
Integrating VirtIO and QEMU on seL4
for Enhanced Devices Virtualization Support
Everton de Matos, Conor Lennon,

Eduardo K. Viegas
Secure Systems Research Center
Technology Innovation Institute

Abu Dhabi, United Arab Emirates
{everton.dematos, conor.lennon, eduardo.viegas}@tii.ae

Markku Ahvenjärvi, Hannu Lyytinen, Ivan Kuznetsov,
Joonas Onatsu, and Anh Huy Bui

Unikie Oy
Tampere, Finland

{markku.ahvenjarvi, hannu.lyytinen, ivan.kuznetsov}@unikie.com,
{joonas.onatsu, anh.huy.bui}@unikie.com

Abstract—Virtualization is a crucial technology for consoli-
dating workloads and improving resource utilization in modern
computing systems. seL4 is a small TCB (Trusted Computing
Base) microkernel that can be used as a hypervisor to provide
virtualization features. However, providing standard device inter-
faces to it remains a significant challenge in achieving secure and
high-performance virtualization solutions for critical systems.
To address this challenge, this paper proposes an approach
that leverages the VirtIO standard through QEMU to provide
a secure and efficient device virtualization solution for seL4.
The feature takes advantage of seL4’s isolation guarantees and
enables sharing of complex devices for multiple virtual machines,
combined with the efficient communication interface provided
by the VirtIO standard. We implemented and evaluated the
approach using a set of benchmarks. The proposed approach
leverages the VirtIO standard through QEMU on top of the
seL4, aiming to offer a virtualization solution that accelerates
development speed and enhances architectural flexibility by
eliminating the need for native drivers.

Index Terms—Virtualization, VirtIO standard, QEMU, seL4
microkernel, Hypervisor

I. INTRODUCTION

Virtualization is a technology that enables multiple virtual
machines (VMs) to operate on a single physical machine, each
with its own operating system, applications, and data, while
sharing the underlying physical resources of the host machine
[1]. This technology allows for more efficient use of hardware
resources, improved flexibility, and enhanced security [2].
Virtualization enables the creation of virtual devices that can
be used by guest operating systems running on a virtual ma-
chine. VirtIO is a technology used in virtualization to provide
efficient communication between the guest virtual machine and
the hypervisor, allowing for high-performance virtual devices
[3]. Hypervisors, which sit between the physical machine and
virtual machines, are responsible for managing the physical
resources and allocating them to the different VMs.

There are two types of hypervisors: Type-1, or bare-metal
hypervisors, run directly on the host machine’s hardware,
while Type-2, or hosted hypervisors, run on a host operating
system [4]. Type-1 hypervisors are generally considered more
efficient and secure than Type-2 hypervisors because they have
direct access to the hardware and operate independently of the
host operating system. However, Type-2 hypervisors are easier

to install and manage, making them more suitable for desktop
virtualization and other simpler applications [5].

One key difference between Type-1 and Type-2 hypervisors
is the size of their Trusted Computing Base (TCB) [6]. Type-
1 hypervisors have a small TCB, as they run directly on
the hardware and do not rely on a host operating system.
In contrast, Type-2 hypervisors have a larger TCB, as they
are implemented as a software layer on top of an existing
operating system. This larger TCB increases the attack surface
and potential vulnerabilities of the hypervisor. Examples of
Type-1 hypervisors include Bao [7], Jailhouse [8], and Xen
[9]. On the other hand, Type-2 hypervisors include Oracle
VirtualBox, VMWare Workstation, and KVM [10]. Notably,
when seL4 is used as a hypervisor, it acts as a Type-1
hypervisor due to its small trusted computing base and direct
control over the underlying hardware [11].

seL4 is a microkernel-based operating system developed
to provide a high-assurance, secure, and efficient platform
for deploying critical systems [2] [11]. It is unique in that
it is the first operating system to have formal proof of its
implementation and properties, providing a high level of
confidence in its security and functionality. In addition to its
use as an operating system, seL4 can also be utilized as a
hypervisor, providing a minimal and scalable infrastructure
for virtualized environments. This makes seL4 well-suited for
use in embedded and real-time systems and for use in high-
assurance security-critical systems that require virtualization.

While seL4’s virtualization functionality has proven useful,
the seL4 stack possesses gaps at the Virtual Machine Monitor
(VMM), userspace, and tooling levels that complicate use case
fulfillment for both users and developers [12]. Furthermore, the
lack of a publicly accessible or present standard interface for
virtual devices on top of seL4 poses limitations for deploying
more complex use-cases, inspiring the need for our proposed
solution. Even though seL4 supports a limited set of VirtIO
devices natively through libsel4vmmplatsupport1 (i.e., VirtIO
over PCI, virtio-console, and virtio-net), it lacks support for
all the other possible VirtIO devices that could be used in a
system, such as virtio-blk, virtio-gpu, and VirtIO Balloon, just

1https://docs.sel4.systems/projects/virtualization/libsel4vmmplatsupport.html



to name a few [13]. The novelty of the proposed approach
sits in providing generic and modern VirtIO device support to
systems on top of seL4.

The proposed approach provides VirtIO standard support to
devices on top of seL4 hypervisor. It uses QEMU to provide
the VirtIO device backends for the guest VMs. Thus, we
get support for a wide range of VirtIO-device backends with
a minimal amount of source code. Without this approach,
we would have to manually create the support for each
VirtIO backend and the proper device driver support. Also,
accelerated graphics and proper file system support are some
examples of features that we get when using Linux VMMs,
such as QEMU as our backend. Moreover, the approach
enables the rapid development of feature-rich systems on top
of seL4. To the best of our knowledge, there is no publicly
available support of standard devices in such a scalable way
that runs on top of seL4 as a hypervisor.

Our efforts culminate into the main contribution of laying
the groundwork for more robust and future-ready systems
based on seL4. We design and provide abstractions at both
the libsel4vm/libsel4vmmplatsupport and CAmkES levels. The
overall contributions of this paper can be summarized as
follows:

• Establish support for VirtIO-based virtualization using
seL4 with QEMU, addressing the limitations of existing
solutions and providing a novel integration of VirtIO
support.

• Introduce an advanced modern VirtIO frontend and com-
prehensive abstractions for facilitating external MMIO
devices, augmenting the efficiency and versatility of
seL4-based systems.

• Conducted a comprehensive evaluation of the proposed
solution using benchmarks.

• Contributed to the field of virtualization with seL4 as a
hypervisor by offering a scalable and flexible solution for
critical systems, filling an existing gap in the literature on
supporting devices on top of seL4.

The rest of this paper is presented as follows. Section
II presents basic concepts related to the proposed approach.
Section III presents work related to the proposed approach.
Section IV presents our solution, showing its design and
components. Section V presents the evaluation results of the
proposed approach. Finally, Section VI concludes the paper.

