pro-
cedure leverages prior knowledge from the outdated model
making use of its parameters (weights), i.e., instead of discard-
ing it entirely, we follow a transfer learning-based approach
that decreases the computational resources needed for such a
task. The proposed scheme can significantly extend the model
longness and reduce the computational resources and the
human expert intervention needed to perform model updates
when the active model becomes less effective.

More specifically, the main contributions of this paper are
threefold:

• A new publicly available intrusion dataset composed of
four years of real, valid, and labeled network traffic pro-
vided on a daily basis. The dataset is the first of its kind
and encompasses more than 8TB of data, composed of
more than seven billion of network flows. The dataset
enables researchers to evaluate proposed ML-based intru-
sion detection schemes on how changes in the network
traffic behavior over time affect the classification accu-
racy and how model updates can be conducted to address
such a challenge;

• An evaluation of the classification accuracy, variation,
and longness of widely-used ML-based techniques for
intrusion detection. Our experiments indicate that current
ML-based approaches in the literature cannot cope with
changes in the network traffic behavior over time, increas-
ing their error rate by up to 38% only a year after the
training period while significantly varying their accuracy
as time passes. Notwithstanding, we show that periodic
model updates can be used to provide reliability in intru-
sion detection. However, it must be conducted based
on the newly occurring network traffic characteristics,
demanding a higher frequency of model updates as soon
as a higher attack frequency is evidenced. The exper-
iments show that current ML-based approaches demand
frequent and computational expensive model updates that
make them hardly feasible for production deployments;

• A new reinforcement learning model for intrusion detec-
tion that significantly improves classification reliability
over time. The proposed scheme aims to build and update
the ML model through a fine-tuning procedure that aims
for higher model confidence values rather than only
improving their obtained accuracies as time passes. As
a result, the proposed model can improve the model
lifespan by up to two years when no model updates
are performed. If done so, it can leverage the outdated
ML model, demanding only 21% of computational costs
while improving the false-negative rates by up to 34%
and decreasing the accuracy variation to only 6%.

The remainder of this paper is organized as follows.
Section II contextualize machine and reinforcement learn-
ing techniques for intrusion detection. Section III reviews the

2042 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE I
FEATURES SET EXTRACTED AT THE NETWORK LEVEL FOR EACH

FEATURE GROUPING IN A TIME WINDOW INTERVAL OF 15S

related works. Section IV introduces our novel dataset and
presents an evaluation of how widely-used ML algorithms
for intrusion detection perform on it over time. Section V
describes our proposed reinforcement learning model for intru-
sion detection, while Section VI evaluates it. Section VII
presents the final remarks to conclude this paper.

II. BACKGROUND AND CONTEXT

A. Machine Learning for Intrusion Detection

Generally, the approaches from prior work perform intru-
sion detection through four sequential modules, namely Data
Acquisition, Feature Extraction, Classification, and Alert. The
Data Acquisition module is responsible for monitoring the
environment to collect events (e.g., the network packets from
a network interface card). The collected data are forwarded to
the Feature Extraction module, which extracts a set of event
behavioral features. Generally, the network’s data behavior is
analyzed based on its flow – communication history.

Table I shows an example of network flows usage for
the feature values computation in intrusion detection [10].
In this case, a set of thirteen features is extracted according
to the communication history (e.g., a fifteen-second interval)
between hosts, host vs. host, and service vs. service. The result-
ing feature vector is the collected features organized through
the three groups of features (left column of the table), yield-
ing a total of thirty-nine features for each network flow. The
extracted set of features composes a feature vector used as
input to the Classification module, which classifies it as nor-
mal or attack. Several approaches can be used to perform the
classification task, in which ML through pattern recognition
techniques is typically used [3]. Finally, if a given event is
classified as an attack, the Alert module properly reports it to
the network administrator.

Machine learning techniques have been successfully applied
in several domains, including fraud detection [15], medi-
cal diagnosis [16], and optical character recognition [17].
However, despite the promising results reported by prior
works, ML-based intrusion detection techniques are rarely
deployed in production environments [6]. Networked environ-
ments pose more hurdles when compared to domains where
ML has succeeded. The behavior in network environments can

vary considerably over time due to the exploitation of new
attacks, the emergence of new services or even changes in the
communication link [6], [7], [12].

Building a reliable ML model in network-based intrusion
detection is challenging and often overlooked task. Training
datasets must encompass events for as many expected behav-
iors of production environments as possible, which is not
always feasible due to networked environments’ highly vari-
able nature. The ML-based classification model must properly
generalize the behavior experienced in the training phase [3],
which is often achieved only through losses in classification
accuracy.

The literature often neglects or omits the performance of
their solutions in production environments, highlighting only
high accuracies obtained in the test phase – at the cost of
decreasing the model generalization. Additionally, even if a
ML model with high generalization capabilities is built, it will
become unreliable as time goes on [6] since the training dataset
assumes a static environment that is highly variable in reality.
Therefore, the ML model must be generalizable and updated
as soon as it decreases its expected classification rates. Despite
the lack of adoption in production environments, current liter-
ature approaches still neglect network traffic’s highly variable
nature. At the same time, they also assume that periodic model
updates can be easily performed, while the challenges involved
in such a process remain mostly overlooked [6], [7], [13].

B. Reinforcement Learning

In contrast to traditional ML techniques, reinforcement
learning (RL) aims to find an optimal learning policy strategy
during the model-building phase [18]. RL-based techniques
are performed through an entity called the agent. The agent
performs its action on a given environment through perception
and action mechanisms. The former is used by the agent to
collect the environment current state, while the action enable
the agent to act in the given environment.

Usually, an RL-based approach is executed iteratively over
the given environment at the training phase. At each iteration,
the agent receives as input the current environment state as
measured through the feature vector. One can be noticed that
the agent acts through an action over the environment, as
defined by its policy (e.g., applying an ML model over the
environment state), which changes its state and generates a
new reward as output. Therefore, the training procedure goal is
to find an agent that performs actions that increase its obtained
rewards over time.

Traditional ML relies upon an input and output pair, where
an ML model receives a given event feature vector as input
and outputs its estimated class value. RL-based approaches are
significantly different from traditional ML-based ones [18].
RL-based techniques are not given the event class value [3].
Instead, after an action is performed, the agent only receives
the reward for its action and the subsequent environment state.
The agent learns the optimal decision threshold in the long
term, given that it optimizes its rewards over time.

Noticeably, intrusion detection through RL techniques is
still being developed [8], but they are very promising. Authors

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2043

from literature solutions generally pursue higher classifica-
tion accuracy by modeling the intrusion detection field as an
RL-based environment.

III. RELATED WORK

A. Machine Learning for Intrusion Detection

Machine learning reached a strong relation with the intru-
sion detection domain since both communities benefit from
optimizing ML algorithms in many dimensions (e.g., maxi-
mizing accuracy, minimizing false alarms) while addressing
real-world problems. Despite the immediate primary goal of
many proposals being to provide the highest accuracy possi-
ble in attack detection (e.g., [19], [20], [21]), other objectives
arose since these attacks (and the network traffic) evolved.
Some prominent examples of additional objectives addressed
by related works include speeding up model updates with fea-
ture selection (e.g., [22], [23]), reducing the dependence on
humans to label new events (e.g., [24]), avoiding discard-
ing the whole previously employed (even outdated) models
(e.g., [25]), among others.

Mauro et al. [26] evaluated several deep learning techniques
on a variety of publicly available intrusion datasets, showing
that the selected approaches’ accuracy does not significantly
vary, regardless of the selected deep learning architecture.
Unfortunately, the authors did not evaluate how the network
traffic behavior changes affect the classification accuracy.
Intrusion detection techniques aiming at higher detection accu-
racies are a widely addressed challenge in the literature.
Upadhyay et al. [27] proposed a feature selection technique
to increase the accuracy of ML-based intrusion detection in a
single dataset. The author proposed scheme selected the most
suited features to proactively increase accuracy. The authors
have neglected the proposal’s generalization capacity and the
impact of network traffic behavior changes over time.

