A MLOps Architecture for Near Real-time
Distributed Stream Learning Operation Deployment

Miguel G. Rodrigues*, Eduardo K. Viegas®, Altair O. Santin*, Fabricio Enembreck*®
* Pontificia Universidade Catolica do Parana (PUCPR)
Graduate Program in Computer Science (PPGla), Brazil
{miguel.rodrigues, eduardo.viegas, santin, fabricio.enembreck } @ppgia.pucpr.br

Abstract—Traditional architectures for implementing Machine
Learning Operations (MLOps) usually struggle to cope with
the demands of Stream Learning (SL) environments, where
deployed models must be incrementally updated at scale and
in near real-time to handle a constantly evolving data stream.
This paper proposes a new distributed architecture adapted for
deploying and updating SL. models under the MLOps framework,
implemented twofold. First, we structure the core components
as microservices deployed on a container orchestration environ-
ment, ensuring low computational overhead and high scalability.
Second, we propose a periodic model versioning strategy that
facilitates seamless updates of SL models without degrading
system accuracy. By leveraging the inherent characteristics of SL
algorithms, we trigger the model versioning task only when their
decision boundaries undergo significant adjustments. This allows
our architecture to support scalable inference while handling
incremental SL updates, enabling high throughput and model
accuracy in production settings. Experiments conducted on a
proposal’s prototype implemented as a distributed microservice
architecture on Kubernetes attested to our scheme’s feasibility.
Our architecture can scale inference throughput as needed,
delivering updated SL models in less than 2.5 seconds, supporting
up to 8 inference endpoints while maintaining accuracy similar
to traditional single-endpoint setups.

Index Terms—MLOps, Stream Learning, Kubernetes, Mi-
croservices.

I. INTRODUCTION

HE Machine Learning (ML) is a branch of Artificial

Intelligence (Al) that enables computing systems to learn
from data without explicit programming [1]. The applica-
tions of ML range from process automation and chatbots
to supply chain optimization, targeted marketing, cybersecu-
rity, and autonomous vehicles. It involves creating models
that identify and generalize patterns in data to predict new,
unseen inputs [2]. Supervised learning, the most common
ML application, builds models on labeled datasets to solve
classification or regression problems, where the goal is to
categorize data or predict continuous values [3]. Building
and deploying ML models typically involves several steps.
These include data collection, preprocessing, model training,
validation, deployment, performance monitoring, and updates
to maintain accuracy.

Production management of a ML model, referred to as
Machine Learning Operations (MLOps), is an iterative task in-
volving multiple disciplines that require adequately managing
the processes involved [4]. It is a collaborative approach that
streamlines the development task by automating workflows,

managing model versions, standardizing code, and ensuring
scalability, ultimately improving security and compliance in
production environments [5]. In this context, a critical MLOps
phase is model deployment, called inference, where trained
models predict new data, often remotely accessed by multiple
users at scale, as in credit card fraud detection and recommen-
dation systems [6]. To support such requirements, distributed
architectures are built using tools such as MLflow [7] for
tracking and versioning, AWS SageMaker [8], and Google
Cloud AI Platform [9] for providing ML frameworks, and
technologies such as microservices and containerization for
adaptive system design [10].

A typical MLOps framework must implement four key
components, namely inference, model update, versioning, and
monitoring modules. The inference module loads ML models,
handles queries, performs predictions, and returns results.
The model update module manages retraining. It uses la-
beled events at scheduled intervals to ensure the deployed
model remains current and reliable. The versioning module
stores model versions generated during training and retraining,
making them available to inference modules when needed.
Finally, the monitoring module evaluates the performance
of the deployed model in production, comparing it to new
versions and allowing it to be replaced if an improved version
is identified [5].

Current MLOps architectures generally meet the needs
of traditional ML scenarios where data patterns evolve in-
crementally. However, traditional MLOps practices may fall
short in Stream Learning (SL) environments, as they are not
designed to handle incremental updates or to deliver updated
models in very short time frames. SL refers to ML algorithms
that continuously update models with incoming data streams
without having to perform multiple passes over the data [11].
These data streams often come from various sources and are
characterized by unbounded size, high and variable arrival
rates, changing data patterns, and memory constraints during
processing [12]. These characteristics present challenges that
may not be adequately addressed by traditional MLOps. In
a SL-enabled architecture, the inference process must handle
many requests and often relies on parallelism techniques to
manage extensive data flows [13]. While similar to traditional
MLOps systems, a SL architecture uniquely requires con-
stantly replacing models in memory with the latest versions,
posing significant challenges, particularly when the number of
endpoints or the model replacement rate is high [14].