II. BACKGROUND

This section provides an overview of the concepts and
technologies that serve as the foundation for the proposed
approach. It covers topics such as virtualization, hypervisors,
and the seL4 microkernel. Additionally, it discusses VirtIO, a
standard for providing virtual devices to virtual machines, and
QEMU, a popular open-source emulator that supports VirtIO.

A. Virtualization and Hypervisors

Virtualization is the ability to run multiple independent
operating systems on a single physical machine. This technol-
ogy enables the sharing of hardware resources such as CPU,

memory, and storage, making it possible to consolidate work-
loads and increase efficiency [2]. Virtualization is achieved
through the use of a hypervisor, which is a software layer that
abstracts physical resources and presents virtual resources to
guest operating systems [14].

Hypervisors can be classified into two main types: Type-
1 and Type 2. Type-1 hypervisors, also known as native or
bare-metal hypervisors, run directly on the host machine’s
hardware and have direct access to physical resources. They
provide a high degree of isolation between guest operating
systems, resulting in better performance and security. Usually,
taking into account the architectural point of view, the Type-1
hypervisors run at a higher privilege level than the applications
and at a lower privilege level than the firmware [15]. For
instance, in ARM the Type-1 hypervisor is usually placed
at EL2, and in RISC-V, at HS. Type 2 hypervisors, also
known as hosted hypervisors, run as applications within a
host operating system. They provide less isolation between
guest operating systems and are less performant than Type-1
hypervisors but are easier to install and manage [4] [16]. The
hypervisor acts as a mediator between the physical hardware
and the virtual machines, managing both the Virtual Machine
Monitors (VMMs) and Virtual Machines (VMs) to ensure
optimal performance and resource allocation [17].

The VMM is a key component of virtualization that pro-
vides the interface between the physical hardware and the
guest operating systems running on top of it [18]. Usually,
architecture-wise, it runs at the same privilege level as the
applications. The VMM abstracts physical hardware resources
and presents virtual resources to the guest operating systems,
enabling multiple guest operating systems to run on a single
physical machine. The VMM also provides mechanisms for
managing virtual resources, such as allocating CPU time,
memory, and storage to each VM [19]. It ensures that each VM
operates independently and securely by enforcing isolation
and resource allocation policies. A VM is an emulation of a
computer system that runs as a software program on top of a
VMM [20]. It includes a complete set of virtualized hardware
resources, such as CPU, memory, and storage, and can run a
complete operating system and associated applications. Each
VM is isolated from other VMs running on the same host,
ensuring that each guest operating system can run securely
and independently.

Virtualization has become a widely adopted technology in
data centers, cloud computing, and other IT environments
due to its flexibility, scalability, and cost-effectiveness. It has
enabled the rapid deployment of new applications, simpli-
fied management of IT resources, and increased utilization
of hardware. In recent years, virtualization has become in-
creasingly popular in the field of embedded systems [10]
[21]. Traditionally, embedded systems were designed to run a
single application or operating system on dedicated hardware.
However, this approach has limitations, such as difficulty in
upgrading hardware and software, inflexibility, and potential
security vulnerabilities. Virtualization allows multiple oper-
ating systems and applications to run on a single hardware



platform, providing greater flexibility, scalability, and iso-
lation. Moreover, virtualization enables the development of
critical systems with varying levels of safety and security
requirements, such as those found in automotive, aerospace,
and medical devices [22] [23]. Therefore, virtualization has
become an essential tool for embedded system developers,
enabling them to create more efficient, secure, and adaptable
systems.

B. seL4 as a hypervisor

seL4 is a microkernel-based operating system designed to
provide high assurance security and reliability for critical
systems [24]. Unlike monolithic kernels, which run all of their
services and drivers in kernel space, microkernels adopt a
minimalist approach, only running the bare essentials in kernel
space and pushing everything else into user space [25]. This
design approach provides several benefits, including increased
security, fault isolation, and flexibility. Because each service
or driver runs in its own isolated address space, any bugs or
errors that may arise in one component will not affect the
operation of the entire system, providing fault tolerance and
resilience.

The seL4 microkernel implements a capability-based ac-
cess control model, providing a robust mechanism for secure
resource management in embedded systems. This capability-
based design enables fine-grained control over access rights,
allowing the system to grant or revoke permissions for specific
resources, such as memory regions or hardware devices, with
precision. This structure permits secure delegation of access
rights while maintaining a clear view of the system’s security
policy. The separation of concerns in seL4’s design ensures
that the principle of least privilege is upheld, thus minimizing
the potential attack surface and facilitating fault containment.
Furthermore, the modular architecture of seL4 enables efficient
isolation between system components, which is crucial for
maintaining system integrity and security in safety-critical
applications [26].

seL4 takes this design approach a step further by implement-
ing formal verification techniques to prove the correctness of
the kernel [27]. This means that seL4 is mathematically proven
to be free from certain types of bugs, such as buffer overflows,
null pointer dereferences, and use-after-free errors, which are
common sources of security vulnerabilities.

In addition to its use as a standalone operating system, seL4
can also be used as a hypervisor, providing isolation and virtu-
alization capabilities for guest operating systems [12]. seL4 as
a microkernel, with its small trusted computing base, makes
it well-suited for use in embedded systems where memory
and processing power are limited. Using seL4 as a hypervisor
enables a wide range of use cases, including partitioning a
single system into multiple virtual machines, providing secure
and isolated execution environments for different applications
or operating systems, and enabling mixed-criticality systems
where different parts of the system have different safety or
security requirements.

C. VirtIO Standard and QEMU

The VirtIO standard is a widely adopted virtualization inter-
face that provides a common framework for communication
between a hypervisor and virtual machines [13]. It defines a
set of devices and device drivers that can be used by virtual
machines to communicate with the underlying hypervisor,
allowing for efficient and flexible communication between the
virtual and physical components of a system.

Prior to VirtIO, virtualized I/O was typically implemented
using custom, proprietary interfaces that were specific to
particular hypervisors or operating systems. This made it
difficult to create portable virtual machines that could run on
different hypervisors or be migrated between different physical
hosts [28]. VirtIO, on the other hand, allows virtual machines
to use the same set of devices and drivers, regardless of the
underlying hypervisor or physical hardware. This not only
simplifies the development of virtual machines but also makes
it easier to migrate virtual machines between different physical
hosts, since the same set of devices and drivers can be used
on all hosts [29].

The VirtIO standard includes a set of devices such as net-
work interfaces, storage devices, console devices, and memory
ballooning devices [30]. Each device is accompanied by a set
of drivers that can be used by the guest operating system to
communicate with the device. The devices are designed to be
simple and efficient, with a minimal set of features that can
be extended as needed. This allows for easy implementation
and reduces the overhead of virtualizing I/O.

