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Abstract Machine Learning Operations (MLOps) are essential for the efficient man-
agement of the Machine Learning (ML) lifecycle, ensuring scalability, adaptability,
and operational performance across deployments. However, there is limited imple-
mentation of MLOps architectures specifically designed for stream learning scenar-
ios, which involve continuous data flows and frequent model updates. This paper
provides a comprehensive overview of existing MLOps architectures with a focus
on their support for streaming data processing, model versioning, and real-time up-
dates. Our analysis identifies critical gaps related to scalability, adaptability, and
efficient handling of frequent updates in dynamic stream learning environments.
We highlight the open gaps to pave the way for architectures that provide real-time
model versioning and update mechanisms to improve stream learning performance
across diverse application domains.
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1 Introduction

Machine Learning (ML) focuses on developing computational models capable of
learning and making predictions or decisions from historical data [32]. ML meth-
ods are primarily differentiated by their training paradigms. On the one hand, batch
learning approaches rely on static datasets, processing the entire volume of informa-
tion at once to obtain the models [35]. On the other hand, stream learning algorithms
rely on incremental methods to continuously update models by incorporating new
data as it arrives in a constant stream. This adaptability makes stream learning par-
ticularly well-suited for dynamic and real-time scenarios [1].

The effective application of ML models extends beyond training, encompassing
an iterative and interdisciplinary lifecycle that includes data collection, preprocess-
ing, model training, validation, deployment, performance monitoring, and periodic
updates to maintain predictive accuracy [9]. To address the complexities of manag-
ing this lifecycle, Machine Learning Operations (MLOps) has emerged as a collabo-
rative framework that combines DevOps principles with ML development. It stream-
lines workflows through automation and orchestration, facilitates model versioning,
promotes code standardization and reuse, and efficiently scales systems [26].

Over the past years, several frameworks have been proposed to support the devel-
opment of ML pipelines aligned with MLOps practices. While these architectures
effectively address the demands of traditional batch-oriented ML scenarios, where
data patterns remain static, they often fall short of meeting the requirements of
stream learning environments. This limitation arises because conventional MLOps
practices are not designed to accommodate incremental model updates or the real-
time deployment of updated models within very short timeframes [42].

Stream learning architectures impose unique demands, particularly during the
inference phase, which must handle high volumes of requests through parallel pro-
cessing techniques. While this requirement aligns with traditional MLOps appli-
cations, stream learning introduces the added complexity of frequently replacing
stored models in memory with updated versions. This challenge becomes signifi-
cant in scenarios with numerous endpoints (applications encapsulating the model)
or when model replacement occurs at a high frequency [38]. Notwithstanding. the
model versioning task is not easily achieved in stream learning environments, given
the requirement for real-time loading and serialization to ensure the timely avail-
ability of updated models on endpoints. This situation requires that the versioning
module can efficiently manage the substantial volume of versions generated by fre-
quent updates [44].

In practice, conducting model updates in stream learning is the most challeng-
ing task in MLOps [39]. Unlike traditional MLOps, where updates are performed
using batch or mini-batch approaches, stream learning necessitates frequent, ideally
incremental, updates. However, implementing incremental updates in production
environments presents significant obstacles, as each update requires endpoints to
reload the updated model into memory. This process is resource-intensive and can
often lead to interruptions to the inference service [20]. Given these complexities,
real-time model update solutions tailored for stream learning within the MLOps
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framework are often overlooked. Traditional approaches, such as those relying on
periodic batch updates or concept drift detection, are often employed but may com-
promise the system’s accuracy. This is because, by the time an updated model is
deployed, it may already be misaligned with current data distributions, undermin-
ing its effectiveness due to the inherent delay in generating and deploying the new
model [1].

In light of this, this paper addresses these challenges by reviewing the current
architectures available in both the commercial use and the research literature for
implementing stream learning in alignment with MLOps practices. Beyond detail-
ing the characteristics of these architectures, we examine their suitability for stream
learning scenarios, emphasizing their limitations and gaps. The goal is to offer a
comprehensive analysis of the difficulties and challenges in deploying systems that
demand frequent and near-real-time updates, thereby contributing to the develop-
ment of solutions that fulfill the requirements of stream learning environments while
maintaining scalability, efficiency, and predictive accuracy.