Frequent model versioning in SL is challenging because
loading new model versions to the endpoints and serializing
those versions must be done quickly [15]. The versioning
engine must also be able to efficiently manage the large
number of model versions generated by these frequent updates.
In contrast to traditional MLOps, where updates are typically
performed in batches or mini-batches, model updates in SL
environments need to be incremental and continuous. Ensuring
the model remains available to inference endpoints is not
easily achieved when their parameters are updated with each
new event. This is because endpoints require significant time
and computational resources to deserialize the updated model
before inference can proceed, which can disrupt the inference
service [16].

Surprisingly, there is a lack of research on developing
new SL-oriented architectures that address the challenges
of near real-time model updates within the MLOps frame-
work [5], [17]. Distributed MLOps architectures for SL face
the challenge of performing model updates in near real-
time, ensuring that new events are efficiently incorporated
into the model without disrupting inference performance. This
requires continuous, incremental model updates with minimal
latency while maintaining the overall system’s responsiveness
and scalability across distributed infrastructure [18]. Current
literature generally focuses on scaling either model updates or
inference, often overlooking their integration within an MLOps
framework [19]. This becomes particularly challenging when
model versioning is introduced, as frequent model updates
typically halt inference to perform model deserialization. As
a result, the impact of continuous model updates on the sys-
tem’s predictive performance over time is often only partially
addressed or overlooked in existing studies [20], [21]. Most
approaches rely on traditional MLOps update procedures that
perform periodic batch-oriented updates, which can ultimately
result in performance degradation [22]. Other approaches
use concept drift detection strategies, triggering updates only
after data pattern changes or model performance declines are
detected [23]. Thus, these methods often render the updated
model obsolete upon deployment and typically require con-
tinuous expert supervision. As a result, MLOps adoption for
SL tasks in production environments has been hindered by the
scarcity of literature and the absence of tools and procedures
that support continuous inference and model updates on data
streams.

Contribution. Our work paves the way for a scalable archi-
tecture for deploying SL models in production environments
under the MLOps framework. The goal of the proposed
scheme is to incrementally update the SL models and make
them available with a configurable frequency while simul-
taneously handling the inference requests of the users at
scale in a decentralized manner. The implementation of our
proposed architecture is twofold. First, its core components
are implemented as microservices in a container orchestration
environment. This allows for low computational cost, high
portability, and adaptability. Second, a dynamic model version-
ing approach is introduced. This enables new SL models to
be made available to inference endpoints without affecting the
accuracy performance of the system. Our approach leverages

the inherent characteristics of SL algorithms by triggering the
model versioning task only when significant adjustments occur
in their decision boundaries. As a result, our scheme enables
horizontal scaling of the inference module and supports SL
incremental updates and versioning through incoming data
flows. Each component of the architecture is designed to
provide a high inference throughput without compromising
the accuracy of the resulting model.

In summary, the main contributions of the paper are as
follows:

e A new distributed architecture that enables SL-oriented
MLOps deployment at scale. Our proposed scheme offers
a configurable deployment frequency for new models to
inference endpoints without affecting the overall accuracy
and inference throughput performance;

o A proposal prototype implemented as microservices run-
ning on a container orchestration environment. Our ar-
chitecture can scale the inference throughput as needed,
delivering updated SL models in less than 2.5 seconds,
supporting up to 8 inference endpoints, while maintaining
an accuracy similar to that of traditional single endpoint
setups

Roadmap. The remainder of this paper is organized as fol-
lows. Section II describes the fundamentals behind SL and
MLOps. Section III overviews the related works on MLOps
implementation. Section IV describes our proposed solution,
Section V introduces our prototype, and Section VI evaluates
its performance. Finally, Section VII concludes our work.

II. PRELIMINARIES

Deployment of SL techniques in production environments
has increased substantially in recent years. This section covers
the fundamentals of SL, followed by an overview of MLOps
operations for SL-oriented systems. Finally, we review the
challenges traditional MLOps implementations typically face
in SL environments.

A. Stream Learning (SL)

In contrast to traditional batch-oriented ML, where models
are static and built using often immutable historical data,
SL involves data that is constantly changing its patterns in
response to changes in the environment [23]. In a streaming
environment, data is generated in a continuous, ordered flow
that is potentially infinite and is transmitted at high speed, with
examples arriving as a stream of data S.

Let ; € X be an event, where x; € RP denotes a
D-dimensional feature vector input for the i*" event. The
goal of the SL system is to continuously update a classifier
function f(z) : * — y that outputs the predicted class y for a
given input feature vector z. Here, the SL classifier function
is usually updated incrementally such that it minimizes the
resulting model’s error rate. In practice, individual events must
make model updates without access to past events.

