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Abstract—Industrial Control Systems (ICS) play a crucial role
in managing and controlling industrial assets. Due to their critical
importance, adversaries are often highly motivated to target these
systems, as a successful attack can disrupt the entire industry’s
operations. In general, to improve the system’s security, proposed
intrusion detection schemes often resort to traditional security
mechanisms. As a consequence, due to their static nature,
attackers can easily evade designed detection approaches. In
light of this, this paper proposes a new dynamic network-based
intrusion detection model for ICS, implemented in two phases.
First, our scheme extracts network-related features to describe
the current ICS environment behavior. Second, the security
mechanisms are proactively selected based on the extracted
network traffic behavior. As a result, our scheme can adjust
the system’s configuration based on the current assessed event.
Experiments on a new dataset, featuring over 14 attack categories
targeting a SCADA system revealed that traditional detection
methods face challenges in handling diverse attack categories.
Conversely, our proposed model improved the average true-
positive rates by up to 20% while also improving the range of
detected attacks.

Index Terms—SCADA, Industrial Control Systems, Machine
Learning

I. INTRODUCTION

In the past few years, behavior-based Network-based In-
trusion Detection System (NIDS) employing Machine Learn-
ing (ML) strategies have shown remarkable accuracy [1].
These systems construct ML models by observing the training
dataset behavior while assessing them using testing datasets
that mimic real-world scenarios [2]. However, even with the
encouraging outcomes, the application of ML in NIDS for
Industrial Control System (ICS) predominantly remains within
the research domain [3].

ICS combine hardware, software, and network systems to
improve and automate operations in various industries, includ-
ing manufacturing, energy, and transportation [4]. Supervisory
Control and Data Acquisition (SCADA) systems play a critical
role within ICS, as they automate the control of Programmable
Logic Controller (PLC) through Human-Machine Interface
(HMI). To achieve such a goal, SCADA use multiple network-
ing protocols such as Modbus, Distributed Network Protocol 3
(DNP3), and Open Platform Communications (OPC) to ensure
smooth communication and data transfer [5].

Driven by ICS systems’ essential and sensitive role, adver-
saries meticulously study the target infrastructure for a long

duration to find and leverage multiple undiscovered vulnera-
bilities for their disruption [6]. In the past few years, security
breaches have led to failures in the power grid, resulting in
disruptions and potential economic and societal losses [7].
As a result, to thoroughly protect these systems, it is crucial
to use multiple security mechanisms, such as authentication,
authorization, firewalls, and VPNs [8]. In such a context, to
examine the network traffic within an ICS, operators often use
NIDS tools.

Many strategies use either misuse-based or behavior-based
methods [9] for effective intrusion detection. Misuse-based
methods rely on recognized attack patterns, which protect
against known intrusions but may fail to protect against
emerging threats. On the other hand, behavior-based strategies
focus on examining the events behavior for any deviation
from a predefined baseline, thus demonstrating their detection
potential for unknown attacks.

ICS setups, including SCADA, are significant magnets for
persistent attackers who carefully analyze their targets to
execute successful attacks [10]. As a result, static ML-based
intrusion detection systems face evasion risks as their model
parameters can only be changed after training. The emergence
of novel attack vectors over time increases the probability
of evading the established system, even without clear insight
into the model behavior by attackers. As a result, existing
ML-oriented NIDSs need to actively select and apply security
strategies to strengthen the system’s security.

Contribution. In this paper, we present an innovative NIDS
approach for ICS that aims to improve classification accuracy
by dynamically adapting the model configuration to the current
system inputs. A dynamic classifier selection method is pro-
posed to perform the classification. This method dynamically
selects the optimal classifiers based on the prevailing event
behavior. Multiple security mechanisms are integrated with our
proposed model. In synchronization with the ongoing event
behavior, it actively determines the appropriate tools for the
detection task. This strategy increases the classification accu-
racy by dynamically modifying the system setup based on the
analyzed event attributes. To conclude, our proposed scheme
can improve the accuracy of the system while increasing the
system’s resilience against sophisticated types of attacks.

Roadmap. The organization of the rest of this document
is as outlined below. Section II provides the background on



ICS and Intrusion Detection System (IDS) methodologies.
The Section III summarizes the related work in ICS intrusion
detection. The Dynamic NIDS model for ICS is presented
in Section IV, followed by the evaluation outcomes in Sec-
tion V-B. The paper is drawn to a close in Section VI.