Some related works (e.g., [27]) mention that adopting an
ensemble of classifiers may be able to increase the chances
of always employing the most accurate of their models for
detection. In such a context, Das et al. [28] evaluates the
classification accuracy of several ensemble ML techniques
in publicly available intrusion datasets, showing that such
approaches can achieve higher detection accuracies when com-
pared to the single classifiers approach. However, if all adopted
models decrease the detection accuracy immediately after the
testing phase, this ensemble classifier may not be very help-
ful. Again, the impact of network traffic changes is not even
evaluated, leaving an opportunity to address such a challenge
in the literature.

Several works have resorted to deep learning techniques
to increase accuracy in their proposed schemes in recent
years. Longari et al. [29] have proposed an intrusion detec-
tion scheme based on long short-term memory (LSTM) and
autoencoder to identify intrusion attempts as anomalies. Their
proposed scheme was able to increase detection accuracy when
compared to traditional ML techniques. However, the authors
neglect the challenges related to model updates. Another
LSTM-based approach was proposed by Imrana et al. [30]
as an attempt to decrease the number of false alarms. Their

proposed model increased accuracy in a multi-class setting
while being evaluated in an outdated dataset. Again, the
authors neglected the evolving behavior of network traffic, and
traditional ML evaluation was used.

B. Changes in Network Traffic

Although many of these works achieve high detection accu-
racy at the testing phase, none evaluates the mentioned metric
over time. The main challenge is the creation of a realistic
intrusion dataset that makes it possible to evaluate the accu-
racy of the designed techniques as time passes [10]. To achieve
such a goal, the network administrator must perform the proper
data collection and the labeling of the network traffic in a
long interval, which is often unfeasible in production envi-
ronments [6]. As a consequence, authors generally resort to
publicly available datasets, which often do not provide the
expected properties from production environments [7].

Network traffic behavior changes over time are hardly
considered in the literature. Alshammari and Zincir-
Heywood [31], [32] evaluated the performance of ML-based
classifiers used in a different environment for the classifica-
tion of application-level network traffic. The authors found
that new network traffic features, such as those caused due
to distinct periods, may significantly impact flow-based clas-
sification systems. Liang and Ma [33] recently mentioned the
detection rates of IDSs gradually decaying with the emergence
of new attacks. However, they only address the incentives for
collaborative model retraining by assigning more blockchain-
based tokens to transactions that classify unknown suspect
packets. Their framework must download the latest database
and retrain the whole model without using outdated ML
model knowledge. Additionally, they did not benchmark the
frequency of these updates required to maintain the training
detection accuracy in production environments.

The evolving behavior of network traffic was also con-
sidered by Hsu and Matsuoka [34]. The authors created a
“simulated” network traffic behavior change by creating sev-
eral chunks in intrusion detection datasets and evaluating their
technique according to each fragment. The authors noticed the
accuracy variation in their evaluation. However, the changes
in network traffic behavior were created in a controlled set-
ting, hence, not reproducing the actual behavior of real-world
environments.

C. Reinforcement Learning for Intrusion Detection

Recently, a promising approach in intrusion detection
has relied on reinforcement learning (RL). Suwannalai and
Polprasert [35] proposed a deep RL scheme to increase accu-
racy in a single dataset. The authors provided higher detection
accuracy compared to traditional ML techniques while neglect-
ing the challenges related to the actual deployment of their
proposed scheme in production environments, such as the
behavior changes in network traffic. Benaddi et al. [36]
proposed a RL scheme to detect malicious adversaries in
wireless sensor networks. Their proposed approach was able
to increase accuracy when compared to traditional ML tech-
niques. However, model updates are also overlooked.

2044 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Another RL technique was proposed by Servin and
Kudenko [37] for distributed learning in intrusion detection.
Their proposed model addresses model updates in a distributed
manner following a hierarchical-based strategy. Unfortunately,
the easing of the model update burden is overlooked as they
assume that the label of events can be requested as needed.
Lopez-Martin et al. [8] proposed a more practical application
of deep RL. In their work, the authors propose a new train-
ing procedure for RL that replaces the live environment with
mini-batches of a training dataset. Thus, it is feasible for model
updates that follow such a procedure and leverage the outdated
model. Unfortunately, the authors overlook the model updates
in their evaluation and how the model update procedure can
be eased in the face of new network traffic behavior.

D. Discussion

It can be noted that a plethora of works has been proposed
to increase detection accuracy in the field of network-based
intrusion detection. However, despite the promising reported
results, such as those obtained by traditional machine learn-
ing [27], [28], deep learning [29], [30], or even through deep
reinforcement learning techniques [8], [35], [36], [37], their
actual deployment in the production environment remains low.
The challenges of networked production environments remain
neglected by the literature, and the traditional ML evaluation
procedure occurs.

Proposed schemes deployed in real-world settings will
be subject to a highly variable behavior of the underlying
network, making it unfeasible to be reproduced in a training
dataset – demanding that the proposed scheme generalize the
behavior of the network traffic [6], [7]. In practice, the network
traffic behavior will change over time [33], [36], demanding
model updates to be performed periodically. However, model
updates are also a challenging task that often demands huge
amounts of labeled training data to be provided.

Such open opportunities motivate evaluating traditional
methods with more extended periods and studying their
accuracy variation and model longness to draw more gen-
eral conclusions about this downward trend in accuracy rate
for network traffic classification tasks. These open prob-
lems/opportunities contribute to the previously addressed goals
to provide security administrators with more trustworthy and
easy-to-maintain IDS solutions.

IV. PROBLEM STATEMENT

This section investigates the main aspects that make
network-based intrusion detection challenging for ML-based
techniques. More specifically, we accomplish this task
by proposing a new intrusion dataset and evaluating the
performance of widely used ML-based intrusion detection
approaches.

A. MAWIFlow Dataset

The reliability of network-based intrusion detection mecha-
nisms relies upon using a realistic training dataset. However,
current approaches in the literature often build their techniques
on top of outdated datasets with several known flaws [38].

Previous work is rarely used in production environments,
despite the promising results, such as a high-accuracy ML
model [6], [7]. In practice, a realistic training dataset [12]
must contain real network traffic that can be experienced in
production environments with valid and correct network traffic
communication protocols implementation.

The network traffic has to be highly diverse in terms of used
protocols and network behavior, ensuring the completeness
availability for the network traffic protocols in the production
environment as well as their variability. The network events
must be prior labeled as belonging to a class (e.g., normal or
attack) to enable the proper evaluation of the model and build-
ing of the ML classifier. Finally, the dataset must be publicly
available in a usable format to enable the proper intrusion
detection proposal benchmarking.

Usually, proposals in the literature collect network traffic
from a controlled testbed or monitor the production environ-
ment behavior to support the mentioned requirements [10].
The former enables the appropriate data sharing and labeling
of events due to its controlled nature. However, they lack a
highly diverse network content of the production environment
and generate unrealistic network traffic. In contrast, the latter
produces real and valid network data that is highly diverse but
hinders the proper labeling of events and the public sharing of
the collected data (e.g., due to the privacy concerns associated
with real network traffic). Regardless of the approach adopted
for building the datasets, works from the literature have not
adequately considered network traffic’s evolving behavior. It
means that even the best datasets will fail as the available
network traffic remains unmodified in such data over time.

Our new dataset, named MAWIFlow, comprises real, valid,
and prior labeled network traffic collected from production
environments for long periods. More specifically, its network
flows are extracted from the MAWI network packet traces [39]
(SamplepointF in MAWI archive), which are collected daily
with a 15min-long interval from a network transit link con-
nected between Japan and the USA. During the network
recording period, the samplepoint was made of a 1Gbps
network traffic link. Additionally, the network packet payloads
are removed, and sensitive network packet header fields are
anonymized.