This is because the data in these scenarios can only be
accessed once or retained for a short time, so each step of
SL must be performed quickly and resource-efficiently [24].
Since SL models update with each new training instance, they

e

Dataset 3

0|~
O
Trainin, © »__Update

@ Next Samle

Dataset m

(a) Prequential

(b) Holdout

(c) Delayed

Fig. 1: Evaluation approaches for stream learning classifiers. Prequential evaluation tests each incoming sample before using it
for training. Holdout evaluation periodically tests the model on a fixed subset of data not used for training. Delayed evaluation
tests each incoming sample and uses them for updates after a specified delay.

naturally adapt to changing data concepts. In this case, for
detecting abrupt concept shifts, a concept drift detector may
be necessary for faster adaptation. Unlike traditional batch-
oriented schemes, SL models are generally better suited to
adapt to these inherent changes in data flows [25].

Balancing the retention of prior knowledge while adapting
to new concepts during incremental SL model updates is
a challenging task [26]. This challenge arises because the
decision boundaries of SL classifiers are continuously updated
to accommodate new events. A widely adopted approach in the
design of SL-oriented classifiers is incorporating a grace pe-
riod parameter to tackle this issue. This parameter ensures that
significant adjustments to the classifier’s decision boundaries
occur only after processing sufficient events for incremental
training. For instance, the Hoeffding Tree classifier [27] splits
a leaf node only after it has observed a predefined number
of events, as specified by the grace period parameter. As
a result, although incremental model updates are conducted,
the decision boundaries of SL classifiers are usually only
substantially affected according to the previously defined grace
period parameter.

Evaluating a SL classifier is inherently challenging due to
data streams’ continuous and evolving nature [28]. Researchers
typically adopt one of three main approaches for evaluation,
namely prequential, holdout, or delayed, as shown in Figure 1.
Prequential evaluation involves testing each incoming sample
before using it for training, enabling real-time performance
assessment but requiring careful handling to avoid bias in
evolving data distributions. On the other hand, holdout eval-
uation relies on periodically testing the model against a fixed
subset of data not used for training, providing a stable refer-
ence for comparison but potentially overlooking concept drift
in the stream. Lastly, delayed evaluation assesses the model’s
performance on a batch of data after it has been trained
on earlier samples, introducing a controlled delay to account
for temporal dependencies while balancing computational and
memory constraints. Each approach offers distinct advantages
and trade-offs, making the evaluation method important for
ensuring accurate and meaningful performance assessments in
SL.

Managing the life-cycle of a SL model is more complex
than that of a traditional ML model, as online systems need
to handle continuous data ingestion while at the same time
ensuring near real-time model update and inference, usually
in a distributed setting [11]. As a result, despite the increased
efficiency in various applications, implementing SL in pro-
duction environments remains a significant challenge for ML

professionals [29]. These challenges make SL more suitable
for academic environments, where the scenarios can be more
easily controlled, and the delay in inference is less critical than
that observed in commercial environments. This situation often
leads companies to rely on near-real-time learning in streaming
scenarios to partially mitigate the obstacles associated with
SL [30].

B. Machine Learning Operations (MLOps)

MLOps is a practice designed to optimize the develop-
ment, deployment, monitoring, and ongoing management of
ML-based systems in production environments. It extends
the principles of Development and Operations (DevOps) to
address the unique challenges of the ML model life-cycle,
ensuring that they are successfully deployed and maintained
in production while efficiently updating them as new data
arrives [5]. This approach combines provision, monitoring,
and update processes to maintain model performance and
proactively address concept drift by integrating practices and
tools tailored to the ML life-cycle.

The MLOps operation is typically carried out through the
following phases:

e Provision. It involves deploying the trained ML model
into production, ensuring it has the resources and infras-
tructure to be queried by multiple users at scale. This
is typically achieved by deploying multiple endpoints as
web services in a distributed environment that executes
the inference phase in parallel to handle user requests;

¢ Monitoring. It continuously tracks the model’s perfor-
mance and detects concept drift or accuracy degradation
issues. It is used to ensure that the deployed model
maintains the expected accuracy despite possible changes
in the behavior of the deployed environment;

o Update. It modifies or retrains the deployed model based
on new environment data or changing requirements to
maintain system accuracy. On a traditional ML setting
process, it is usually triggered periodically based on the
conditions identified by the monitoring module;

o Versioning. It manages the model’s different iterations,
including keeping track of parameter changes and facil-
itating possible rollbacks. It aims to allow for possible
iterations across the different stages of deployment;

Meeting the requirements of the operational phase at scale is
a challenging task that often requires multiple frameworks that
can operate in a distributed environment. These include tools
such as AirFlow [31], Kubeflow [32], and Seldon [33], which

provide orchestration and automation across the ML life-cycle,
while others such as MLflow [7] to focus on specific phases
such as experiment tracking and model versioning.