Overall, the VirtIO standard has become a de facto standard
for virtualized I/O in the industry, and is widely adopted by
hypervisors and operating systems. Its flexibility and portabil-
ity make it an ideal choice for embedded systems that require
virtualization capabilities [31].

VirtIO drivers in Linux are implemented as kernel modules
in the guest operating system and communicate with the back-
end in the host operating system through a VirtIO interface
[13]. QEMU can provide the backend for VirtIO devices,
enabling communication between the guest and the host oper-
ating systems, and allowing for handling of I/O operations.
QEMU (Quick EMUlator) is an open-source emulator and
virtual machine monitor (VMM) that can emulate a wide range
of hardware devices and can run various operating systems
as guests. It is widely used in the virtualization ecosystem
as it supports different types of virtualization, such as full
system virtualization, hardware virtualization, and container
virtualization [32].

By using the VirtIO standard with QEMU as the backend,
VMs can achieve high levels of performance and scalability,
making it a popular choice for virtualization solutions. This
approach is especially relevant for embedded systems, where
resource utilization is critical, and hardware configurations
vary greatly.

III. RELATED WORK

The application of VirtIO in various hypervisors has been
extensively studied in recent years, and several research efforts



have focused on improving its performance and capabilities.
This section reviews the existing literature on using VirtIO
in different hypervisors. We also discuss how the proposed
approach of integrating VirtIO and QEMU in seL4 leverages
standard virtualization of devices for embedded systems.

Park et al. [33] propose a new IO virtualization technique
called ”Ambient Virtio” for the seamless integration and
access of devices in ambient computing environments. The
authors implemented virtio-ambient device that virtualizes the
physical device and enables ambient access of VMs. The pro-
posed technique is based on the VirtIO standard and leverages
the advantages of virtualization to provide a flexible, scalable,
and secure way of accessing devices in the ambient computing
environment. The paper describes the architecture of Ambient
VirtIO and evaluates its performance and overhead using a
prototype implementation. The results show that Ambient
VirtIO can provide low latency and high throughput while
maintaining a low overhead, making it a promising solution
for IO virtualization in ambient computing. The authors made
use of KVM as a hypervisor to enable their solution.

Li et al. [34] introduce microverification as a new approach
for verifying the security properties of large, multiprocessor
commodity systems. The microverification approach reduces
the proof effort for a commodity system by retrofitting the
system into a small core and a set of untrusted services.
MicroV, a framework for verifying the security properties
of multiprocessor commodity systems, further reduces proof
effort by providing a set of proof libraries and helper functions.
The authors used MicroV to prove the security properties of
the Linux KVM hypervisor by retrofitting it into a small,
verifiable core, KCore, and a rich set of untrusted hypervisor
services, KServ. They proved that any malicious behavior of
the untrusted KServ using KCore’s interface could not violate
the desired security properties, including VM confidentiality
and integrity. Their approach supports standardized VirtIO
virtualization with vhost kernel optimizations.

Patel et al. [35] introduce Xvisor, a lightweight, open-source
Type-1 hypervisor that provides flexible and portable virtual-
ization. Xvisor supports ARM virtualization extensions, en-
abling both full virtualization and para-virtualization through
optional VirtIO-compatible drivers. It allows guest interrupts
to be managed directly without hypervisor intervention and
uses ARM’s virtualization support to ensure memory isolation
between the hypervisor, guests, and guest applications. Xvisor
has around 440K lines of code in its kernel and outperforms
KVM ARM guest and Xen ARM DomU in terms of CPU
overhead and memory bandwidth [21].

Oliveira et al. [36] discuss how traditional virtualization
may not be suitable for embedded systems and highlights
the need for inter-partition communication mechanisms to
enable cooperation between different OS classes. It mentions
various virtualization solutions that have implemented such
mechanisms and the adoption of VirtIO as the transport
abstraction layer for communication mechanisms. The paper
presents the implementation of a standardized inter-partition
communication mechanism in a TrustZone-assisted hypervisor

using VirtIO as the transport layer.
Li et al. [37] discuss the use of embedded virtualization

in IoT solutions, particularly in industrial and automotive
scenarios. The article presents ACRN, a lightweight, scalable,
and open-source embedded hypervisor designed for IoT de-
velopment. ACRN provides a secure and efficient solution
for real-time virtualization and supports spatial and tempo-
ral isolation. ACRN offers rich I/O virtualization interfaces,
including VirtIO, full emulation, mediated pass-through, pass-
through, and so on. To develop VirtIO backend driver, users
can use ACRN’s VirtIO backend service (VBS) framework.

Currently, seL4 natively supports three VirtIO devices: Vir-
tIO over PCI, virtio-console, and virtio-net [38]. VirtIO over
PCI is a virtualized interface that allows the operating system
to interact with virtual devices, such as storage devices and
network adapters. The virtio-console provides a mechanism for
input and output communication between the guest and host,
while virtio-net offers a network interface. However, it is worth
noting that adding support for new VirtIO devices natively to
seL4 can be a complex and time-consuming task (e.g., virtio-
blk, VirtIO RNG, VirtIO Balloon), requiring careful design and
verification due to seL4’s focus on security and correctness.

Compared to other hypervisors that support a wide range of
VirtIO devices natively or through a framework, seL4 currently
offers limited VirtIO support. While hypervisors like Xvisor,
KVM, and ACRN have successfully provided virtualization
capabilities for a broad range of devices, seL4 currently
only natively supports VirtIO over PCI, virtio-console, and
virtio-net. Given the limited native support for VirtIO devices
in seL4, our solution steps up to bring a wider variety of
VirtIO devices into the picture. We adopt the modern VirtIO
standard to make the system more flexible and adaptable. Our
approach provides generic VirtIO interfaces by using QEMU
as our backend. This way, we make it easier to support
more VirtIO devices and speed up their development and
deployment. As a result, we offer an efficient way to extend
VirtIO device support in seL4, cutting down the complexity
and time usually required to add native support, and we do
this without compromising the security and correctness that
seL4 is known for.