2 Preliminaries

2.1 MLOps

Machine Learning Operations (MLOps) is an approach designed to streamline the
development, deployment, monitoring, and management of ML systems in produc-
tion environments. It represents an extension of DevOps (Development and Opera-
tions), adapted specifically to address the requirements of the ML model lifecycle.
The primary goal of MLOps is to ensure the successful deployment of ML models
into production while maintaining their predictive performance and reliability over
time [26].

To achieve such a goal, MLOps combines a set of practices and tools specifi-
cally designed to address the unique lifecycle needs of ML models, ensuring that
these systems remain robust, reliable, and efficient throughout their operational life.
Among these tasks, continuous monitoring allows for the proactive detection of
performance issues or concept drift [33]. Similarly, the model versioning enhances
traceability by allowing teams to monitor changes over time and providing the abil-
ity to revert to previous versions when necessary. This approach not only boosts
operational efficiency but also strengthens security and ensures compliance with
regulatory standards. [23].

Deploying models into production is one of the most critical steps in MLOps, as
it involves making ML models available for user inference. Deployment can take
various forms, such as through web services (containerized applications), local ap-
plications hosted on on-premise servers, or even on IoT devices via edge comput-
ing [21, 16]. However, successful deployment alone is not sufficient—continuous
monitoring is essential to ensure sustained performance and the early detection of



4 Miguel G. Rodrigues et al.

any deviations in data patterns or model behavior. Consequently, MLOps empha-
sizes periodic model updates and retraining based on insights and data obtained
from monitoring models in production [33].

2.2 Stream Learning

In a stream learning environment, data is made available in a continuous and po-
tentially infinite stream, transmitted at very high speeds. In such scenarios, data is
typically accessed only once or retained for a brief period. Consequently, each step
of the stream learning process (also known as online learning or ML stream) must be
quick and computationally efficient, ensuring minimal resource consumption [10].

One of the primary challenges in stream learning is the continuous change of
concepts within the data. Unlike traditional ML scenarios, where model creation and
updates rely on static historical data, stream learning operates in a highly dynamic
environment. Data patterns shift in response to environmental changes, leading to al-
terations in data distributions—a phenomenon known as concept drift. Such changes
can significantly affect the predictive performance of deployed models. Therefore,
frequent model updates are crucial in a stream learning context, with incremental
updates being the ideal approach to ensure adaptability while minimizing computa-
tional overhead [18].

3 MLOps Architectures

This section examines the main MLOps architectures currently available, covering
both commercial solutions and open-source approaches discussed in the scientific
literature. In particular, we focus on the challenges such as supporting incremental
updates, ensuring efficient versioning in high model turnover environments, and
facilitating real-time integration.

3.1 Commercial Solutions

Commercial MLOps solutions are platforms developed by leading technology com-
panies such as Amazon, Google, Microsoft, and Databricks, designed to streamline
the operationalization of ML models. The following provides an overview of these
platforms, along with a concise analysis of their capabilities and limitations in sup-
porting stream learning environments.

Amazon SageMaker is a managed platform designed to streamline the develop-
ment, training, deployment, and monitoring of ML models, offering tools for au-
tomating pipelines and seamless integration with other AWS services. Although
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SageMaker excels in traditional ML scenarios, it faces limitations in stream learn-
ing environments, particularly due to its lack of native support for continuous in-
cremental updates and efficient model management under high-frequency update
requirements. While adapting SageMaker for real-time streams is feasible through
the integration of other AWS continuous integration services, this approach often
demands significant additional effort, complicating the implementation of pipelines
in stream learning environments.

Azure Machine Learning, Microsoft’s platform for developing, training, deploy-
ing, and monitoring ML models, provides advanced features such as managed
pipelines, traceable experimentation, and automated ML (AutoML), along with
seamless integration with other Azure services. While robust for traditional ML sce-
narios, the platform exhibits notable limitations in stream learning environments. It
lacks native support for continuous incremental model updates, relying instead on
periodic retraining pipelines that require manual configuration, which is inefficient
for high-frequency update demands. Additionally, its management and versioning
capabilities for multiple models in continuous data streams are not optimized, pos-
ing challenges for effective application in stream learning scenarios.