Given the diverse requirements of MLOps, service providers
are also implementing platforms such as AWS SageMaker,
Azure Machine Learning [34], and Google Cloud Al Platform,
which offer integrated solutions to manage the entire MLOps
life-cycle. Implementing MLOps is necessary to ensure the
proper scaling and maintenance of ML systems in production,
reduce errors, save time, and improve governance by ensuring
that these systems are effectively meeting the organization’s
needs.

C. When Stream Learning Meets MLOps

Given the increasing use of SL techniques in recent years,
several tools have been proposed for deploying designed
models in production. For example, Massive Online Analysis
(MOA) [35] provides a framework for the implementation
of algorithms and the execution of experiments on evolving
data streams. Similarly, SAMOA [36] aims to extend MOA’s
capabilities for mining large data streams through a dis-
tributed architecture. It supports classification, clustering, and
regression [2], and is mainly used in academic environments,
although it can be interfaced with tools like Apache Storm [37]
and Apache Samza [38].

In commercial environments, frameworks such as Scikit-
multiflow [39], Creme [40], and River [41] are gaining pop-
ularity. Scikit-multifiow offers a streaming version of Scikit-
learn [42], while Creme is known for its simplicity, and River
combines both strengths by offering a wide range of SL
algorithms. Unfortunately, while they allow for incremental
updates, they typically do not cover the entire SL lifecycle,
especially when scalability is required, which demands the
utilization of additional tools for full production deployment.

Implementing MLOps for SL algorithms presents many
challenges that current tools struggle to address. The SL
provision requires near real-time model access, which makes
it difficult to dynamically allocate resources while maintaining
low latency, especially when provisioning must occur for
each new event. Frequent deserialization of updated models is
particularly challenging in near real-time, as the classification
task can only be performed after the updated model version
has been adequately parsed. Additionally, relying on concept
drift detection to trigger model updates introduces further
complexity, as the drift detection algorithm must be carefully
tuned to the specific dataset and deployment environment,
adding a layer of dependency and making the process less
adaptable to varying conditions.

The need for continuous model updates triggered for each
new event to adapt to evolving data further complicates the
deployment task. Each update requires model serialization,
versioning, and deserialization within the deployment mod-
ules. In addition, managing multiple versions of a model in
a streaming context is complex due to the constant flow of
data, and ensuring seamless versioning and reproducibility can
lead to an unreliable infrastructure as each new event can
potentially change the model. In this context, the near real-

time demands of SL algorithms are typically not addressed by
current MLOps architectures.

III. RELATED WORKS

Developing new architectures for MLOps operations has
been a widely studied topic in the literature over the past years.
However, SL-oriented MLOps architectures are still in their
infancy. For example, StreamDM [19] enables distributed data
processing for SL tasks, but its near real-time effectiveness is
limited because it relies on mini-batches, which introduces
latency. SOLMA [43], a component of the Apache Flink
ecosystem [44], provides scalability, fault tolerance, and paral-
lel processing support but lacks model versioning capabilities
despite enabling near real-time inference. A microservices-
based architecture for real-time analytics, where models are
trained in batches and updated in mini-batches, is proposed
by Donna Xu et al. [45]. This architecture is implemented
on Apache Spark [46] and the MLIib library [47] to support
parallel processing and ensure scale performance. However,
SL-oriented model updates are neglected. Similarly, Igor L.
Markov’s et al. [22] streamlines the ML life-cycle but limits
model updates to batch processing, a feature that may not be
suitable for all SL applications.

Typically, proposed MLOps architectures are targeted at
specific use cases, limiting their broad adoption. As an ex-
ample, a packaging and deployment mechanism for analytic
pipelines has been proposed by Raidl Mifién et al. [48]
for streaming pipelines. It supports distributed deployment
through dockers and is decoupled from the training phase
to avoid integrating experiment code into operational de-
ployments [49]. Unfortunately, although it supports streaming
model inference, it fails to address near real-time model
updates. Similarly, Rohan Ramanath er al. [50] predict ad
click rates by combining batch processing with mini-batch
learning while adapting to data variations over time using a
lambda architecture. Their approach performs online training
with mini-batches and requires code adaptations for other use
cases. Fabrizio Carcillo et al. [51] integrated several Big Data
tools with ML to provide near real-time credit card fraud
detection using random forests and sliding windows for model
updates. Its structure cannot be easily customized, and its
applicability is limited to specific scenarios. Similarly, Janez
Kranjc et al. [52] presented a web application that supports
data mining workflows through a graphical user interface,
enabling workflows to be executed in streaming environments
using daemons. The near real-time capabilities of their system
are limited because training is performed in batch mode.