II. BACKGROUND

In this section, we offer an extensive overview of ICS,
including SCADA, and its principal associated infrastructure
components. Additionally, we introduce the fundamental com-
ponents of ML commonly employed in NIDS.

A. Industrial Control Systems

An ICS is a complex, typically legacy system essential for
managing hardware, software, and network elements in various
critical infrastructure sectors, including manufacturing, oil and
gas, energy, and water treatment [4]. To fulfill this purpose,
a typical ICS comprises three primary components: SCADA,
PLC, and communication elements. SCADA oversees and
controls industrial assets through an HMI, enabling data
management, alerts, and control commands. PLC are digital
devices that control industrial machinery and processes, acting
as an interface between the SCADA system or other controllers
to facilitate interaction with sensors and actuators. Finally,
the communication components use diverse protocols like
Ethernet, Profibus, and Modbus to enable interaction between
the SCADA system and the PLC.

ICSs, as cyber-connected systems, are exposed to motivated
attackers seeking to disrupt critical industrial infrastructure,
potentially leading to control over PLCs and resulting in sig-
nificant losses [11]. As an example, in 2015, the BlackEnergy
malware infected Ukrainian SCADA systems within a power
grid ICS, causing extensive power outages that impacted
more than 230 thousand consumers [12]. Securing ICSs is
challenging due to their interconnected and difficult-to-update
architecture, necessitating multiple security measures such as
authentication, authorization, firewalls, VPNs, and NIDS for
reinforcement [13].

B. Network-based Intrusion Detection System

Behavior-based NIDSs typically employ ML-based pattern
recognition to monitor and analyze network activities [14].
The process is typically implemented by making use of four
main modules:

• Data Acquisition. Collects network events continuously,
such as gathering network packets from a Network Inter-
face Card (NIC).

• Feature Extraction. Derives behavior from collected data,
representing it as network flows that summarize the
interactions between network entities within a specified
time window.

• Classification. Utilizes a ML model to classify the input
as either normal or intrusion using the extracted feature
set.

• Alert. Signal events classified as intrusions to the network
operator.

In practice, the reliability of behavior-based NIDSs depends
on the ML model’s quality [15]. However, the creation of
realistic intrusion datasets for ICS systems is a challenging
task [16], as attackers often use zero-day attacks to compro-
mise these critical systems. Conversely, existing ML-based
NIDSs for ICSs often rely on traditional pattern recognition,
which may not provide the required level of detection relia-
bility [17].

III. RELATED WORKS

To improve the ICS security, researchers generally con-
centrate on enhancing detection accuracy through ML-based
methods [18]. Louk et al. [19] employs an ensemble of clas-
sifiers to enhance the detection of new attacks when evaluated
on a power grid dataset. Another ensemble approach was
proposed by R. Lazzarini et al. [20] where the authors stack
several Deep Neural Network (DNN) models to improve detec-
tion accuracy in a multi-class dataset. Their proposed scheme
reached low false-positive rates on a binary classification
dataset encompassing Internet of Things (IoT) related attacks.
Similarly, J. Gao et al. [21] proposed the usage of DNN
to detect SCADA related attacks. The authors showed that
their proposed model was able to provide significantly high
detection accuracies while detecting temporally uncorrelated
attacks.

In general, detection reliability improvements are achieved
through the combination of multiple classification systems.
As an example, V. Ravi et al. [22] relies on a feature fusion
through a Recurrent Neural Network (RNN) to improve detec-
tion accuracy on a network intrusion dataset. Their proposed
model was able to significantly improve detection accuracy,
however, they overlooked detection of new kinds of attacks.
A similar approach was proposed by Y. Li et al. [23] where the
authors relies on a two-stage training to improve detection of
an ensemble of classifiers. The authors improved the detection
accuracy on a ICS-related dataset. However, detection of new
attacks was not addressed and the authors assumed that sim-
ilar accuracies would be observed when subject to unknown
threats. M. S. Al-Daweri et al. [24] proposed the application of
feature selection to build one-class DNN models for intrusion
detection in ICS. The proposed model significantly improved
detection accuracy on multiple datasets while not considering
the detection of new attacks.