IV. PROPOSED APPROACH

In this section, we present our proposed approach to en-
hance seL4’s support for VirtIO devices, specifically focusing
on the addition of new VirtIO devices. Our proposed approach
aims to overcome the limitations of natively adding support
for new VirtIO devices in seL4. To achieve this, we leverage
the VirtIO backend in QEMU to provide a more practical
solution to support additional VirtIO devices. By using user-
level drivers, we can achieve more rapid development and
deployment of new device support. We aim to improve seL4’s
flexibility and scalability in virtualizing devices while also
maintaining its high level of security and correctness. We
provide an overview of the architecture of our approach,
including the design of user-level drivers and their interaction
with seL4’s existing VirtIO implementation.



vm #0 vmm

HW

seL4

Microkit / CAmkES

VM #1

VirtIO frontend

VM #0

VirtIO backend

Device Driver

vm #1 vmm

Physical Device

Fig. 1. VirtIO driver support for seL4

Figure 1 presents a high-level view of our proposed ap-
proach to enable VirtIO driver backends and frontends on top
of seL4. This approach serves as the basis for understanding
the proposed approach in this paper. The VirtIO interfaces can
be connected to various open-source technologies, including
QEMU, crosvm, and Firecracker, among others. In this setting,
the open-source technologies execute in the user space of a
different VM than the one utilizing the device. This approach
facilitates reusability, portability, and scalability. Figure 1
depicts this approach, which involves a scenario where a VM
#1 utilizes services provided by a backend VM #0.

Figure 2 shows how our system architecture is able to
provide support for VirtIO devices using QEMU on top of
the seL4 hypervisor. The ultimate goal of this architecture
is to bring seL4 on par with the other hypervisors in terms
of device support and flexibility for development. To tackle
the device support, we leveraged the existing Linux VMMs,
such as QEMU, to provide the VirtIO device backends for
the guest VMs. The approach has some benefits, such as: (i)
getting support for a wide range of VirtIO-device backends
with a minimal amount of code, (ii) enabling the development
of feature-rich multimedia capable systems on top of seL4, and
(iii) developers get the familiar user experience which helps
adoption of seL4. Without using the existing Linux VMMs,
we’d have to manually create the support for each VirtIO
backend on top of seL4, which is a non-trivial task with a
large amount of work.

The proposed architecture runs seL4 as a hypervisor. On top
of it, it can use either CAmkES or seL4 Microkit to define
the system and assign the resources/capabilities. The CAmkES
project is a framework for executing virtualized Linux guests
on seL4 for ARM and x86 architectures. Its camkes-vm module
functions as a virtual machine monitor (VMM) server, which
enables the initialization, booting, and runtime management
of guest operating systems [39]. The project offers a straight-
forward method for running various virtualization scenarios
with one or more virtual machines and different applications.
Moreover, it allows device pass-through in such environments.
However, a disadvantage of this framework is its inability
to support dynamic virtual machines, requiring predefined

VM configurations during the design phase. As a different
option from CAmkES, the seL4 community has developed
the seL4 Microkit, also known as Microkit [40] [41] [42]
[43]. The Microkit intends to be less complex and more
dynamic than CAmkES. The Microkit provides abstractions
such as protection domains (PDs), communication channels
(CCs), memory regions (MRs), and notifications and protected
procedure calls (PPCs). A virtual machine is a special type
of PD with additional attributes specific to virtualization.
Internally, a virtual machine appears as a single PD to other
PDs, with its internal processes hidden from view. A Microkit
program, which is an ELF (Executable and Linkable Format)
file containing both code and data, runs within a PD and is
exposed as memory regions that are mapped into the PD.

In order to provide VirtIO support through QEMU, our
architecture has two kinds of VMs: service-vm and user-
vm2. It allows the system to have multiple isolated service-
vms managing their own guests (e.g., isolated functionality, or
criticality domains). Figure 2 shows an architectural view of
our architecture with one service-vm and one user-vm.

The service-vm is a Linux VM providing guest VM man-
agement interface and VirtIO backends provided by the Linux
VMM (i.e., QEMU). Frameworks such as CAmkES or seL4PC
can be used to configure the VM in various manners, such as
the amount of RAM, and the device’s resources. The VM is
then created according to the configuration. The service-vm
Linux kernel is loaded with a kernel driver module, sel4-virt,
which handles the interaction towards the hypervisor VMM
(e.g., Microkit or CAmkES). The driver provides an API for
Linux VMM.

There can be multiple service-vms in the system, given
that there are enough physical hardware resources available
for each of the service-vms (e.g., RAM, block devices etc.).
Typically a service-vm is launched by the root task (i.e., it
is a static VM). In theory, a user-vm could act as a service-
vm, and be a host for its guests. However, for performance
reasons, it hardly makes sense in practical systems. The term
user-vm refers to a virtual machine that functions as a guest
within the context of a service-vm. Specifically, the user-vm is
reliant upon the paravirtualized devices that are hosted by the
service-vm in order to operate. The user-vm has the frontend
instance of the VirtIO drivers.

The VirtIO device backends, provided by the Linux VMM
(i.e., QEMU), use the physical devices of the hardware plat-
form. This means that in order to use a given device type, such
as virtio-gpu, the physical device must be passed through to
the service-vm. The filesystem for the guests is allocated from
the service-vm disk as regular files, for example, using qcow2
format. The virtio-blk is used as a VirtIO backend for the
filesystem.

The qemu-sel4-virtio3 repository holds the source code of
the sel4-virt-glue, as shown in Figure 2. This implementation
serves as the primary interface between the seL4 and the

2The terminology of service-vm/user-vm was adopted from the ACRN
project [37].

3https://github.com/tiiuae/qemu-sel4-virtio



service-vm vmm

HW

seL4

Microkit / CAmkES

user-vm

us
er

sp
ac

e
ke

rn
el

virtio-driver (frontend)

application

service-vm

ke
rn

el sel4-virt
kernel module

Linux VMM (QEMU, ...)
sel4-virt-glue virtio-devices ram (shm)

iobuf (shm)

user-vm vmmtrap
handler

io

create create

us
er

sp
ac

e

Physical Device

passthrough

Fig. 2. Overview of the proposed architecture

emulated hardware provided by the QEMU environment. It
brings together various components, including the interrupt
handling mechanism, virtual device management via VirtIO,
and the implementation of the main event loop for the system.
It initiates a sequence of events, including the initialization of
seL4 and its utilities, and the creation and setup of VirtIO
devices. Following the setup, the system enters an infinite
loop where it continually waits for and responds to hardware
interrupts.

The kmod-sel4-virt4 repository contains the Linux kernel
module to manage seL4 guest VMs, as shown in Figure 2
as sel4-virt kernel module. It utilizes VirtIO for effective I/O
operations between the host (i.e., service-vm) and guest (i.e.,
user-vm) VMs. It enables guests to get high-performance I/O
operations in a virtualized environment. The kernel module
defines an API for managing VMs. It includes the capability
to handle I/O requests from the VMs and perform opera-
tions when I/O is completed. The kernel module uses file
descriptors and file operations such as ioctls to manage a VM,
it also supports multiple VMs. It is worth mentioning that
this implementation is highly influenced by ACRN and KVM
approaches.