The labeling of network traffic is a challenging task, which
is typically only achieved through human assistance [3].
Unfortunately, using an administrator for the labeling of
network events becomes unfeasible due to the huge number
of network events available in our dataset (≈ 7.23 billion).
In general, the literature performs the labeling task through
misuse-based techniques (e.g., intrusion signatures) [6], [10],
which may introduce labeling flaws, rendering the classifi-
cation task easy to be performed. The ML classifier may
learn the underlying used set of signatures, rather than the
network traffic behavior. Consequently, our dataset was labeled
using MAWILab [40] work, which label the daily anomalous
events (network flows) from MAWI making use of a variety of
unsupervised anomaly detectors. Although such a labeling pro-
cedure is prone to errors, it copes with the behavior variability
of the analyzed network traffic, as the labeling task is per-
formed in a daily basis. It maintains the variability of network

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2045

Fig. 1. MAWIFlow network flow distribution throughout the 4 selected years.

TABLE II
MAWIFlow DATASET STATISTICS

traffic behavior and the challenges of production environment
network traffic.

In this work, we consider the whole network traffic available
for a four-year interval, ranging from 2016 to 2019. Network
anomalies are classified according to their attack types as
labeled by MAWILab. In such a case, the network anomalies
can be of several types, including Service Scan, TCP Scan,
and denial-of-service, among other network-level attacks.

Due to its large scale, over 8TB of data composed of over
7 billion network flows, the MAWIFlow dataset was built
using the BigFlow [10] feature extraction algorithm, which
is implemented in a Big Data processing framework. The
feature extraction algorithm extracts, for each network flow,
39 features in a 15s window interval, as listed in Table I.
Each network flow is previously labeled as normal or attack
as established by the MAWILab [40] unsupervised algorithms
output. Table II shows the MAWIFlow statistics throughout the
evaluated period of 4 years.

The built dataset provides the expected properties from
a realistic network traffic dataset used for the benchmark
of intrusion detection techniques [12]. The dataset provides
real, valid, and correct network traffic as it was collected
from a real network transit link, maintaining the charac-
teristics of production environments. The available network
traffic is highly diverse, with a completeness behavior of com-
munication protocols due to the extended recording period,
considering a 4-year long time window. Notwithstanding,
usability is ensured as the dataset is provided in a network
flow format in a publicly available setting.

B. Reliability of ML for Intrusion Detection

The present evaluation aims to answer the following
research questions:

• (RQ1) What is the behavior of widely used ML-based
approaches in terms of accuracy over time when no model
updates are performed?

• (RQ2) What is the impact of periodic model updates on
the accuracy of widely used ML-based approaches?

In the following, we elaborate more on the evaluations
carried out and our findings.

To evaluate widely used ML-based approaches, we select
four commonly used ML-based techniques for intrusion detec-
tion, namely Long Short-Term Memory (LSTM), Random
Forest (RF), Adaboosting (Ada), and Gradient Boosting
(GBT).

The ensemble classifiers (RF, Ada, and GBT) were imple-
mented with 100 decision trees as their base-learners, where
each one of them also uses gini as the node split quality
metric. The GBT classifier relies upon a 0.1 learning rate
value, with deviance as the loss function. The Ada classifier
uses the SAMME as boosting algorithm and 1.0 as the learn-
ing rate. The ensemble classifiers were implemented through
scikit-learn API v0.24.

The LSTM was implemented with the following architec-
ture: (I) Input: The 39 flow-based network features are fed
as an input to the LSTM; (II) LSTM: Two LSTM layers with
256 and 128 units respectively. (III) Output: Two dense layers
implemented with a relu activation function, with 512 and 1
units respectively. The implemented LSTM architecture used
the categorical crossentropy as loss using adam optimizer. For
the model building procedure, 1,000 epochs are executed with
a batch size of 512. It is important to note that the used param-
eters from LSTM were set from the related works, and no
significant differences were found while varying them.

As shown in Figure 1(d), due to the unbalanced nature of
the MAWIFlow, a random undersampling without replacement
is used at each training procedure to balance the occur-
rence between the classes for both the ensemble and the
LSTM classifiers. The classifiers were evaluated concerning
their false-negative rates (FN), false-positive rates (FP), and
F-Measure. The following classification performance metrics
were used:

• True-Positive (TP): number of attack samples correctly
classified as attack.

• True-Negative (TN): number of normal samples correctly
classified as normal.

• False-Positive (FP): number of normal samples incor-
rectly classified as an attack.

2046 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 2. Accuracy performance, shown quarterly, for various ML algorithms on the entire MAWIFlow dataset. Classifiers are trained with January 2016 data
and not updated throughout time.

• False-Negative (FN): number of attack samples incor-
rectly classified as normal.

The F-Measure was computed according to the harmonic
mean of precision and recall values while considering attack
samples as positive and normal samples as negative, as shown
in Eq. (3).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F -Measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

C. Classification Accuracy Without Periodic Model Updates

The first experiment aims at answering RQ1 and performs
the evaluation of the classification performance of the selected
ML techniques when model updates are not performed over
time. The selected ML classifiers are trained only with the data
from January 2016, while they are used for evaluation through-
out the remaining four years of the interval. The evaluation
goal is to measure how network traffic’s evolving behav-
ior affects the classification performance over time if model
updates are not periodically performed, as commonly made by
related works.

Figure 2 shows the average classification error for every
quarter of the selected ML-based intrusion detection tech-
niques without periodic model updates. A significant impact
on the accuracy performance can be noticed compared to its
training period (i.e., January 2016). All evaluated intrusion
detection approaches decrease their accuracy as the model
longness increases. For instance, compared to the training
phase, the RF classifier increased, on average, 7.5% and 0.9%
the FP and FN rates in 2016. Besides, from 2017 to 2019, the
RF classifier increased its FP and FN rates even further com-
pared to the training period, presenting an average increase of
38.3% and 35.3% on their FP and FN rates, respectively.

In contrast, the LSTM classifier presented lower accuracy
degradation as time passes. For instance, it reached an average
FN rate of only 13% in 2017. The reduced LSTM accuracy
degradation was reached due to the complexity increase in
the used model, given that the traditional shallow classifiers
(RF, Ada, and GBT) cannot depict all the complexities of the
network traffic used during the training phase. Consequently,

the resulting model reaches a higher generalization regarding
network traffic classification as time passes.

The performance of traditional ML-based intrusion detec-
tion approaches is dependent on the used model longness. The
average quarterly accuracy varies significantly, from 2017-Q4
to 2018-Q1 for all the evaluated classifiers. The non-stationary
behavior of accuracy over time significantly degrades the relia-
bility of the intrusion detection mechanism, assuming that the
administrator will discard signaled alerts as soon as higher
FP and FN ratios are experienced. Even if an outdated model
reaches high detection accuracy (e.g., those achieved by the RF
classifier in 2018-Q1), the system alerts will be discarded, as
its accuracy has already degraded in previous circumstances.

The accuracy degradation of the selected classifiers is
caused by changes in the network traffic behavior as time
passes. It can be seen in Figure 1(b), which shows the distri-
bution of attack occurrence on the MAWIFlow dataset, that the
attack occurrence remains stable throughout 2016. Similarly,
the model detection accuracies are also not significantly
affected (see Figure 2). In contrast, the attack occurrence sig-
nificantly changes in 2017, caused by a significant increase
in TCP Scan, followed by a decrease in UDP Scan and DoS
attacks, resulting in the accuracy degradation of the evaluated
techniques. Notwithstanding, the normal traffic occurrence
also changes as time passes, as shown in Figure 1(c).

Over time, new network services will be provided, and
new network attacks will be discovered, thus changing the
underlying behavior of the network. However, identifying
such changes in the underlying network traffic (which affects
the deployed ML model) is difficult, as the administrator
must (often manually) evaluate the current model accuracy, as
defined by the ratio of correctly classified network samples.
In contrast, the proper event label is unavailable in production
settings, making the accuracy evaluation significantly more
challenging. As a result, the deployed ML model must be
regularly updated to address such network traffic changes.

To further investigate the accuracy variability over time
when no model updates are performed, we compare the accu-
racy distribution of the accuracies obtained at the training
(January 2016) to those obtained in the remaining period.
Figure 3 shows the accuracy distribution (boxplot) of evaluated
classifiers without model updates over time.