The detection of new kinds of attacks in ICS has been
the subject of multiple works in the literature over the past
few years [25]. M. Catillo et al. [26] proposed applying
a semi-supervised technique through a deep autoencoder to
detect intrusions as outliers. The authors proposed model
could detect attacks not used during the training phase in
ICS-related dataset. I. A. Khan et al. [27] proposed the
application of anomaly detection techniques to detect new
SCADA attacks. Their proposed model was able to detect
new kinds of attacks while also improving the detection
accuracy of known intrusions. T. D. Ramotsoela et al. [28]
proposed a similar approach using DNN models, showing their
capability to detect new attacks. However, although proposed



solutions can detect new kinds of attacks, they leave systems
unprotected against highly motivated attackers. In such a case,
the adversary can still maliciously craft the generated attack
behavior to evade deployed security solutions.

IV. DYNAMIC NIDS MODEL

To address such a shortcoming, we present a new reliable
intrusion detection model that addresses the detection of
advanced attacks on ICS systems. Our design model considers
a Operational Technology (OT) network traffic environment
where multiple security mechanisms are used to monitor the
network traffic that passes through. In particular, we moni-
tor the network traffic received by a SCADA system. Our
proposed scheme is shown in Figure 1 and is implemented
in two main phases, namely Security Mechanisms Pool and
Combination.

Our solution’s security mechanism is implemented by the
Security Mechanism Pool. A data collection module contin-
uously collects the passing network traffic and provides the
collected data to the deployed security mechanisms. Each
considered security mechanism evaluates the current network
traffic behavior and generates a network traffic decision as
normal or intrusion. Our model considers that multiple se-
curity solutions can be used to achieve detection, such as
firewalls, behavior-based NIDS and signature-based NIDS.
The generated decisions are fed as input to the Combination
module.

The Combination module goal is to evaluate the decisions
generated by each security mechanism to reach a final deci-
sion. To achieve such a goal, we model the combination as
a dynamic classification selection task, dynamically adjusting
the tools for detection based on the current network traffic
behavior. As a result, our scheme can increase the system
accuracy even in the presence of new categories of network
attacks.

In the following subsections, we further describe our pro-
posed model, including how to implement it.

A. Security Mechanism Pool

Current techniques used in the literature often use a single
security mechanism to enhance the ICS security. For example,
authors often rely on a single behavior-based NIDS config-
uration to detect intrusion attempts, exposing their system
to highly motivated attackers who may evade the deployed
mechanism.

To address this shortcoming, our proposed model incorpo-
rates multiple security mechanisms. For example, we consider
a deployment with a firewall, a behavior-based NIDS, and a
signature-based NIDS (Security Mechanism Pool, Fig. 1). As
time progresses, each deployed security solution assesses the
OT network traffic. Each scheme generates a decision, which
is then utilized as input by our Combination module. This
module aims to proactively determine the most effective set
of tools for detecting the generated attack.
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Fig. 1: A reliable intrusion detection model for industrial
control systems.

B. Combination

The combination module’s objective is to evaluate the pre-
dictions made by deployed security mechanisms. In practical
terms, it selects the security mechanisms based on current
network traffic behavior. To accomplish this, we extract and
assess network traffic behavior using a dataset of previously
correctly classified events.

For each event in a given training dataset D, the module
extracts a set of network flow features to create a feature
vector x. This resulting vector, along with the prediction from
each security mechanism SMi, is evaluated. If SMi correctly
classifies the event, it is recorded in a reliable dataset named
Dcorrect. The dataset is used as a selection criterion for newly
evaluated events.

At deployment time, the behavior of the collected event is
extracted to compound a feature vector x. The module then
proceeds to find the top k events on the Dcorrect closest to
feature vector x, through the following equation:

argtop k
xi ∈ Dcorrect

√√√√ N∑
j=1

(xj − xj
i )

2 (1)

where k represents the number of neighboring events, and N
signifies the number of features. Consequently, our scheme
identifies the k events closest to the assessed event x through
an Euclidean distance. These identified events are aggregated
using a majority voting procedure to determine the event class.
Hence, our model can dynamically adapt the selection of
security mechanisms for event detection based on the current
network traffic behavior, thereby enhancing system accuracy
through this adjustment.

V. EVALUATION

This section evaluates the proposed reliable network-based
intrusion detection model in ICS. To achieve such a goal,
the following subsections outline the construction of the used
models in the evaluation and describe their performance in the
testbed.