Databricks, a commercial platform for managing the ML model lifecycle, pro-
vides robust tools for experimentation, traceability, versioning, and pipeline automa-
tion. It excels in traditional ML scenarios, particularly for executing large-scale
pipelines and integrating seamlessly with frameworks like TensorFlow [19], Py-
Torch [36] and Scikit-learn [34]. However, in stream learning environments, the
platform reveals certain limitations. While it supports periodic model updates, it
lacks native functionality for continuous incremental updates, which are critical in
dynamic data scenarios. Additionally, its management of multiple models generated
in these environments is not fully optimized, posing challenges for efficient version-
ing and organization in high-turnover scenarios.

Vertex AI, offered by Google Cloud Platform, is a comprehensive solution for
developing, training, and deploying ML models, featuring tools such as AutoML
and seamless integration with other Google Cloud services. Its capabilities include
managing large-scale data and automating ML workflows, making it a strong con-
tender in traditional ML scenarios. However, Vertex AI falls short in stream learning
contexts, as it does not natively support continuous incremental model updates. Al-
though real-time data processing can be achieved through integration with other
tools, this requires additional setup and configuration. Furthermore, the platform’s
model management is not optimized for environments with high update frequencies,
which can hinder operational efficiency in dynamic stream learning applications.

3.2 Open Source Architectures

Open source MLOps solutions such as MLFlow [30], Airflow [40], Kubeflow [41],
and TFX [12] have gained widespread adoption due to their flexibility, adaptability,
and strong community support. These platforms provide a broad range of function-
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alities tailored to the needs of the ML lifecycle, including experimentation tracking,
pipeline orchestration, and deployment management. However, their effectiveness
in stream learning scenarios is limited, as they lack native support for incremen-
tal updates, efficient versioning for high-frequency model updates, and optimized
real-time integration. Below, we summarize their key features and limitations in
addressing the demands of stream learning environments.

Apache Airflow is a widely adopted open-source workflow orchestration tool,
particularly effective for managing data pipelines and ML workflows. Its Directed
Acyclic Graph (DAG)-based architecture facilitates the coordination of tasks such
as data collection, transformation, and analysis, making it well-suited for traditional
ML processes. However, in stream learning scenarios, Airflow encounters signifi-
cant limitations. It does not natively support continuous incremental updates or the
rapid adaptation required for real-time data streams. Additionally, the static nature
of its DAGs complicates automatic adjustments to frequent changes, reducing its
efficiency in dynamic environments where high adaptability is crucial.

Kubeflow is an open-source platform designed for orchestrating and manag-
ing ML workflows within Kubernetes environments, featuring capabilities such as
pipeline automation, monitoring, and model versioning. Although its model man-
agement tools are robust, they are not optimized for the intensive versioning de-
mands arising from real-time updates. Furthermore, the platform lacks native sup-
port for continuous update processes, which restricts its effectiveness in scenarios
that require seamless integration of continuous learning workflows.

MLflow is an open-source platform designed to streamline the ML lifecycle by
offering tools for the development, tracking, management, and deployment of ML
models. Its focus on experiment traceability, reproducibility, and continuous inte-
gration makes it a popular choice among ML practitioners. Key features include
model versioning, which facilitates the organized storage and recording of hyperpa-
rameters, metrics, and execution artifacts. However, despite its versatility, MLflow
lacks native support for the specific demands of online or incremental model up-
dates, a critical requirement in stream learning scenarios where models must adapt
continuously to evolving data streams.

3.3 Scientific Literature

A comprehensive literature review was conducted to identify MLOps architectures
applicable to stream learning scenarios. The review focused on understanding how
these architectures address the unique challenges of stream learning environments,
including the need for continuous model updates, efficient versioning, practical ap-
plicability, and the specific components and tools that constitute them.

Several architectures identified in our research incorporate specialized stream
learning tools or frameworks. One example is StreamDM, introduced by Albert
Bifet et al.[13]. It is an open-source library built on top of Spark Streaming[6] and
developed in Scala at Huawei Noah’s Ark Lab. Designed for both academic and
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practical applications, StreamDM leverages the Hadoop open-source ecosystem [2]
to enable distributed data processing. Despite its advantages, such as distributed
computation, StreamDM processes data using mini-batches, which can introduce
latency of several seconds, thereby limiting its real-world applicability.