Regardless of the detection technique, the error ranges sig-
nificantly increase as time passes when compared to those

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2047

Fig. 3. Accuracy distribution, shown semiannually, for various ML algorithms on the entire MAWIFlow dataset. Classifiers are trained with January 2016
data and not updated throughout time.

Fig. 4. Accuracy performance, shown quarterly, for various ML algorithms on the entire MAWIFlow dataset. Classifiers are updated every 6-month interval,
with 1 month of training data.

measured during the training period. For example, on average,
the RF interquartile error range increases by 3.4% and 4.0%
for FP and FN rates every six months of additional model
longness, thus significantly increasing its accuracy variation
over time. The evaluated techniques cannot provide reliability
in intrusion detection months after the model classifier train-
ing phase. Nonetheless, the accuracy distribution increases as
time passes, as noted by an increase in the number of outliers
(Figure 3, 2016 and 2017) and also the interquartile ranges
over time (Figure 3, 2018 and 2019).

One can notice that the evolving behavior of network traffic,
which varies as time passes, poses a significant challenge to
ML-based techniques. It becomes unfeasible for the network
administrator to generate a training dataset with all possible
variations. Thus, the deployed ML model will present a high
accuracy variation if it is not designed to consider the general-
ization capabilities. It should be noted that a high variation in
the error rate over time for the intrusion detection mechanism
significantly affects the system administrator’s perception of
system reliability.

This lack of reliability is because, even if the intrusion
detection mechanism can reach high accuracy rates with an
outdated ML model, the administrator will suppress alerts as
soon as a high error rate is experienced. Intrusion detection
mechanisms must reach high accuracy rates and present low
accuracy variability over time for reliable production deploy-
ment. However, if the ML model is not updated, the evaluated
ML classifiers is not able to cope with the network traffic’s
evolving behavior.

The techniques become unreliable in the immediate months
following the training period, as noted by a higher error rates

(Figure 2) and higher variability in the measured error rates
(Figure 3). Therefore, intrusion detection approaches based
on ML must be regularly updated to maintain classification
reliability.

D. Classification Accuracy With Model Updates

To answer RQ2, we further investigate the impact that peri-
odic model updates cause on the classification accuracy of the
underlying ML model. We first consider a model longness of
6 months using a 1 month range as training data, which means
we update the ML model every semester using the MAWIFlow
data that occurred a month earlier. The evaluated classifiers
are updated at the end of every January and July at any given
year – using the data that occurred in the last 30 days at that
given period. Notwithstanding, it is essential to mention that
the frequency of model updates must be established according
to the administrator’s needs.

Figure 4 shows the accuracy performance throughout
MAWIFlow data when model updates are performed every
6 months. One can notice that, in general, the evaluated clas-
sifiers’ accuracy performance is improved. For instance, the
periodically updated RF classifier improved its average FP rate
from 35.1% to 16.5% while improving its average FN rate
from 36.0% to 23.4% compared to the results without model
updates. The model longness varies over time, as noted by
higher FP and FN rates in 2018 and 2019. The updated LSTM
could not significantly improve the obtained accuracy rates
compared to the shallow classifiers. In contrast, it decreased
the average accuracy rates as soon as a higher ratio of attacks is
evidenced (Figure 1(a), 2018 and 2019). This decrease happens

2048 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 5. Accuracy distribution, shown semiannually, for various ML algorithms on the entire MAWIFlow dataset. Classifiers are updated every 6-month
interval, with 1 month worth of training data.

Fig. 6. Model longness and average error rate tradeoff in MAWIFlow. Model longness establishes the model update frequency, while average error rate is
measured as the average of both FP and FN rates throughout the entire MAWIFlow data.

because as the complexity of the LSTM model increases when
compared to traditional shallow classifiers, a higher number of
training samples must be provided to ensure the proper model
generalization, as occurred with its no-update counterpart.

The classifiers evaluation should have been updated more
frequently to increase reliability in such a case. Due to
the difficulties related to identifying model obsolescence,
the administrator will increase the model update periodicity,
regardless of whether the current model is still reliable, as
occurred from 2016 to 2017. The sudden increase in network
attacks shows the need for a more frequent model update.
As shown in Figure 1(a), the attack occurrence increases from
≈ 6% throughout 2016 and 2017 to ≈ 24% in 2018 and 2019.

The changes in the occurrence of network attacks signif-
icantly affect the classification accuracy of the periodically
updated classifiers, as noted by the degradation of the attack
classification performance compared to the normal classifi-
cation performance (Figure 4, the significant increase in FN
when compared to FP). As the attack occurrence increases,
so does the complexity of detecting attacks on the network,
thus requiring more frequent updates of the ML model. The
updated classifiers can provide high detection accuracy to
previously known threats, considering that older attacks are
still frequent as time passes (see Figure 1(b)).

We also investigate the accuracy variability when model
updates are performed. Figure 5 shows the accuracy distribu-
tion (boxplot) of evaluated ML classifiers when model updates
are performed every semester. In contrast to the approach with-
out model updates (Figure 3), periodic model updates also
decrease the accuracy variation over time, as noted by a lower
interquartile range in both 2016 and 2017. Noteworthy, in

2018 and 2019 (the period that demands more frequent model
updates), the interquartile range increases up to its counterpart
with no periodic updates. Even considering a 6-month long-
ness, an outdated ML model may significantly decrease and
vary its accuracy, impacting the intrusion detection reliability.

We further investigate how the model update periodicity can
affect the classification performance of the selected ML clas-
sifiers. Figure 6 shows the model accuracies according to the
model longness, i.e., the frequency in which model updates
are performed. It is possible to note that increasing the model
update periodicity, in most cases, improves the accuracies of
the obtained model. For instance, the FN interquartile range
of the weekly updated RF decreased by 38% when compared
to its counterpart updated every trimester. The LSTM classi-
fier is not as significantly affected by the increase in the model
update periodicity. More specifically, the 1-month model long-
ness LSTM decreased the FN interquartile range by only 4.1%
when compared to its 3-month model longness counterpart.
This is because, as discussed previously, the higher complexity
of the LSTM, compared to the shallow classifiers, can increase
the model’s longness.

E. Discussion

In general, previous works assume a static network traf-
fic behavior, using datasets that do not represent the dynamic
nature of production environments, resulting in imprecise and
unrealistic detection schemes. Unlike the ones in the liter-
ature, our built dataset MAWIFlow is the first of its kind
and is composed of more than 8TB of data that spans four
years.

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2049

Fig. 7. Overview of the reliable reinforcement learning intrusion detection model classification and update pipelines.

The dataset enabled us to evaluate the current approaches
in the literature regarding their reliability over time. The
experiments have shown that widely used ML-based tech-
niques cannot cope with the evolving behavior of network
traffic. As time passes, their detection accuracy decreases
while the accuracy variation increases.

The execution of periodic model updates can positively
impact the accuracy and decrease its variance. However, it
should be made according to the network traffic distribution.
Current literature approaches must be used with small model
longness (e.g., a few days or weeks) to provide reliability over
time. Due to the small model-longness expectation, previously
proposed techniques are rarely used in production environ-
ments. The main reason is that the ML model with such a
small lifespan can not be updated as frequently as needed to
ensure system reliability.

V. RELIABLE REINFORCEMENT LEARNING

INTRUSION DETECTION MODEL

We present in this section a novel reliable reinforcement
learning model for intrusion detection to address the aforemen-
tioned evolving behavior of network traffic. Our primary goal
is to maintain the reliability in the system classification for
more extended periods without model updates. Additionally,
our solution aims to decrease the human and computational
resources required to conduct such a task when model updates
are performed. Figure 7 shows an overview of our proposed
model, which is organized into two main stages, the Reliable
Classification and the Reliable Agent Building.

Reliable Classification is performed through a reinforce-
ment learning classification pipeline. Its purpose is to classify
network events over time in production deployment either as
normal or attack. The network events are depicted as an envi-
ronment state, while the reinforcement learning agent outputs
an action representing the classified event class according to
the underlying RL policy.