V. EVALUATION

In this section, we assess the performance of VirtIO within
the context of seL4, focusing on networking (i.e., virtio-net)
and storage (i.e., virtio-blk). VirtIO performance is crucial
in virtualized environments as it directly influences overall
system performance. The evaluation aims to determine the
QEMU VirtIO’s performance on seL4 and examine the effects
of seL4’s security properties on VirtIO performance. The
outcome of this evaluation will offer valuable insights into the

4https://github.com/tiiuae/kmod-sel4-virt

viability of utilizing seL4 as a secure and efficient platform
for virtualized environments.

The experimental setup for this study comprises a Rasp-
berry Pi 4 4GB board running seL4 as a hypervisor. Our
source code is publicly accessible on GitHub5, enabling result
reproduction, contributions, and further research [44]. The
hypervisor offers a secure and isolated environment for virtual
machines to function. The setup features a service-vm that
operates the QEMU Linux VMM at the user level, supplying
the VirtIO backend for virtual machines. In addition, the
service-vm manages virtual machine images and conducts I/O
operations on behalf of the user-vm. The user-vm runs test
applications and the VirtIO front end at the user level. It
is important to note that both service-vm and user-vm runs
in the same processor core of the Raspberry Pi 4 platform,
as the support for multicore VMs/VMMs is not available in
seL4 mainline repositories. Details on the architectural view of
the evaluated setup can be found in Figure 2. Communication
between the VirtIO front end and the VirtIO backend provided
by the service-vm enables access to the virtual machine’s
devices. In essence, this experimental setup offers a platform
for executing tests and examining virtual machine performance
in a controlled environment.

In this paper, we propose a solution that offers key benefits
for building feature-rich systems on top of seL4 while leverag-
ing existing technology and minimizing codebase complexity.
Our primary objectives include facilitating the faster develop-
ment of such systems and enhancing their potential security
through seL4’s isolation guarantees. We contend that our
solution provides better security compared to existing options,
such as KVM, due to the inherent isolation properties of seL4.
Furthermore, this implementation offers enhanced flexibility

5https://github.com/tiiuae/tii sel4 build



compared to the native VirtIO devices implementation present
in seL4. The native seL4 implementation is limited by its
support for only three VirtIO devices, and the process of
developing new support is both complex and labor-intensive.

A. virtio-net

The network interface is one of the most crucial compo-
nents in a system, especially in modern distributed systems.
The virtio-net is a widely used network device model that
provides a high-performance virtual network interface for
virtual machines [45]. It is designed to be agnostic to the
underlying physical network hardware, which allows virtual
machines to be easily migrated between physical hosts with
different network setups. The virtio-net has become the de
facto standard for virtualized network devices, and it is widely
supported by various hypervisors.

The iPerf3 is a widely used, open-source network per-
formance measurement tool that facilitates comprehensive
testing of various network parameters, including bandwidth,
latency, and packet loss [46]. This versatile and robust utility
is suitable for evaluating the performance of virtio-net in
the context of our experimental setup. The iPerf3 enables
both TCP and UDP tests, providing a means to analyze
the behavior and throughput of these protocols within the
virtualized environment. By utilizing iPerf3 as a benchmark
for virtio-net, we aim to generate a detailed understanding of
the networking performance within the proposed seL4-based
virtualized system.

In our evaluation, we separately assessed the performance
of the user-vm and the service-vm using iPerf3. Each vir-
tual machine was configured to communicate with a distinct
machine on the same network, rather than operating in a
client-server configuration between the user-vm and service-
vm. This approach allowed us to analyze the performance of
each virtual machine independently, offering a more accu-
rate representation of their individual networking capabilities
within the seL4-based virtualized system. This environment
encompasses the communication from the Raspberry Pi 4
(RPi4) to a Personal Computer (PC) and vice-versa. The
network is supported by a 1 Gbit router.

Under the evaluation tests of the user-vm we ran the tests
with two different setups: (a) with vhost and (b) without vhost.
The vhost emerges as a pivotal mechanism engineered to im-
prove the performance of virtual devices such as network and
block devices within VMs. This enhancement is achieved by
adeptly offloading the processing of virtqueues, a fundamental
component in the VirtIO standard for network and disk device
drivers within a virtual environment [47].

The vhost backend, located in the kernel module, efficiently
manages I/O requests and virtqueue processing, minimizing
the overhead from context switching between user and ker-
nel space. The vhost-user, operating in user space, similarly
oversees I/O requests and virtqueue processing, contributing
to enhanced performance in virtual environments. The vhost
frontend, such as QEMU, manages the initiation of VirtIO and
feature negotiation with the backend [48]. After completing

these tasks, it hands over essential configurations and descrip-
tors for smooth operation, including memory region config-
uration, virtqueue configurations, and event file descriptors
for asynchronous event notifications. In the execution phase,
the vhost backend, embodying the actual device, processes
virtqueues and manages the transfer of network packets to and
from the guest VM, while staying responsive to notifications
from the guest.

To accurately evaluate the service-vm performance, we con-
ducted tests considering the passthrough to the actual network
device of the RPi4 board. This method enabled a direct and
clear assessment of the maximum performance achievable
by the user-vm using our VirtIO backend implementation.
We acknowledge the possibility of further enhancing these
performance metrics through additional passthrough optimiza-
tions. This specific configuration, distinct from traditional
approaches, is crucial. It provides a comprehensive under-
standing, unveiling both the potential and constraints of the
service-vm performance with our network device passthrough
implementation.

Ten iterations of the iPerf3 benchmark were performed
for each of the aforementioned scenarios, with each iteration
lasting 60 seconds. The first 5 seconds of each iteration was
omitted to avoid the TCP slow start phase. Table I presents a
summary of the average results obtained for the tests on seL4.
In Table I, MB represents a megabyte, which is equal to 220

bytes6.

TABLE I
AVERAGE THROUGHPUT FOR iPerf3 BENCHMARK ON SEL4

Scenario Direction Sender Receiver
(Mbps) (Mbps)

service-vm RPi4 to PC 455.2 455.2
service-vm PC to RPi4 662.7 662.7

Scenario Direction vhost Sender Receiver
(Mbps) (Mbps)

user-vm RPi4 to PC No 213.2 213.1
user-vm PC to RPi4 No 392.7 392.6
user-vm RPi4 to PC Yes 317.1 317.0
user-vm PC to RPi4 Yes 410.0 410.0

In the tested scenario involving the seL4 service-vm, iPerf3
was utilized to assess the passthrough implementation perfor-
mance. This evaluation delineates the maximum achievable
performance for the user-vm. In the evaluation conducted from
the service-vm on RPi4 to PC, the iPerf3 tests demonstrate
a stable network throughput. The results register no packet
retransmissions across all tests. A consistent average bitrate
is observed, ranging from approximately 421 Mbits/s to 503
Mbits/s. The congestion window size remained stable, further
highlighting the network’s efficiency. Considering the scenario

6The International Electrotechnical Commission (IEC) has established the
binary prefix “mebibyte” (MiB) to represent 220 bytes, while megabyte
(MB) traditionally denotes 106 bytes. However, in many contexts, including
computer memory and storage, MB is still commonly used to represent 220
bytes.



of PC to RPi4 service-vm, the average bitrate predominantly
hovering around 605 Mbits/sec to 610 Mbits/sec.