It is a common practice in the literature to rely on well-
known frameworks for stream processing. The Big Data En-
gine tool developed by Mikotaj Komisarek et al. [20] inte-
grates Apache Spark, Apache Kafka [58], Elasticsearch [59],
Kibana [60], and HDFS [61] for network anomaly detection.
It supports near real-time processing and vertical scaling.
However, it does not detail model update mechanisms; in-
stead, it focuses on training with data flow. Similarly, Spring
XD, presented by Sabby Anandan et al. [30], is module-
based and interacts with technologies such as Apache Spark,

TABLE I: A summary of related work and the characteristics
of their MLOps implementations.

Work

A. Bifet et al. [19]

W. Jamil et al. [43]

D. Xu et al. [45]

1. Markov et al. [22]

R. Mifién et al. [48]

R. Ramanath et al. [50]
F. Carcillo et al. [51]

J. Kranjc et al. [52]

M. Komisarek et al. [20]
S. Anandan et al. [30]
S. Rodriguez et al. [53]
C. Martin et al. [54]

D. Crankshaw et al. [55]
D. Baylor et al. [56]

A. Pareek et al. [57]
Ours

AX X X X X X A X X X X X X N 4| Streaming Architecture

X X X X Xx X x X Xx X x X x & x| Streaming Update

YJOEAX KA X X A X NN A X X x| Streaming Processing

AUX AN AX X AN A X x X & x 4| Distributed Architecture

YECNANANANAX AX X A X SN 4 General Purpose
X AX NN X X A X X X X X x x| Model Versioning

Apache Kafka, RabbitMQ [62], Hadoop [63], Redis [64], and
Apache Zookeeper [65]. It supports near real-time inference
via Spark Stream and includes monitoring tools. However,
it performs model updates using Spark’s mini-batch mode.
Another module-based system, STREAMER, introduced by
Sandra Garcia Rodriguez et al. [53], integrates with Apache
Kafka, InfluxDB [66], Redis, and Kibana. It provides scal-
ability and fault tolerance while allowing users to focus on
algorithms and data preprocessing. Unfortunately, it does not
support incremental updates and relies on mini-batches or the
processing of entire datasets for model updates. Kafka-ML,
presented by Cristian Martin et al. [54], manages ML pipelines
with TensorFlow [67] and PyTorch [68]. It provides a web
interface for training and inference with Docker containeriza-
tion [10] for portability while processing data in batches rather
than incrementally. Here, trained models cannot be updated but
saved or deployed for future use.

Daniel Crankshaw er al. [55] presented the Clipper tool,
a low-latency prediction system for near real-time online
deployments. It supports multiple ML models and deployment
strategies through a modular architecture and unified interface.
It also provides a dynamic load-balancing ingestion strategy
for the even distribution of prediction tasks. However, it does
not support incremental updates via a mini-batch approach.
Denis Baylor et al. [56] introduced TensorFlow Extended
(TFX), an open-source platform for managing ML pipelines. It
integrates analyzing, transforming, validating, and deploying
components into a unified system. TFX supports continuous
model updates and transfer learning. This reduces training time
by transferring parameters from a base to a target network.
The feasibility of incremental updates is still being discussed,
although continuous updates are supported. Alok Pareek et
al. [57] presents Striim, an enterprise-grade platform for near
real-time data ingestion and ML that uses models such as

random forests and Gaussian process regression and makes
use of sliding windows for model updates. StreamMLOps,
proposed by Mariam Barry et al. [17], provides an architecture
for online learning. It uses open-source tools such as River and
MLFlow. It supports continuous learning and deployment but
requires customization for specific applications.

A. Discussion

Table I reviews the literature on MLOps support for SL-
oriented operations. It can be observed that most of the studies
focus on updating the model offline. In this approach, labeled
data is stored and periodically used to generate models more
consistent with the latest information. This approach is usually
based on batch processing, where models are retrained regu-
larly to incorporate new data. At the same time, near real-time
updates occur at discrete intervals rather than incrementally
and often rely on sliding windows to create mini-batches for
model building. Despite the challenges associated with SL
support, traditional MLOps practices typically involve periodic
updates through batch or mini-batch strategies.