The goal of the Reliable Agent Building is twofold: the
building of the proposed scheme at the initial deployment
and the update of an already deployed outdated agent. The

agent’s first deployment is executed in a reinforcement learn-
ing approach with an agent built from scratch. The model
update decreases the computational costs by leveraging the
current outdated agent deployed in production, following a
transfer learning rationale. In such a case, a reduced set of
events can be used while leveraging prior knowledge of the
current outdated agent, thus, it applies an event sliding window
mechanism to the production environment—e.g., updating the
agent with events from the last week.

Our scheme can build agent policies through a novel rein-
forcement learning algorithm that extends the obtained model
longness. Our proposal insight is that one can increase the
model longness through model correctness rather than only
focusing on model accuracy. Our scheme represents the model
correctness difference between the model output classification
confidence and the correct event label. As a result, the model
training aims for higher accuracy and approximation to the
event label, considering its distance to the correct event class.

In the following subsections, we detail our proposal, present
the architecture of the modules that implement it, and describe
its main components.

A. Reliable Agent Building

Reinforcement learning techniques have produced promis-
ing results in several fields where agent rewards can be
autonomously collected as a direct consequence of a given
action. In contrast, intrusion detection systems may not eas-
ily obtain the correct event label in production deployments,
thus, rewards cannot be given in an appropriate time. In other
words, an action may be taken, but the rewards may not be
given adequately. Intrusion detection systems must have prior
access to the label of the events during the model building,
enabling appropriate rewards.

Our proposed model’s primary goal is to leverage the rein-
forcement learning technique to build an agent policy with
an increased longness in production, i.e., presenting a longer
lifespan. The Reliable Agent Building approach deals with
intrusion detection as a reinforcement learning task, making
use of the following relations:

2050 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

• Environment: The intrusion detection training dataset
which contains a set of network events expected to occur
in production deployment.

• State: Current environment event that the intrusion detec-
tion agent should analyze. It can be made of a normal or
an attack event.

• Action: The agent classification outcome of a given
environment state either as normal or attack.

• Reward: The reward that an agent receives by a given
action output according to the current environment state.

The rationale of our intrusion detection as a reinforcement
learning task is shown in Figure 7 (Reliable Agent Building).
One can notice that an agent receives a training dataset envi-
ronment state (i.e., an event) as input. It acts using a class
assigned per event, receiving the corresponding reward. The
training procedure can be executed using a new agent (e.g.,
the first deployment model) or an outdated one (e.g., a model
update). The operator is responsible for periodically triggering
the reliable agent-building process (e.g., every semester).

One should note that the model update periodicity must be
defined according to the administrator’s needs. Our proposal
relies on an event sliding window to provide easiness on model
updates in such a case. We assume that a fewer number of
events can be used at model updates if previous knowledge of
the historical environment behavior is available. Therefore, we
leverage the outdated agent to represent the environment’s his-
torical behavior while updating it through a transfer learning
rationale.

As a result, model updates can be performed as a sim-
ple agent policy fine-tuning instead of building it again from
scratch. A model update that can be performed with fewer
events will require less human intervention for the labeling
procedure and less computational costs.

The building of a new training dataset in our model is
performed through a sliding window of production environ-
ment events. In such a case, the network data that occurred N
days before the model update task must be stored and prop-
erly labeled (Figure 7, Event Sliding Window Database). The
administrator may use unsupervised ML techniques, misuse-
based detection approaches, or even store the network data
for extended periods until the proper attack disclosure in pub-
lic domains. Even if the model update procedure demands
an extended period for its execution, the proposed model
will keep its reliability, as it is also designed to increase the
model longness, i.e., its lifespan. Besides the easiness of model
updates, the model-longness challenge must also be addressed.

Our proposal uses the classification correctness metrics as
rewards in the training phase to extend the ML model’s
longness. The computation of our agent reward is shown in
Equation (4), where confidenceinsti depicts the underlying
ML model classification confidence on a given instance insti ,
FP denotes false positives, and FN denotes false negatives.

reward =

{
1− confidenceinsti if FP or FN
confidenceinsti otherwise

(4)

Confident classifications on misclassified events receive
fewer rewards, while correctly classified ones receive their

classification confidence as a reward. Thus, rewards are com-
puted as a classifier confidence approximation measure from
the correct event class. The classifier confidence values are
agnostic to the used classifier algorithm. For instance, the
Random Forest classifier outputs its confidence values as the
ratio of its base decision trees that classifies a given instance
as the event-assigned class.

Our proposal’s insight is that we can increase the model
longness while decreasing accuracy variation using the clas-
sification correctness, as measured through the classifier con-
fidence values, rather than only pursuing a higher accuracy.
As a result, the built ML model will provide better classi-
fication correctness in all input events instead of increasing
the accuracy in a subset (resulting in less longevity caused by
overfitting in the data training model).

To implement our novel reinforcement learning model for
intrusion detection, using the proposed reward measure, we
develop a version of the well-known reinforcement learning
Q − Learning algorithm [41]. The implementation, executed
at each model training or update round (Figure 7, Reliable
Agent Building), is shown in Algorithm 1.

The algorithm receives a training dataset, similar to the
traditional Q − Learning algorithm, which acts as the environ-
ment states (S). It initializes an agent either arbitrarily, in the
model’s first deployment, or with an outdated agent, in a model
update process that follows the transfer learning rationale. The
algorithm is executed until it has converged by reaching, for
instance, an expected accuracy level or a predefined number
of iterations. In brief, it randomly selects at each iteration
a state (i.e., an instance) from the training dataset (i.e., an
environment), outputs a related action (i.e., confidence), and
receives a reward accordingly (Eq. (4)). Thus, it approximates
the underlying classification model confidence values to the
correct label of each event to maximize its rewards over time,
improving its generalization capacity over the whole training
data (environment).

B. Reliable Classification

The operation of our proposed scheme for the classification
task in production deployments is shown in Figure 7 (Reliable
Classification). It receives a network traffic event as input from
the monitored environment (e.g., a network packet). The col-
lected data is then represented as a feature vector, extracted by
a feature extraction module (e.g., extraction of several flow-
based features as shown in Table I). The feature vector is fed
as input to the reliable reinforcement learning agent deployed
in production. The agent then depicts the feature vector as
the environment state (Figure 7, State Builder) and applies the
agent policy with its underlying ML model. The policy outputs
the action (confidence values) and the classification outcome
can be established (Figure 7, Class Assigner). Finally, an alert
can be generated if the event is classified as an attack.

C. Discussion

Network traffic’s evolving behavior is challenging for ML-
based intrusion detection (see Section IV). Our proposal aims

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2051

Algorithm 1 Proposed Intrusion Detection Q-Learning Algorithm for Reliable Reinforcement Learning Agent
Require:

States S = {instance1, . . . , instancen} � Training dataset
Actions A = {normal , attack} � ML NIDS Classes
Reward function R:S × A→ R � Reward function as computed through Eq. (4)
Transition function R : S × A→ S

Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
procedure QLEARNING(S , A, R, T, α, γ)

Initialize Q : S × A→ R arbitrarily, or outdated agent
while Q is not converged do

Start in random state s ∈ S
while s is not terminal do

Calculate π according to Q and exploration strategy (e.g. π(x)← arg maxaQ(x , a))
a ← π(s) � Establishes state classification confidence
r ← RewardFunction(s , a) � Receive the reward as computed through Eq. (4)
s ′ ← GetInstance(instancei + 1) � Receive the new state
Q(s ′, a)← (1− α) ·Q(s , a) + α · (r + γ ·maxa ′ Q(s ′, a ′))
s ← s ′

end while
end while
return Q

end procedure

to address three main aspects related to network traffic behav-
ior changes over time: the model updates, model longness,
and accuracy variation. Our proposal leverages prior knowl-
edge about the environment to facilitate model updates using
a transfer learning rationale. The assumption is that the out-
dated agent can be used in the model update task to decrease
the computational costs, the amount of needed training data,
and the costs associated with the event labeling task. The
proposed model correctness pursues longer model longness.
We assume that one should seek the model approximation to
all training events to increase the model’s longness. Therefore
our proposal does not favor only a subset of events, as com-
monly made in the literature by accuracy-based approaches.
The accuracy variation is decreased by the model longness
– trained to aim for higher model correctness’ over all the
training data.