TABLE I: Features set extracted at the network level for each
feature grouping in a time window interval of 15s.

Grouping Description

So
ur

ce
/
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Number of Packets
Number of Bytes

Minimum packet length
Maximum packet length
Average packet length

Packet length standard deviation
Minimum inter-arrival-time
Maximum inter-arrival-time
Average inter-arrival-time

Total Packet length

Fl
ow

Number of packets
Number of Bytes

Number of pushed packets
Active time

Maximum active time
Minimum active time

A. Prototype

We have deployed our proposal prototype in a distributed
environment. This setup includes a SCADA system using
ScadaBR v.1.0CE. The incoming OT network traffic can be
evaluated by three security tools, as follows: (i) firewall config-
ured through Sahu et al. [29] rules; (ii) behavior-based NIDS
implemented using various classifiers (see Section V-B) based
on the network flow features extracted using the FlowTBag
feature extractor [30] as listed in Table I; and a (iii) misuse-
based NIDS implemented through Snort with the snort3
community rules.

To simulate diverse OT-related network traffic, we used
well-known workload tools for Modbus, DNP3, OPC, and
web service protocols. Our Data Acquisition module, based
on SCAPY v.2.5.0, collected this traffic. Network features
were extracted using the FlowTBag feature extractor [30] in
15-second intervals. The Combination module (Eq. 1) was
implemented with the scikit-learn API using the Euclidean
distance API.

We deployed the prototype in a controlled testbed for
data collection, involving 100 client workload machines for
generating normal network traffic. We injected attacker-related
network traffic at irregular intervals towards the deployed
SCADA, utilizing 14 attacker machines for the generation of
each specific attack. This testbed operated for a total of 96
hours. During the testbed execution, we recorded outputs from
deployed security mechanisms.

We evaluate the performance of our model using the de-
ployed testbed. To achieve this goal, we consider a scenario
where new attacks are continually generated by creating three
datasets as follows: (Training) A dataset encompassing a total
of 5 attack categories and 40% of normal traffic; (Validation)
A dataset encompassing a total of 6 attack categories and 30%
of normal traffic; (Testing) A dataset encompassing a total of
11 attack categories and 30% of normal traffic;

The datasets were generated using the FlowTBag feature
extractor [30], summarizing communication in 15-second in-

TABLE II: Detection accuracy for each network traffic on our
testbed according to the detection approach.

Detection Accuracy (%)
Traditional

#
Behavior Fi

re
w

al
l

B
eh
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io

r
N

ID
S

M
is

us
e

N
ID

S

Our
Approach

1 XSS 40.5 50 90.9 48.0
2 Code Injection 50 95.6 95.6 99.0
3 Read Reg. 96.6 99.7 50 100
4 DOS Write Reg. 72.5 97.2 50 100
5 DOS Write Coils 88.2 50 50 100
6 Portscan 50 50 100 100
7 Write Single Coils 88.2 50 50 100
8 Advanced scan 44.9 50 98 99.9
9 Read Input Reg. 96.6 99.7 50 100
10 Scanner UID 44.3 50 50 100
11 SQL Injection 50 50 81.9 50.9
12 Read Coils 95.3 99.5 50 100
13 Scanner 52.6 50 100 50
14 Write Reg. 91.6 99.7 50 100

tervals. To address dataset imbalance, we applied random
undersampling without replacement. The data was then nor-
malized using minimum-maximum range scaling to values
between 0 and 1.

The selected techniques were evaluated with respect to their
True-Positive (TP), True-Negative (TN), and F1 scores by
considering the following classification performance metrics:

• True-Positive (TP): rate of intrusion samples correctly
classified as intrusion.

• True-Positive (TN): rate of normal samples correctly
classified as normal.

• False-Positive (FP): rate of normal samples incorrectly
classified as intrusion.

• False-Negative (FN): rate of intrusion samples incorrectly
classified as normal.

B. ICS Intrusion Detection

Our first experiment aims to investigate the detection per-
formance of the selected security mechanisms (Fig. 1, Security
Mechanism Pool). More specifically, we assess the detection
accuracy of the deployed security tools (described in Sec-
tion V-A) while detecting the generated 14 attack behaviors.
To accomplish this objective, the generated set of attacks
were evaluated by three security mechanisms as follows: (i)
Firewall configured using rules from Sahu et al. [29]; (ii)
Behavior-based NIDS employing a naive bayes classifier, with
network flow features extracted using the FlowTBag feature
extractor [30] (refer to Table I); (iii) Misuse-based NIDS
implemented with Snort utilizing the snort3 community rules.
The evaluation aims to thoroughly assess the performance of
the deployed security solutions in countering the generated set
of attacks.