Considering the seL4 user-vm experiments, the results differ
in two distinct scenarios: no vhost and with vhost.

In the case of scenario of a user-vm with no vhost, con-
sidering the iPerf3 from RPi4 to PC, the average bitrate
was consistently registered within the range of 205 to 223
Mbits/sec. The congestion window size, a crucial parameter
indicating the robustness of the network setup [49], demon-
strated an increasing trend in the experiments. This consistent
increase in the congestion window size, along with the zero
packet retransmission observed, emphasizes the network’s
reliability and efficiency in managing data transfers under
various load conditions. This performance is further mirrored
in the transfer sizes, which ranged from 12.5 MBytes to 27.7
MBytes within one-second intervals in different tests, and the
overall data transferred in each test, with figures such as 1.43
GBytes to 1.56 GBytes being recorded. In the evaluation of
data transmission from a PC to RPi4 running the user-vm
without vhost, the data underscore a stable average bitrate of
approximately 392-395 Mbits/sec. The consistent congestion
window sizes, typically oscillating between 892 KBytes and
938 KBytes. The total data transferred predominantly lies
around 2.73 to 2.76 GBytes, accentuating the uniformity in
network performance. One of the observations is the nearly
nonexistent packet retransmissions.

Considering the scenario with vhost, in the execution of
iPerf3 from RPi4 to PC, the results consistently demonstrate
a robust and stable connection, evidenced by a lack of packet
retransmissions in all test scenarios. The tests reveal an average
bitrate ranging from 242 Mbits/sec to 343 Mbits/sec, with the
majority of the tests maintaining a bitrate of approximately 317
Mbits/sec. The congestion window size predominantly hovers
around 1.77 MBytes, indicating the network’s ability to main-
tain a stable throughput without encountering significant con-
gestion, further corroborated by the consistent data transfer of
approximately 2.21 GBytes in each test. The overall stability in
the average bitrate and the absence of packet retransmissions
highlights the efficiency and reliability for data transmission
from user-vm to PC. In the evaluation of the PC to user-
vm network performance using vhost, the results consistently
displayed a bandwidth ranging from 397 Mbits/sec to 438
Mbits/sec, with an average of approximately 410 Mbits/sec.
The consistent high bandwidth and low retransmission rate
shows the efficacy of vhost in maintaining robust network
communication between the PC and user-vm at RPi4.

In the comparison between scenarios utilizing vhost and
those without, a notable enhancement in network performance
is evident. Specifically, the data transmission from user-vm
RPi4 to PC exhibits an approximately 48.7% improvement in
the average bitrate. Simultaneously, the PC to user-vm RPi4
direction demonstrates a more modest, but still significant,
improvement of around 4.4%. The use of vhost clearly miti-
gates network congestion and optimizes bandwidth utilization,
thereby ensuring more robust and efficient data communication
in diverse transmission scenarios.

A related approach using VirtIO devices on top of KVM
was evaluated on an R120-T34 (1U Server) [50]. In this
approach, the authors evaluated the virtio-iommu using iPerf3
benchmark and obtained an average of 420 Mbps for the
transmission (i.e., tx) with vhost off scenario and 464 Mbps
with vhost on. In a similar effort, Alonso et al. [51] analyzed
the Xen hypervisor performance on the network using iPerf3
benchmark. In the measurements on network connection over
Petalinux running on Xen DomU with paravirtualized network
device, the authors obtained an average of 500 Mbps for the
sender and 644 Mbps for the receiver.

B. virtio-blk

The virtio-blk is a virtualization technology that provides an
efficient and standardized way for virtual machines to access
block storage devices [30]. It is designed to improve I/O per-
formance by reducing overhead and eliminating the need for
additional software or drivers. The virtio-blk is widely used in
virtual environments as it enables guests to access host storage
directly, without compromising security or performance. This
technology allows for the easy migration of virtual machines
across different hypervisors and operating systems while en-
suring compatibility and optimal performance. Overall, the
virtio-blk is a key component of virtualization infrastructure,
providing efficient and reliable block storage access for virtual
machines.

The Flexible I/O (fio) benchmark is a widely-used and
versatile tool designed for measuring and characterizing the
performance of storage subsystems, such as disk drives, stor-
age area networks, and network-attached storage devices [52].
The fio benchmark provides detailed metrics and statistics,
which facilitate a comprehensive understanding of the storage
system’s performance, enabling comparisons across different
systems and configurations. In this paper, the fio benchmark
was employed to evaluate the use of virtio-blk on top of seL4
by the proposed approach, shedding light on its performance
characteristics and overall efficiency.

We conducted a series of fio benchmarks to evaluate the per-
formance of various storage configurations under the scenario
utilizing the seL4 hypervisor on a Raspberry Pi 4 with 4GB
of RAM. The fio benchmark was executed within the user-
vm. The fio tool was configured with the posixaio I/O engine
and a random write workload. Seven block sizes were utilized:
4KB, 16KB, 64KB, 256KB, 1024KB, 2048KB, and 4096KB.
A 64MB file was used for each block size with a single job
running for 60 seconds. The benchmark was set to be time-
based to maintain a consistent workload intensity throughout
the test duration. To ensure the accurate measurement of I/O
operations, the benchmark was set to be time-based, and
end fsync was used, causing fio to synchronize file system
buffers with storage devices at the end of each test. The results
of the performed fio benchmark can be found in Table II.

The conducted evaluation revealed a decline in IOPS from
3842 to 15 as block size increased, coupled with a consistent
improvement in bandwidth, peaking at 60.1 MiB/s for 1024k
block size. However, a corresponding increase in latency was



TABLE II
fio BENCHMARK RESULTS ON THE user-vm WITH SEL4 HYPERVISOR

Block Size IOPS BW (MiB/s) Avg. Latency (usec) 99.99th Percentile (usec) CPU (%) Disk Utilization
4 KB 3842 15.0 212.68 24773 usr=11.44, sys=25.99 52.46%
16 KB 2155 33.7 367.96 28705 usr=5.90, sys=23.36 59.94%
64 KB 768 48.0 795.45 18482 usr=2.20, sys=27.57 68.50%
256 KB 230 57.7 2529.93 94897 usr=1.12, sys=26.64 64.72%
1024 KB 60 60.1 10329.42 32900 usr=1.38, sys=23.07 62.19%
2048 KB 30 60.6 20380.61 46400 usr=1.35, sys=23.18 62.54%
4096 KB 15 61.4 40144.14 73925 usr=1.65, sys=22.95 62.92%

observed, reaching 40144.14 usec for 4096k block size. At
lower block sizes, like 4k and 16k, a more balanced perfor-
mance was observed with IOPS of 3842 and 2155, and average
latencies of 212.68 usec and 367.96 usec respectively. The
results generally demonstrated a trade-off among the evaluated
metrics as the block size was adjusted.