VI. EVALUATION

The evaluation of our proposed model aims at answering
the following additional research questions:

• (RQ3) How does our proposed model perform without
model updates?

• (RQ4) What is the impact of model updates in our
proposal?

• (RQ5) Can our proposed model provide higher reliability
than traditional techniques?

The following sections describe how we build our model
and its performance on MAWIFlow dataset.

A. Model Building

Our reinforcement learning proposal for intrusion detec-
tion (Algorithm 1) was implemented on top of OpenAI Gym

API [42]. At each model training or update, the algorithm
creates a testbed environment that reproduces the proposed
training procedure (see Section V-A). The proposal relies on
a Multi-Layer Perceptron (MLP) as a reinforcement learning
policy (i.e., ML model).

The algorithm enables our proposed model update proce-
dure (Section V-A) to be executed on top of the older MLP
neurons through a transfer learning procedure. The data from
January 2016 was used (30 days) for the first model training to
enable the subsequent evaluation of our model updates, which
will rely upon the outdated agent. The model update proce-
dure relies on only 7 days worth of data (Figure 7, Event
Sliding Window Database). Thus, we perform model updates
using less data than evaluated previously (see Section IV, 7 vs.
30 days of training data) to properly evaluate how our model
performs with less training data during model updates.

The MLP with our proposed algorithm is executed at each
model update with a learning rate of 0.3, a momentum rate for
the backpropagation algorithm of 0.2, and uses the TensorFlow
API [43]. The algorithm executes 5.000 epochs to build the
model, where each epoch performs 100 turns. Each turn com-
putes the proposed algorithm policy gradients according to
the obtained rewards (see Eq. (4)) from the classification of
10 thousand training instances.

As a convergence criterion during the model update, the
algorithm either executes 5.000 epochs or reaches 90% of
accuracy. These parameters were identified empirically, result-
ing in similar classification results.

B. Classification Accuracy Without Updates

The first experiment aims at answering RQ3 and evaluates
our proposed model performance when no model updates are

2052 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 8. The over time proposal accuracy performance, run on MAWIFlow
dataset. The proposal is trained with January 2016 data and not updated
throughout the time.

performed as time passes. Similar to what was previously
made, we apply our proposed algorithm to create an agent
policy using data from January 2016 of MAWIFlow as the
training environment (Figure 7). The obtained agent is used
throughout the whole MAWIFlow data without model updates.
Figure 8(a) shows the average error performance considering
both FP and FN rates of our proposed model on a three-month
periodicity.

Our proposed model kept its reliability for extended peri-
ods, maintaining its FP rates closer to those measured at
the classifier training phase throughout the four years. For
instance, our proposed technique presented an average error
rate of 18.9% and 8.8% for FP and FN, considering the first
deployment year (i.e., 2016). In our proposal, each month
after the training period, on average, increases 4.2% and 0.3%
in FP and FN rates, respectively, considering a model long-
ness of 1 year. Additionally, the proposed model presented
average FP and FN rates throughout the four years of 16.4%
and 23.5%.

Our model reached similar accuracy rates obtained by tra-
ditional techniques, such as the RF classifier with a 6-month
longness (Figure 4), which presented 16.5% and 23.4% of FP
and FN rates. Therefore, our model provided high detection
accuracy even when no model updates occurred, with similar
accuracy rates obtained by the literature’s techniques with a
6-month model longness.

We also investigate how our proposed model’s accu-
racy varies over time without model updates, as shown in
Figure 8(b). The model accuracy rate variation is signifi-
cantly lower when compared to traditional ML approaches.
The proposed method presented average interquartile ranges
in 2016-S1 of only 3.4% and 1.9% of FP and FN, respec-
tively. In contrast, traditional approaches (e.g., RF) presented
an average interquartile range in 2016-S1 of 3.1% and 6.1%
of FP and FN rates, respectively. Additionally, if the whole
MAWIFlow 4 years of traffic is considered, our proposal
presents an average interquartile range of 13.5% and 13.3%
of FP and FN rates, while the RF classifier presents 29.3%
and 36.6% of interquartile range (Figure 3), respectively in
both cases. Consequently, our proposed approach increases
the intrusion detection schemes’ longness by improving the
systems’ accuracy and reducing the accuracy variation over
time.

Fig. 9. Training convergence of our proposal at the 2nd semester of 2016,
considering an outdated agent used in the model update process and its com-
parison with the retraining from scratch. The accuracy was measured as the
ratio of total events correctly classified. Similar results were found at every
model update procedure execution.

C. Classification Accuracy With Updates

To answer RQ4, we perform periodic model updates on our
proposed scheme. In such a case, similarly to the experiments
performed in Section IV, we execute our proposed update
procedure every semester. However, only taking into account
the events that occurred over the last seven days (Figure 7,
Event Sliding Window Database). As our model leverages the
previous knowledge through the outdated model in a trans-
fer learning fashion (Section V-A), we first evaluate how the
outdated ML model can ease the model update procedure.

Figure 9 shows the proposal convergence according to the
model update epoch, while considering if the outdated model
is used or not in the second semester of 2016. The proposed
approach that leverages the outdated model converges demand-
ing significantly fewer epochs to be executed, reaching 90%
of accuracy rate with only 970 epochs even with only 1-week
of training data. In contrast, if the outdated model is not used,
4610 epochs must be executed. Similar results were found
regardless of the period in which the model update occurred.

The proposed approach that takes advantage of the outdated
model can significantly decrease the computational needs in
the training procedure due to the decrease in the number of
epochs. It also decreases the number of events that must be
labeled due to a higher model longness, hence, demanding
fewer model updates. On average, the proposed approach that
leverages the outdated model converged with only 21.1% of
epochs while relying on only a week of training data compared
to the traditional approach that performs model updates from
scratch.

Figure 10(a) shows the proposed approach accuracy over
time with a 6-month model update periodicity. In such a case,
the error rates are significantly lower and more stable as time
passes. The periodicity of model updates enabled our pro-
posal to reach high accuracy rates throughout the four years of
MAWIFlow data. The proposed technique presented an aver-
age of 14.5% and 10.0% of FP and FN rates over time,
respectively. Figure 10(b) shows the accuracy variation over
time of our proposed scheme with periodic model updates.

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2053

Fig. 10. The proposal accuracy performance over time, run throughout
MAWIFlow dataset. The proposal is trained with January 2016 data and
updated every semester with 1-week data.

Fig. 11. The longness and average error rate tradeoff in the MAWIFlow
proposed dataset. Model longness establishes its update frequency, while the
average error rate is measured as the mean of both FP and FN rates throughout
the entire MAWIFlow data.

The accuracy variation significantly decreases, presenting
an average interquartile range of only 4.4% and 8.5% of FP
and FN rates, while the traditional ML techniques (e.g., RF)
(Figure 5) present an average of 16.9% and 5.3% (i.e., 3.84×
more FP for only a 0.37× reduction in FN), respectively
in all cases. Therefore, our proposed model significantly
increases the intrusion detection scheme’s reliability over time
by extending the model longness and decreasing the accuracy
variation while maintaining the accuracy over time.

We further investigate how the model update periodicity
impacts our proposal’s accuracy. Figure 11 shows the relation
between model update periodicity and accuracy rates of our
scheme. Our proposal reaches significantly higher accuracy
rates even when the longness of the model is considered. More
specifically, even with a 2-year long model longness, it reaches
better classification accuracy than traditional techniques that
consider a 1-month model longness value (Figure 6).

In summary, our proposal increases the model longness and
decreases the model update periodicity without degrading the
accuracy. Nonetheless, it achieves accuracy rates higher than
traditional techniques even when no model updates occur.