Table II shows the detection accuracy of the deployed
security solutions concerning each generated attack (Behavior)
and the used security mechanism (Traditional). Generally, the
employed security solutions face challenges in achieving high
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Fig. 2: Detection performance of our proposed dynamic selec-
tion model with and without the classification assessment.

detection accuracy across multiple attacks. For instance, the
Firewall-based detection achieved TP rates exceeding 90% for
only 4 out of 14 generated attacks. Similarly, the misuse-based
and behavior-based NIDS respectively detected only 6 and 4
attacks with TP rates exceeding 90%. On average, the TP rates
for the used security solutions were approximately 66.7%,
70.8%, and 69.0% for Firewall, Behavior-based, and Misuse-
based NIDS, respectively. The results imply that attackers can
effectively evade the deployed security solutions by altering
their attack behavior. This is evident as most of the generated
attacks, which were not part of the behavior-based NIDS
training data and lack related Firewall rules or misuse-based
NIDS signatures, evade detection, leading to low TP rates. This
situation is exacerbated in ICS scenarios where attackers are
highly motivated to target critical systems. Current security
mechanisms fall short on achieving the required level of
detection reliability for ICS environments.

Our second experiment aims to assess how our proposed
model can enhance ICS security. We implement the combina-
tion module (Eq.1) to merge decisions from multiple security
mechanisms. During the experiments, we set k as 10 and
performed Euclidean distance computation using scikit-learn.
For each network event, we extract network flow features
(Table I) and apply our combination criteria to determine
the appropriate security solutions that should be used. Using
neighboring events, we employ a majority voting procedure to
trigger alerts for the network operator. The parameters were
empirically configured, with no significant variations observed
during testing

Figure 2 shows the Receiver Operating Characteristic (ROC)
curve of our proposed model on the evaluated dataset. It
is possible to observe that we achieved significantly high
detection accuracies, reaching an Area Under the Curve (AUC)
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Fig. 3: Sorted top detection accuracy for each selected intru-
sion detection technique.

value of 0.99. We further investigate how our proposed model
performs for the detection of different categories of attacks on
our deployed testbed.

Table II shows the accuracy performance of our model
for each evaluates attack type under the Our Approach list-
ing. Our proposed scheme significantly improve detection
accuracy when compared to traditional single-based security
mechanism techniques. As an example, considering a 90% TP
rate threshold, our proposed model is able to detect 11 out
of the 14 attacks. This result in a significant improvement
when compared to traditional approaches, which can only
reach the same level of reliability for 6 attack categories
in the best-case scenario (Table II, Misuse-based NIDS). In
practice, our proposed scheme was able to reach an average
detection accuracy of 89.1%, presenting an improvement of up
to 20% when compared to the traditional approaches (Table II,
Firewall). As a result, our proposed model is able to improve
the reliability of intrusion detection in ICS deployments.

We further explore the accuracy advantages of our model
in Figure 3. Our scheme achieves a minimum of 80% de-
tection accuracy for 13 out of the 14 evaluated attacks.
In contrast, traditional schemes achieve 80% accuracy for
only approximately 5 out of the 14 attacks. This highlights
substantial enhancements in detection reliability, promising
more dependable intrusion detection in ICS deployments. The
benefits brought by our solution is thanks to the application
of the proactive selection of the used security solution based
on the current network traffic behavior.

VI. CONCLUSION

In the literature, intrusion detection by means of a single
security strategy leaves the systems unprotected against highly
motivated attackers targeting ICS.



This paper proposes a new dynamic intrusion detection
model that includes a combination strategy to combine mul-
tiple security solutions. Our proposed model evaluates the
current network traffic behavior and proactively selects the
security mechanisms that should be used for effective and reli-
able intrusion detection. Experiments that have been conducted
on a novel dataset that includes 14 categories of attacks have
demonstrated the feasibility of our proposed model.

As future works, we plan on extending our solution to
evaluate the reliability of the decision. This includes alerting
the operator in the case that none of the security solutions in
place can classify the event being evaluated with a high level
of confidence.
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