The optimal block size configuration depends on the ap-
plication requirements and constraints. For applications pri-
oritizing higher IOPS and lower latency, smaller block sizes
proved a more suitable performance profile. On the other hand,
for bandwitdth-intensive applications where higher latency is
acceptable, larger block sizes could be more appropriate.

VI. CONCLUSION AND FUTURE WORK

This paper presented the first publicly available implemen-
tation of the VirtIO standard for virtual machines running
on top of the seL4 hypervisor. This implementation aims to
enhance architectural flexibility and accelerate development
speed by leveraging the efficient communication interface
provided by the VirtIO standard and QEMU, eliminating
the need for native drivers. As a Type-1 hypervisor, seL4
offers unique advantages in terms of security and isolation,
which are critical for certain use cases that demand a small
trusted computing base. The proposed feature paves the way
for future work to optimize the performance of seL4-based
virtualization solutions without compromising its core benefits
in security and isolation. By continuing to develop and refine
seL4’s virtualization capabilities, it is possible to create a more
robust and efficient platform for consolidating workloads and
improving resource utilization in critical systems.

Currently, our proposed architecture defines the character-
istics of virtual machines, such as the amount of RAM and
resources, in a static manner. However, as future work, we
aim to make these characteristics dynamic and customizable
during runtime. This will provide greater flexibility and adapt-
ability to the system, allowing for better resource allocation
and management. By allowing the configuration of VMs
to change dynamically, the system can adapt to different
workload requirements and optimize the usage of available
resources. We plan to explore different approaches to achieve
this goal, including dynamic memory allocation and resource
sharing between VMs. Moreover, it is essential to note that the
current inter-VM implementation holds room for optimization,
and we firmly believe that making these enhancements will
significantly bolster the system’s overall performance. While

this paper introduces a novel approach to implementing the
VirtIO standard for virtual machines on the seL4 hypervisor,
it is an intermediate step in our ongoing research. This study
serves as a cornerstone, providing crucial groundwork and
insights upon which subsequent advancements and versions
will be constructed, inching us closer to our ultimate objective
of a dynamic, robust, and efficient virtualization solution.

REFERENCES

[1] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current
technology and future trends,” Computer, vol. 38, no. 5, pp. 39–47,
2005.

[2] G. Heiser, “The role of virtualization in embedded systems,” in
Proceedings of the 1st Workshop on Isolation and Integration in
Embedded Systems, ser. IIES ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 11–16. [Online]. Available:
https://doi.org/10.1145/1435458.1435461

[3] J. Watada, A. Roy, R. Kadikar, H. Pham, and B. Xu, “Emerging trends,
techniques and open issues of containerization: A review,” IEEE Access,
vol. 7, pp. 152 443–152 472, 2019.

[4] A. Iqbal, C. Pattinson, and A.-L. Kor, “Performance monitoring of
virtual machines (vms) of type i and ii hypervisors with snmpv3,” in
2015 World Congress on Sustainable Technologies (WCST), 2015, pp.
98–99.

[5] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan,
P. Loscocco, and A. Warfield, “Breaking up is hard to do: Security
and functionality in a commodity hypervisor,” in 2011 SOSP: ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: Association for Computing Machinery, 2011, p.
189–202. [Online]. Available: https://doi.org/10.1145/2043556.2043575

[6] T. Shimada, T. Yashiro, N. Koshizuka, and K. Sakamura, “A real-time
hypervisor for embedded systems with hardware virtualization support,”
in 2015 TRON Symposium (TRONSHOW), 2015, pp. 1–7.

[7] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto,
“Bao: A Lightweight Static Partitioning Hypervisor for Modern
Multi-Core Embedded Systems,” in Workshop on Next Generation
Real-Time Embedded Systems (NG-RES 2020), ser. OpenAccess
Series in Informatics (OASIcs), M. Bertogna and F. Terraneo,
Eds., vol. 77. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020, pp. 3:1–3:14. [Online]. Available:
https://drops.dagstuhl.de/opus/volltexte/2020/11779

[8] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look
mum, no vm exits! (almost),” 2017. [Online]. Available: https:
//arxiv.org/abs/1705.06932

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, ser. SOSP ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 164–177. [Online].
Available: https://doi.org/10.1145/945445.945462

[10] C. Dall and J. Nieh, “Kvm/arm: The design and implementation of the
linux arm hypervisor,” SIGPLAN Not., vol. 49, no. 4, p. 333–348, feb
2014. [Online]. Available: https://doi.org/10.1145/2644865.2541946

[11] G. Heiser, G. Klein, and J. Andronick, “Sel4 in australia: From research
to real-world trustworthy systems,” Commun. ACM, vol. 63, no. 4, p.
72–75, mar 2020. [Online]. Available: https://doi.org/10.1145/3378426



[12] E. d. Matos and M. Ahvenjärvi, “sel4 microkernel for virtualization
use-cases: Potential directions towards a standard vmm,” Electronics,
vol. 11, no. 24, 2022. [Online]. Available: https://www.mdpi.com/
2079-9292/11/24/4201

[13] M. S. Tsirkin and C. Huck, “Virtual i/o device (virtio) version 1.1,”
OASIS Committee, 2018.

[14] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight
virtualization: A performance comparison,” in 2015 IEEE International
Conference on Cloud Engineering, 2015, pp. 386–393.

[15] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines
from hypervisor and host operating system exploits,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1357–1374. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/li-shih-wei

[16] C. Moratelli, R. Tiburski, S. F. Johann, E. Moura, E. De Matos, and
F. Hessel, “Mips and risc-v: Evaluating virtualization trade-off for edge
devices,” in 2022 IEEE 8th World Forum on Internet of Things (WF-
IoT), 2022, pp. 1–6.

[17] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Commun. ACM, vol. 17, no. 7, p.
412–421, jul 1974. [Online]. Available: https://doi.org/10.1145/361011.
361073

[18] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current
technology and future trends,” Computer, vol. 38, no. 5, pp. 39–47,
2005.

[19] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual
machine performance: Challenges and approaches,” SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 3, p. 55–60, jan 2010. [Online].
Available: https://doi.org/10.1145/1710115.1710126

[20] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of the
art, and future directions,” Proceedings of the IEEE, vol. 102, no. 1, pp.
11–31, 2014.