Finally, to answer the question RQ5, we compare the accu-
racies obtained by our model and those from traditional ML
techniques. Figure 12 shows the monthly distribution of accu-
racy rates of each evaluated classification scheme with a
6-month model longness. In such a case, our proposed model

Fig. 12. Monthly accuracies for several classification techniques considering
a 6-month model update periodicity, run on four years of MAWIFlow data.
The proposed model can provide lower interquartile ranges and achieve higher
median accuracy than other evaluated techniques.

median was 14.3%, 8.4%, and 0.92 of FP, FN, and F-Measure,
respectively. In contrast, the traditional techniques presented
a median F-Measure of 0.83, 0.81, 0.78, and 0.81 for the
LSTM, RF, Ada, and GBT respectively. Thus, our proposed
scheme could also provide higher detection accuracies than
deep learning schemes, such as the evaluated LSTM, improv-
ing the F-Measure by 0.09 while demanding only 20% of the
required training data and significantly fewer computational
resources for model updates.

Figure 13 shows a performance comparison of our proposed
model with the previously evaluated approaches. It is possible
to note that our proposed scheme can significantly improve the
model’s longness (see Figure 13(a)). For instance, our proposal
provides an average F-Measure throughout 2016 and 2017 of
0.91 without periodic model updates, while the RF classifier
reaches only 0.78 (i.e., an improvement of 0.13). Additionally,
if periodic model updates are performed, our proposed scheme
reaches an average F-Measure of 0.92 throughout the 4 years
of MAWIFlow, while the RF classifier, as an example, provides
an average F-Measure of only 0.80. As a result, our proposed
model can provide higher classification accuracies most of the
time (months), improving the average FP rate by up to 8.0%
and the average FN rate by up to 34.6% when compared to
traditional techniques.

D. Limitations and Open Challenges

Network-based intrusion detection through ML techniques
in the literature overlooks the challenges related to the

2054 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 13. Comparison of the accuracy performance of the proposal over time
with and without periodic model updates, run on the entire MAWIFlow dataset.

evolving behavior of network traffic, focusing their research
efforts on obtaining higher accuracies, which often is only
achieved with a tradeoff in the model lifespan. The proposed
scheme significantly improved the ML model lifespan, provid-
ing higher accuracy after the training period than traditional
techniques. However, despite the significant improvement in
the average accuracy, the obtained FP and FN rates, due to
the huge amount of network traffic, can still pose a significant
challenge for deploying the proposed scheme in production
environments. Several techniques can be used to decrease
the FP or FN rates. For instance, the administrator may
change the classifier operation point to increase the model
update periodicity. She can use an ensemble of classifiers and
correlate the triggered alarms according to the host source,
as each network flow may trigger a corresponding alarm.
Thus, a single attack may generate thousands of alarms, e.g.,
network-based denial-of-service.

VII. CONCLUSION

Novel approaches for intrusion detection through machine
learning techniques have been extensively proposed in the sci-
entific literature recently, while only a few were deployed in
production. We showed in the paper that researchers incor-
rectly adopt traditional machine learning assumptions in the
intrusion detection domain, such as assuming a static behavior
of network traffic.

This paper proposed evolving these intrusion detection
assumptions regarding network traffic behavior. To the best of
our knowledge, the proposal is the first to build a dataset that
evaluates intrusion detection schemes’ reliability over time.
Nonetheless, we proposed a novel reinforcement learning tech-
nique for intrusion detection with longer model lifespan, lower
accuracy variation, and more accessible model updates. The
proposed technique provided higher detection accuracy even
when no model updates occur, and if made, the proposal sig-
nificantly further decreases the accuracy variation while also
improving the detection accuracy.

As future works, the researchers are encouraged to use our
built dataset to increase system accuracy while providing a
higher model lifespan. Thus, research conducted in our dataset
should consider the tradeoff between model accuracy, model
lifespan, model update periodicity, and the number of train-
ing samples. The built dataset used throughout this paper’s
experiments is publicly available for download at https://
secplab.ppgia.pucpr.br/reinforcemawiflow.

REFERENCES

[1] AO Kaspersky Lab. “Kaspersky Security Bulletin 2019. Statistics,” 2019.
[Online]. Available: https://securelist.com/kaspersky-security-bulletin-
2019-statistics/95475/

[2] “Kaspersky Security Bulletin 2022. Statistics.” 2022. [Online].
Available: https://securelist.com/ddos-attacks-in-q1-2022/106358/

[3] B. Molina-Coronado, U. Mori, A. Mendiburu, and J. Miguel-Alonso,
“Survey of network intrusion detection methods from the perspective
of the knowledge discovery in databases process,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 4, pp. 2451–2479, Dec. 2020.

[4] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, “A
survey of network-based intrusion detection data sets,” Comput. Security,
vol. 86, pp. 147–167, Sep. 2019. [Online]. Available: https://doi.org/
10.1016/j.cose.2019.06.005

[5] N. Hubballi and V. Suryanarayanan, “False alarm minimization tech-
niques in signature-based intrusion detection systems: A survey,”
Comput. Commun., vol. 49, pp. 1–17, Aug. 2014. [Online]. Available:
https://doi.org/10.1016/j.comcom.2014.04.012

[6] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in Proc. IEEE
Symp. Security Privacy, 2010, pp. 305–316. [Online]. Available: https:/
/doi.org/10.1109/sp.2010.25

[7] C. Gates and C. Taylor, “Challenging the anomaly detection paradigm:
A provocative discussion,” in Proc. Workshop New Security Paradigms
(NSPW), 2006, pp. 21–29.

[8] M. Lopez-Martin, B. Carro, and A. Sanchez-Esguevillas, “Application of
deep reinforcement learning to intrusion detection for supervised prob-
lems,” Exp. Syst. Appl., vol. 141, Mar. 2020, Art. no. 112963. [Online].
Available: https://doi.org/10.1016/j.eswa.2019.112963

[9] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, “Multi-
stage Optimized machine learning framework for network intru-
sion detection,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2,
pp. 1803–1816, Jun. 2021. [Online]. Available: https://doi.org/10.1109/
tnsm.2020.3014929

[10] E. Viegas, A. Santin, A. Bessani, and N. Neves, “BigFlow: Real-time
and reliable anomaly-based intrusion detection for high-speed networks,”
Future Gener. Comput. Syst., vol. 93, pp. 473–485, Apr. 2019.

[11] G. Folino, F. S. Pisani, and L. Pontieri, “A GP-based ensemble clas-
sification framework for time-changing streams of intrusion detection
data,” Soft Comput., vol. 24, no. 23, pp. 17541–17560, Aug. 2020.

[12] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward
credible evaluation of anomaly-based intrusion-detection methods,”
IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 40, no. 5,
pp. 516–524, Sep. 2010. [Online]. Available: https://doi.org/10.1109/
tsmcc.2010.2048428

[13] D. Arp et al., “DoS and dont’s of machine learning in computer security,”
in Proc. 31st USENIX Security Symp. (USENIX Security), Aug. 2022,
pp. 3971–3988. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity22/presentation/arp

[14] F. Pinagé, E. M. dos Santos, and J. Gama, “A drift detection method
based on dynamic classifier selection,” Data Min. Knowl. Disc., vol. 34,
no. 1, pp. 50–74, Oct. 2019. [Online]. Available: https://doi.org/10.1007/
s10618-019-00656-w

[15] E. Kim et al., “Champion-challenger analysis for credit card fraud detec-
tion: Hybrid ensemble and deep learning,” Exp. Syst. Appl., vol. 128,
pp. 214–224, Aug. 2019. [Online]. Available: https://doi.org/10.1016/
j.eswa.2019.03.042

[16] V. Dremin et al., “Skin complications of diabetes mellitus revealed by
polarized hyperspectral imaging and machine learning,” IEEE Trans.
Med. Imag., vol. 40, no. 4, pp. 1207–1216, Apr. 2021. [Online].
Available: https://doi.org/10.1109/tmi.2021.3049591

[17] J. Memon, M. Sami, R. A. Khan, and M. Uddin, “Handwritten
optical character recognition (OCR): A comprehensive systematic lit-
erature review (SLR),” IEEE Access, vol. 8, pp. 142642–142668, 2020.
[Online]. Available: https://doi.org/10.1109/access.2020.3012542

[18] S. Wassermann, T. Cuvelier, P. Mulinka, and P. Casas, “Adaptive
and reinforcement learning approaches for online network monitor-
ing and analysis,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2,
pp. 1832–1849, Jun. 2021.