Nevertheless, when scaling their designed systems, it is
common practice in the literature to deploy additional peers
using virtual machines [19], [56]. However, this approach
introduces significant computational overhead due to the need
to deploy an entire operating system and the required libraries.
In contrast, the use of containers for infrastructure scaling in
MLOps is still in its early stages in the literature [53], [54].
Containers have the potential to significantly reduce service
provisioning overhead by sharing the host OS libraries and
binaries while utilizing namespaces to ensure isolation [69].

Several challenges are associated with deploying SL mod-
els in a production environment. These include maintaining
system responsiveness at scale while ensuring an efficient
inference model under high prediction demand. Traditionally,
researchers scale their training procedures in a classifier-
dependent manner, which poses a challenge in adapting the
architecture to different classifiers. Designing an architecture
that enables the training task to be scaled without modifying
the supporting architecture remains a significant challenge in
the literature. Furthermore, using traditional MLOps architec-
tures is not feasible due to the need for incremental updates
as soon as event labels become available. Current MLOps
architectures cannot easily manage the multiple versions of
constantly evolving SL models while making them available
for inference.

IV. A MLOPS ARCHITECTURE TOWARDS STREAM
LEARNING DEPLOYMENT

In light of this, we propose a new architecture that paves
the way for implementing SL-based applications under the
MLOps operating principle at scale. Our proposed architecture
addresses three key challenges associated with SL-oriented
MLOps environments:

o High Inference Throughput. To accommodate the evolv-
ing demand, the architecture introduces a horizontal scal-
ing system that allows the number of inference endpoints
to scale as required. In addition, a decoupled model

Inference Pipeline

Endpoint

Load
Balancer

of

Update & Versioning Pipeline

Fig. 2: An overview of the proposed pipeline for implementing the MLOps operational phase in SL-oriented applications.
The Inference Pipeline consists of multiple endpoints designed to efficiently handle user requests at scale in a continuously
dynamic data stream. The Model Update and Versioning Pipeline employs a periodic triggering mechanism based on an event

counter to generate and deploy new SL model versions.

Input: SL model £,
Triggering Frequency ¢

Tnitialize: Input:
‘ Number of Evaluated Events i =0 ‘ SL model & from model repository
Ingest from update queue: Ingest from load balancer:
Event for Update x, and Label y Event for Inference x

Update: Incrementally update model
h with tuple (x,), and increment i report predicted y

v v
No No New Model Available?

Yes ¢ Yes
Deserialize: Load new SL model
version /& from model repository

‘ Predict: Apply model / on x, and ‘

Serialize: Create new model version
h to model repository, and set i =0

(a) Incremental update pipeline (b) Inference pipeline

Fig. 3: Pipeline for both inference and incremental updates.
The Inference pipeline continuously ingests events for infer-
ence and dynamically deserializes new SL model versions
as they become available. The Incremental Update pipeline
incrementally updates the model and serializes it based on a
predefined triggering frequency.

loading method is implemented, enabling the inference
module to retrieve new models directly from the model
repository without requiring endpoint restarts, enhancing
system availability in near real-time applications;

o Trigger-based model updates. In contrast to traditional
ML frameworks that rely on batch or mini-batch updates,
our proposed architecture integrates a triggering system
for incremental SL model updates via a continuous data
flow. To achieve this goal, we introduce a model seri-
alization window that is triggered periodically, allowing
updated models to be serialized in the model repository
and made available for inference within optimal time or
event windows;

o Decoupled Model Versioning. The frequent model update
and versioning can result in hundreds or even thousands
of model versions within a short time frame. To address
such a challenge, the architecture decouples the model
versioning task to handle multiple model versions while
also enabling a faster inference module’s loading of
specific model versions;

Figure 2 illustrates our proposal pipeline implementation.
It includes the Inference Pipeline and the Model Update
and Versioning Pipeline. The former handles user prediction

requests at scale, while the latter manages the incremental
update of the SL model using labeled events and appropriate
model versioning.

The Inference Pipeline implementation aims to handle
multiple user inference requests simultaneously at scale. It
implements multiple endpoints executing the latest available
SL model version to achieve this goal. Each endpoint is
queried through a load balancer. This load balancer efficiently
distributes the user load across all available endpoints. As a
result, the inference can be scaled by loading multiple model
versions on each endpoint, expanding compute capacity as
needed.