[21] R. T. Tiburski, C. R. Moratelli, S. F. Johann, E. de Matos,
and F. Hessel, “A lightweight virtualization model to enable edge
computing in deeply embedded systems,” Software: Practice and
Experience, vol. 51, no. 9, pp. 1964–1981, 2021. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2968

[22] A. Aguiar and F. Hessel, “Embedded systems’ virtualization: The next
challenge?” in Proceedings of 2010 21st IEEE International Symposium
on Rapid System Protyping, 2010, pp. 1–7.

[23] K. Han, S. Al Blooshi, N. Alnuaimi, E. Al Nuaimi, E. de Matos, and
R. Psiakis, “Improving drone mission continuity in rescue operations
with secure and efficient task migration,” in 2022 IEEE 8th World Forum
on Internet of Things (WF-IoT), 2022, pp. 1–6.

[24] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “Sel4: Formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207–220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596

[25] J. Shropshire, “Analysis of monolithic and microkernel architectures:
Towards secure hypervisor design,” in 2014 47th Hawaii International
Conference on System Sciences, 2014, pp. 5008–5017.

[26] A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-
context capabilities: A principled, light-weight operating-system
mechanism for managing time,” in Proceedings of the Thirteenth
EuroSys Conference, ser. EuroSys ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3190508.3190539

[27] G. Heiser, “The sel4 microkernel–an introduction,” 2020. [Online].
Available: https://sel4.systems/About/seL4-whitepaper.pdf

[28] Y. Chen, J. Wu, and S. Yang, “Virtio-based i/o virtualization on arm
platforms,” in Proceedings of the 2017 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems. ACM,
2017.

[29] J. Hao, X. Huang, W. Chen, and M. Chen, “A high-performance virtio
implementation for kvm,” in Proceedings of the 2015 ACM SIGPLAN
Conference on Virtual Execution Environments. ACM, 2015.

[30] R. Russell, “Virtio: Towards a de-facto standard for virtual i/o devices,”
SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 95–103, jul 2008. [Online].
Available: https://doi.org/10.1145/1400097.1400108

[31] S. Bandara, A. Sanaullah, Z. Tahir, U. Drepper, and M. Herbordt,
“Enabling virtio driver support on fpgas,” in 2022 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 2022, pp. 1–8.

[32] F. Bellard, “QEMU, a fast and portable dynamic translator,” in 2005
USENIX Annual Technical Conference (USENIX ATC 05). Anaheim,
CA: USENIX Association, apr 2005. [Online]. Available: https:
//www.usenix.org/conference/2005-usenix-annual-technical-conference/
qemu-fast-and-portable-dynamic-translator

[33] S. Park, K. Kim, and H. Kim, “Ambient virtio: Io virtualization for
seamless integration and access of devices in ambient computing,” IEEE
Systems Journal, pp. 1–12, 2022.

[34] S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Zhuang Hui, “A secure and
formally verified linux kvm hypervisor,” in 2021 IEEE Symposium on
Security and Privacy (SP), 2021, pp. 1782–1799.

[35] A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi, “Embedded
hypervisor xvisor: A comparative analysis,” in 2015 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, 2015, pp. 682–691.

[36] A. Oliveira, J. Martins, J. Cabral, A. Tavares, and S. Pinto, “Tz- virtio:
Enabling standardized inter-partition communication in a trustzone-
assisted hypervisor,” in 2018 IEEE 27th International Symposium on
Industrial Electronics (ISIE), 2018, pp. 708–713.

[37] H. Li, X. Xu, J. Ren, and Y. Dong, “Acrn: A big little
hypervisor for iot development,” in Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ser. VEE 2019. New York, NY, USA: Association
for Computing Machinery, 2019, p. 31–44. [Online]. Available:
https://doi.org/10.1145/3313808.3313816

[38] seL4 Project, “Virtualisation on seL4,” 2023. [Online]. Available:
https://docs.sel4.systems/projects/virtualization/

[39] ——, “CAmkES VMM,” 2022. [Online]. Available: https://docs.sel4.
systems/projects/camkes-vm/

[40] seL4 Project, “The seL4 Microkit (was ”seL4 Core Platform”),” 2022.
[Online]. Available: https://sel4.atlassian.net/browse/RFC-5

[41] B. Leslie and G. Heiser, “The seL4 Core Platform,”
2022. [Online]. Available: https://trustworthy.systems/projects/TS/
sel4cp/2011-draft-spec.pdf

[42] ——, “Evolving seL4CP Into a Dynamic OS,” 2022. [Online]. Available:
https://trustworthy.systems/projects/TS/sel4cp/2203-report-dynamic.pdf

[43] seL4, “seL4 Microkit,” https://github.com/seL4/microkit, 2023, [Ac-
cessed 27-Sep-2023].

[44] tiiuae, “GitHub - tiiuae/tii sel4 build,” https://github.com/tiiuae/tii
sel4 build, 2023, [Accessed 01-Apr-2023].

[45] G. Motika and S. Weiss, “Virtio network paravirtualization driver: Imple-
mentation and performance of a de-facto standard,” Computer Standards
& Interfaces, vol. 34, no. 1, pp. 36–47, 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0920548911000559

[46] esnet, “GitHub - esnet/iperf: iperf3: A TCP, UDP, and SCTP network
bandwidth measurement tool,” https://github.com/esnet/iperf, 2023, [Ac-
cessed 01-Apr-2023].

[47] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine
networking using netmap passthrough,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), 2016,
pp. 1–6.

[48] J. Tan, C. Liang, H. Xie, Q. Xu, J. Hu, H. Zhu, and Y. Liu, “Virtio-user:
A new versatile channel for kernel-bypass networks,” in Proceedings
of the Workshop on Kernel-Bypass Networks, ser. KBNets ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
13–18. [Online]. Available: https://doi.org/10.1145/3098583.3098586

[49] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal,
A. Jain, and N. Sutin, “An argument for increasing tcp’s initial
congestion window,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 3, p. 26–33, jun 2010. [Online]. Available: https://doi.org/10.1145/
1823844.1823848

[50] E. Auger, “viommu/arm: full emulation and virtio-iommu approaches,”
in KVM Forum, 2017.

[51] S. Alonso, J. Lázaro, J. Jiménez, L. Muguira, and A. Largacha,
“Analysing the interference of xen hypervisor in the network speed,” in
2020 XXXV Conference on Design of Circuits and Integrated Systems
(DCIS), 2020, pp. 1–6.

[52] J. Axboe, “Fio’s documentation,” https://fio.readthedocs.io/en/latest/
index.html, 2017, [Accessed 01-Apr-2023].