[19] L. Koc, T. A. Mazzuchi, and S. Sarkani, “A network intrusion detection
system based on a hidden Naïve Bayes multiclass classifier,” Exp. Syst.
Appl., vol. 39, no. 18, pp. 13492–13500, 2012.

[20] S. Otoum, B. Kantarci, and H. Mouftah, “Empowering reinforcement
learning on big sensed data for intrusion detection,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2019, pp. 1–7.

DOS SANTOS et al.: RL FOR INTRUSION DETECTION: MORE MODEL LONGNESS AND FEWER UPDATES 2055

[21] Z. Wang, Y. Liu, D. He, and S. Chan, “Intrusion detection methods
based on integrated deep learning model,” Comput. Security, vol. 103,
Apr. 2021, Art. no. 102177. [Online]. Available: https://doi.org/10.1016/
j.cose.2021.102177

[22] Akashdeep, I. Manzoor, and N. Kumar, “A feature reduced intrusion
detection system using ANN classifier,” Exp. Syst. Appl., vol. 88,
pp. 249–257, Dec. 2017.

[23] T. Hamed, R. Dara, and S. C. Kremer, “Network intrusion detec-
tion system based on recursive feature addition and bigram technique,”
Comput. Security, vol. 73, pp. 137–155, Mar. 2018.

[24] E. K. Viegas, A. O. Santin, V. V. Cogo, and V. Abreu, “A reli-
able semi-supervised intrusion detection model: One year of network
traffic anomalies,” in Proc. IEEE Int. Conf. Commun. (ICC), 2020,
pp. 1–6.

[25] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial environ-
ment reinforcement learning algorithm for intrusion detection,” Comput.
Netw., vol. 159, pp. 96–109, Aug. 2019.

[26] M. D. Mauro, G. Galatro, and A. Liotta, “Experimental review of
neural-based approaches for network intrusion management,” IEEE
Trans. Netw. Service Manag., vol. 17, no. 4, pp. 2480–2495, Dec. 2020.
[Online]. Available: https://doi.org/10.1109/tnsm.2020.3024225

[27] D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Gradient boosting
feature selection with machine learning classifiers for intrusion detection
on power grids,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1,
pp. 1104–1116, Mar. 2021. [Online]. Available: https://doi.org/10.1109/
tnsm.2020.3032618

[28] S. Das et al., “Network intrusion detection and comparative anal-
ysis using ensemble machine learning and feature selection,” IEEE
Trans. Netw. Service Manag., vol. 18, no. 1, pp. 1104–1116, Mar. 2021.
[Online]. Available: https://doi.org/10.1109/tnsm.2021.3138457

[29] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“CANnolo: An anomaly detection system based on LSTM Autoencoders
for controller area network,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 2, pp. 1913–1924, Jun. 2021. [Online]. Available: https://doi.org/
10.1109/tnsm.2020.3038991

[30] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, “A bidirectional
LSTM deep learning approach for intrusion detection,” Exp. Syst.
Appl., vol. 185, Dec. 2021, Art. no. 115524. [Online]. Available: https:/
/doi.org/10.1016/j.eswa.2021.115524

[31] R. Alshammari and A. N. Zincir-Heywood, “The impact of eva-
sion on the generalization of machine learning algorithms to clas-
sify VoIP traffic,” in Proc. 21st Int. Conf. Comput. Commun. Netw.
(ICCCN), Jul. 2012, pp. 1–8. [Online]. Available: https://doi.org/
10.1109/icccn.2012.6289243

[32] R. Alshammari and A. N. Zincir-Heywood, “Machine learning based
encrypted traffic classification: Identifying SSH and Skype,” in Proc.
IEEE Symp. Comput. Intell. Security Defense Appl., Jul. 2009, pp. 1–8.
[Online]. Available: https://doi.org/10.1109/cisda.2009.5356534

[33] J. Liang and M. Ma, “Co-maintained database based on blockchain
for IDSs: A lifetime learning framework,” IEEE Trans. Netw. Service
Manag., vol. 18, no. 2, pp. 1629–1645, Jun. 2021.

[34] Y.-F. Hsu and M. Matsuoka, “A deep reinforcement learning approach
for anomaly network intrusion detection system,” in Proc. IEEE 9th Int.
Conf. Cloud Netw. (CloudNet), 2020, pp. 1–6.

[35] E. Suwannalai and C. Polprasert, “Network intrusion detection systems
using adversarial reinforcement learning with deep Q-network,” in
Proc. 18th Int. Conf. ICT Knowl. Eng. (ICT KE), Nov. 2020, pp. 1–9.
[Online]. Available: https://doi.org/10.1109/ictke50349.2020.9289884

[36] H. Benaddi, K. Ibrahimi, A. Benslimane, and J. Qadir, A Deep
Reinforcement Learning Based Intrusion Detection System (DRL-IDS)
for Securing Wireless Sensor Networks and Internet of Things (Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering). Cham, Switzerland: Springer Int.,
2020, pp. 73–87. [Online]. Available: https://doi.org/10.1007/978-3-030-
52988-8_7

[37] A. Servin and D. Kudenko, “Multi-agent reinforcement learning for
intrusion detection,” in Adaptive Agents and Multi-Agent Systems III.
Adaptation and Multi-Agent Learning. Heidelberg, Germany: Springer,
2008, pp. 211–223. [Online]. Available: https://doi.org/10.1007/978-3-
540-77949-0_15

[38] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed anal-
ysis of the KDD CUP 99 data set,” in Proc. IEEE Symp. Comput. Intell.
Security Defense Appl., Jul. 2009, pp. 1–6. [Online]. Available: https://
doi.org/10.1109/cisda.2009.5356528

[39] MAWI. “MAWI working group traffic archive—Samplepoint F.” 2021.
[Online]. Available: https://mawi.wide.ad.jp/mawi/

[40] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab:
Combining diverse anomaly detectors for automated anomaly labeling
and performance benchmarking,” in Proc. 6th Int. Conf. Emerg. Netw.
Exp. Technol. (CoNEXT), 2010, pp. 1–8.

[41] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, May 1992. [Online]. Available: https://doi.org/
10.1007/bf00992698

[42] OpenAI. “OpenAI—Gym.” 2022. [Online]. Available: https://
gym.openai.com/

[43] TensorFlow. “TensorFlow API.” 2022. [Online]. Available: https://
www.tensorflow.org/

Roger R. dos Santos received the B.S. degree
in information systems from the Pontificia
Universidade Catolica do Parana (PUCPR) in 2014,
and the M.Sc. degree in computer science in 2020.
He is currently pursuing the Ph.D. degree with
PUCPR. His research interests include machine
learning and computer security.

Eduardo K. Viegas (Member, IEEE) received the
B.S. and M.Sc. degrees in computer science and
the Ph.D. degree from the Pontificia Universidade
Catolica do Parana in 2013, 2016, and 2018, respec-
tively. His research interests include machine learn-
ing, network analytics, and computer security.

Altair O. Santin (Member, IEEE) received the B.S.
degree in computer engineering from the Pontificia
Universidade Catolica do Parana (PUCPR) in 1992,
the M.Sc. degree from UTFPR in 1996, and the
Ph.D. degree from UFSC in 2004. He is a Full
Professor of Graduate Program in Computer Science
and the Head of Security and Privacy Lab, PUCPR.
He is a member of ACM and the Brazilian Computer
Society.

Vinicius V. Cogo received the B.Sc. degree in com-
puter science from UFSM, Brazil, and the M.Sc. and
Ph.D. degrees in informatics from Ciências/ULisboa.
He is an Assistant Professor with the Department
of Informatics, Faculty of Sciences, University of
Lisbon, where he is an Integrated Researcher with
LASIGE Research Laboratory. His research interests
include distributed systems, dependability, fault tol-
erance, storage of critical data, and cloud computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