Another library in the context of stream learning is SOLMA, introduced by W.
Jamil et al.[22]. SOLMA is built upon the Apache Flink ecosystem[7], leverag-
ing distributed data processing resources to ensure scalability and fault tolerance. It
supports real-time inference and parallelism during model updates, which enhances
its operational capabilities. However, SOLMA has significant limitations: it does
not support incremental model updates, has high configuration complexity, and of-
fers limited algorithm availability. These factors make its practical application more
challenging, particularly in dynamic or resource-constrained environments.

Following this concept, Donna Xu et al.[43] propose an architecture designed to
provide real-time analysis services. In their approach, models are initially trained
in batches but can be continuously updated through incoming data streams using
the concept of mini-batches. The architecture leverages a microservices-based de-
sign, which provides scalability and system flexibility. Additionally, it enables the
integration of powerful frameworks such as Apache Spark [5] and the MLlib li-
brary [8], among others. This design emphasizes modularity and adaptability, al-
lowing the system to efficiently process streaming data while maintaining real-time
model updates.

Several studies also present ML management platforms that offer resources for
deploying models for real-time inference, though with model updates restricted to
batch learning. One such example is the Looper tool, introduced by Igor L. Markov
et al. [28]. Looper is a comprehensive platform for managing the ML model lifecy-
cle, designed to support all stages of the ML pipeline for decision-making in soft-
ware products. Looper provides automation capabilities, allowing repetitive tasks
to be streamlined, which saves time and resources and enhances the user experi-
ence. While Looper enables real-time inference, it relies solely on batch learning
for model updates, limiting its ability to support continuous or incremental model
adaptation in real-time streaming scenarios.

Architectures dedicated to specific use cases for implementing stream learning
were also identified, such as Lambda Learner, developed by Rohan Ramanath et
al. [37]. It is specifically designed to predict the click-through rate on advertise-
ments for a well-known business social network. It combines batch processing (of-
fline learning) to build a robust initial model with updates using mini-batches for
real-time adaptation. Lambda Learner employs a lambda architecture, dividing the
learning process into two components: a fast component that updates the model with
new data in real-time, and a slow component that periodically retrains the entire
model to ensure long-term performance and quality. However, the system is tailored
to this specific use case and does not provide a generalized platform suitable for
broader or alternative stream learning scenarios.

Another architecture designed only to a specific application is the Scalable Real-
time Fraud Finder (SCARFF), introduced by Fabrizio Carcillo et al. [14]. SCARFF
is an open-source platform designed for processing and analyzing credit card trans-
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action data, with the primary goal of delivering reliable fraud alerts in near real-
time. The system integrates ML with Big Data tools, enabling efficient analysis and
scalability. SCARFF employs sliding window techniques (mini-batches) for model
updates, allowing it to adapt to new patterns in transaction data. While this method
enhances its scalability by supporting horizontal scaling through distributed pro-
cessing, SCARFF’s use is limited by its design. The architecture is highly special-
ized for fraud detection in credit card transactions, and its structure lacks the flexi-
bility for other use cases. Consequently, its application remains exclusive and highly
restrictive due to these constraints.

The Big Data Engine architecture, presented by Mikołaj Komisarek et al.[24],
integrates several backend tools, including Apache Spark, Apache Kafka[4], Elas-
ticsearch [15], and HDFS [3]. Designed specifically for detecting network activities
and patterns indicative of malicious or suspicious behaviors, such as cyberattacks,
the Big Data Engine supports both batch and real-time processing of network data.
This enables the immediate detection of anomalies. However, model updates rely on
the use of mini-batches, which may limit real-time adaptability in rapidly changing
environments.

Another module-based framework is STREAMER, introduced by Sandra Gar-
cia Rodriguez et al. [17]. STREAMER is a stream processing system designed to
run on any operating system while supporting the integration of ML algorithms
written in various programming languages. Similar to other frameworks previously
discussed, STREAMER relies on third-party tools for its underlying functionality.
One of its main limitations is the lack of support for incremental model updates.
This is because model updates can only be performed through mini-batches of data
or by processing the entire previously stored dataset, which limits its ability to adapt
efficiently to real-time changes in streaming data.

Tools that use the low-code approach (allowing the creation of applications with
little or no programming) were also found, such as the ClowdFlows platform pre-
sented by Janez Kranjc et al. [25]. It runs as a Web application and supports data
mining through a graphical interface that has as its main component for creating
workflows a processing unit called a widget. Although it was initially designed to
work only with batch processing, special daemons were implemented that execute
workflows at a fixed time interval, which makes it possible to perform inferences
using a data flow; however, training continues to be performed offline.