The Model Update and Versioning Pipeline receives event
labels for incremental model updates following a specific
process. These labels are used for the incremental SL update
while the pipeline initiates model versioning periodically.
We designed our architecture to be classifier-independent,
ensuring flexibility across different use cases. Therefore, the
implementation allows the training task to be implemented
as needed, allowing the operator to adjust it based on spe-
cific requirements. This is made possible by treating the
training task as a standalone endpoint, independent of the
classifier or underlying architecture. For instance, the operator
could scale the training process without demanding signifi-
cant modifications in our designed architecture. The newly
generated model version is handled by a decoupled module
responsible for the versioning and then made available to
the deployed Inference modules for seamless integration and
deployment. This periodic triggering of the model versioning
allows the update of the SL model to be carried out under
the MLOps framework. Our proposal has two main insights.
First, we decouple inference, versioning, and updates, allowing
incremental SL model updates without significantly impacting
the performance of other modules. Second, we periodically
perform model versioning and deployment, resulting in fewer
model versions and increased inference throughput.

The modules that implement our proposal are described in
the following subsections.

A. Model Update and Versioning

SL-oriented MLOps face significant challenges in handling
frequent model updates and versioning, as these applications
must operate in near real-time to accommodate continuously
incoming data. Unlike traditional batch-oriented applications,
which can store training data and perform model versioning
at long intervals, SL models require incremental updates,

______________ o

i Kubernetes Master H
i v

‘ Event Inference ‘

’ Model Interface (SMB) ‘ ’ Model Interface (SMB) ‘

| Model Gen. (MLFlow) |

Load

o8

’ Event Ingestion (Flask) ‘ ’ Model Store (MLFlow) ‘

’ Label Ingestion (Flask) ‘

Balancer

Inference
Endpoints

| SLModel (River) || |[™ S Model (River) || ||

SL Model (River)

Inference Endpoint Model Version

Model Update

Broker (Kafka)
Update Queue j

l Model Update }4

Kubernetes Pods

Provide Updated

Model

Version

Create New Model

|
[
!
| Docker Engine || Event Update
_________ - ! Ubuntu OS ! (Kafka)
Il Kubernetes Node |;
\

|
|
|
‘ : Model Version.
|
|
|
|

Fig. 4: Prototype overview of our proposed pipeline for implementing the MLOps operation phase on SL-oriented applications.

generating a new model version with each evaluated event.
This necessitates efficient serialization for versioning and
deserialization to ensure updated models are readily available
at the inference endpoints. Addressing these challenges is a
challenging task to enable scalable and efficient SL-oriented
applications within an MLOps framework.

In response, our proposed architecture introduces a trigger-
ing mechanism that manages the execution of model version-
ing and provisioning tasks (Fig. 2, Periodically Triggered). The
trigger takes advantage of the characteristic of SL algorithms
by examining their decision boundaries before triggering the
model versioning task. For example, the Hoeffding Tree algo-
rithm [27] will not split a tree leaf until certain events (the
grace period parameter) have been observed. Moreover, even
when model modifications are made on an event basis (e.g.,
Naive Bayes [70]), substantial model changes that affect infer-
ence are typically observed only after evaluating a significant
number of samples.

Figure 3a overviews our SL update mechanism. The process
begins with an input SL model h and a predefined triggering
frequency t. Initially, the number of evaluated events ¢ is set
to zero. The system then enters a continuous loop, ingesting
events from the update queue. Each event x and its associated
label y are used for incremental model updates. After each
update, the system checks whether the number of processed
events exceeds the predefined triggering frequency. A new
model version is generated and serialized in the model repos-
itory if this condition is met.

Our scheme performs model versioning and deployment
when a new model version is created. The versioning requires
model serialization and storage, while the deployment sends
the new model version to all deployed model inference end-
points in near real-time. This decoupling enables our scheme
to provide high inference throughput even when using a low
model trigger frequency, which may lead to the frequent
generation of new model versions (Pipeline 3a, ¢). Recalling
that the model triggering frequency should be defined based on
the operator’s discretion, according to the used SL algorithm
and required performance (latter evaluated in section VI).

B. Model Inference

MLOps-oriented inference must handle multiple users’ re-
quests at scale. However, in traditional SL scenarios, frequent
model versioning and deployment can significantly impact

inference throughput due to the computational costs of loading
new model versions.

We implement the SL inference task to address this chal-
lenge as a distributed and decoupled service. In practice,
inference is performed by multiple endpoints, each of which
performs inference using its loaded SL model. Based on the
load of user requests, this approach allows for horizontal
scaling of inference tasks. A load balancer manages user re-
quests, efficiently distributing them to the appropriate deployed
inference endpoint to process the task (Figure 2, Inference
Pipeline).