Kafka-ML, introduced by Cristian Martı́n et al. [29], is an open-source frame-
work designed for managing ML pipelines using data streams. It supports popu-
lar ML frameworks such as TensorFlow and PyTorch, enabling compatibility with
widely used ML models. Kafka-ML offers a user-friendly web interface and runs all
its components as Docker containers, which enhances portability and allows seam-
less orchestration and monitoring via Kubernetes [27]. While Kafka-ML provides
real-time inference capabilities using streaming data, its model training process does
not support incremental updates. Instead, training is performed in batches, which
may limit its adaptability in highly dynamic stream learning scenarios.

StreamMLOps, presented by Mariam Barry et al.[11], represents an online learn-
ing architecture geared toward the continuous deployment and learning of ML mod-
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Table 1: Summary of architectures and their characteristics.

Source Architecture Generic
Application

Incremental
Update

Mini-Batch
Update

Batch
Update

Model
Versioning

O
pe

n

TensorFlow Ext. ✓ × ✓ ✓ ✓
Airflow ✓ × × × ×

KubeFlow ✓ × × × ×
MLFlow ✓ × ✓ ✓ ✓

Pr
iv

at
e Databricks ✓ × × × ✓

Amazon SageMaker ✓ × × × ✓
Vertex AI ✓ × × × ✓

Azure ML ✓ × × × ✓

R
es

ea
rc

h

StreamDM ✓ × ✓ × ×
SOLMA ✓ × ✓ × ×

Donna Xu et al. ✓ × ✓ × ×
Looper × × × ✓ ×

MLPacker ✓ × × × ×
Lambda Learner × × ✓ × ×

SCARFF × × × × ✓
Big Data Engine × × × × ✓

Spring XD ✓ × ✓ × ×
STREAMER ✓ × ✓ × ✓
ClowdFlows × × × × ✓

Kafka-ML ✓ × ✓ × ✓
Clipper ✓ × ✓ × ×
Striim ✓ × ✓ × ×

StreamMLOps × ✓ × × ✓
StreamAI ✓ ✓ × × ✓

els in real-time applications. StreamMLOps incorporates a variety of open-source
tools, including Apache Kafka, Apache Flink, MLFlow, and River[31], to provide a
flexible and extensible solution. While the architecture is broadly applicable across
domains, its adaptation for specialized applications may require fine-tuning.

4 Open challenges

Table 1 presents a summary of the MLOps approaches discussed in this paper, high-
lighting their deployment characteristics in production environments, including sup-
port for continuous updates, generic applicability, and model versioning systems.
These features are essential for assessing the ability of existing solutions to meet the
specific requirements of stream learning, particularly in scenarios demanding high
predictive performance and rapid adaptability. Additionally, the analysis identifies
gaps that need to be addressed by future research and development efforts.

When evaluating the presented architectures, it is observed that only a subset of
the analyzed solutions supports real-time data streams, which indicates a significant
limitation in their scope of application. Support for continuous updates is similarly
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limited, with few approaches implementing it, often without optimizations for sce-
narios with high-frequency changes. Furthermore, the limited domain applicability
of these solutions restricts their adoption in broader contexts, such as heterogeneous
and general-purpose environments. On the other hand, some approaches demon-
strate greater flexibility and adaptability, making them more suitable for varied and
dynamic scenarios.

Although versioning systems are present in several solutions, most were not de-
signed to handle the high turnover and large volume of updates typical of stream
learning environments. The lack of scalability in these systems underscores the
need for technical advancements to enable efficient real-time version management
without compromising operational flow performance. This challenge represents an
opportunity for innovation, aiming to create more robust solutions that meet the
requirements of modern systems.

5 Conclusion

Despite advances in MLOps, significant challenges remain to address the demands
of stream learning systems. One key challenge is the integration of streaming ar-
chitectures with scalable and efficient versioning systems, enabling the handling of
high update frequencies and frequent model turnover in production. Furthermore,
the limited support for continuous updates in dynamic data streams highlights a
critical gap in current solutions, reducing flexibility and adaptability.

Future research should focus on developing more robust, scalable, and adaptable
solutions capable of addressing the challenges inherent in stream learning environ-
ments.
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