When a new model version is available (see section IV-A),
each endpoint halts inference, requests the latest model version
from the model versioning module, and resumes inference-
related tasks. Given that our scheme relies on a triggering
frequency mechanism for model versioning, the computational
impact on inference is not significantly degraded. This occurs
because fewer SL model versions are generated over time,
reducing the model deserialization efforts on the inference
side.

Figure 3b provides an overview of our SL update mecha-
nism. The process begins with an input SL. model h. The sys-
tem then enters a continuous loop, where events are ingested
for inference from the load balancer. Each ingested event x
is processed by the current SL model h, which generates a
predicted label y that is subsequently reported. After each
inference, the system checks for the availability of a new
model version in the model repository. If a new version is
detected, it is retrieved and loaded through a deserialization
procedure, and the inference task proceeds. This process runs
continuously for each deployed inference endpoint.

C. Discussion

The implementation of the MLOps operation phase for
SL-oriented applications is a challenging task. Our proposed
model is built around two key principles. First, it decouples
the inference, versioning, and update processes, enabling in-
cremental SL model updates without compromising the per-
formance of other system components. Second, it implements
periodic model versioning and provisioning, which minimizes
the number of model versions generated and enhances infer-
ence throughput. In practice, we leverage the behavior of SL
algorithms, where typically their decision boundaries undergo
significant changes only after evaluating a certain number of
events. By aligning the versioning process with these natural

adjustments, we reduce the frequency of updates, leading to
fewer model versions without affecting the system’s accuracy.

V. PROTOTYPE

A prototype was developed to validate the proposed archi-
tecture and assess the system’s applicability in a production
environment. As shown in Figure 4, a controlled environment
was created to replicate a real-world application. The prototype
was implemented as a distributed Python application running
as microservices encapsulated in containers, and orchestrated
using Kubernetes [10]. The Kubernetes cluster also manages a
container running Apache Kafka [58] v.3.7.0. This container
receives messages with labeled events to be consumed by the
update and versioning endpoint. The Microk8s tool [71] v.1.24
was used to create and manage the Kubernetes cluster. The
prototype comprises three main modules: Inference Endpoints,
Model Versioning, and Model Update.

The Inference Endpoints are designed to be scalable on
demand for executing the model inference task. We use a
Kubernetes load balancer that appropriately distributes the load
across each endpoint deployment. The endpoint is executed as
a Docker container. It loads the selected SL model in River
API v.0.21.2 [41] format and ingests events to be evaluated
using Flask API v.3.0 [72]. It periodically checks for updated
model versions. In this case, it downloads the updated model
over the SMB protocol as it is provided and stored by the
Model Versioning module.

The Model Versioning module stores and serves several SL
model versions. It uses the MLFlow API v.2.16.0 [7] for
river SL model storage. It receives updated model versions
generated by the Model Update module, stores them, and
makes the updated model versions available to the Inference
Endpoint via the SMB protocol.

Finally, the Model Update module is responsible for in-
cremental SL. model updates. We deploy a broker using the
Kafka API v.3.7.0 [58], and continuously publish the events
with their previously used labels for inference. Recall that
we have two ingestion pipelines, one for the inference task,
implemented as a web service, and the other for the update
task, implemented as a publish-subscribe model. The module
continuously receives updated events by listening to the cor-
responding Kafka topic. It uses these events to incrementally
update the SL model. In addition, it periodically generates a
new version of the model (Pipeline 3a, t) for the Model Version
module.

The proposed architecture addresses the SL challenges by
enabling horizontal scaling of inference endpoints, seamless
model loading without application restarts, incremental model
updates, near-optimal model serialization, and efficient model
version management. The system is built as containerized
microservices orchestrated by Kubernetes. It is highly flexible
and portable, suitable for both on-premises and cloud deploy-
ments. The inference engine efficiently loads model updates
and scales horizontally, while the model update and versioning
modules support incremental updates at a lower computational
cost. They manage multiple model versions to ensure rapid
model replacement across active endpoints. As a result, the

architecture improves the system’s ability to adapt to evolving
data while maintaining stability and performance.

VI. EVALUATION

Our conducted experiments aim to answer the following
Research Questions (RQs):
e RQI: What is the baseline accuracy of the SL model in
an incremental update scenario?
o RQ2: What is the throughput of our proposed scheme for
inference without incremental updates?
o RQ3: What is the impact of the frequency of model
versioning on the accuracy and throughput?
e RQ4: How does endpoint parallelism affect throughput
and accuracy?
The next subsections describe the performance of the SL
model building aspects.

A. The Datasets and Stream Learning Classifiers

We evaluated our proposal considering both synthetic and
realistic datasets, as follows:

e AGR-a and AGR-g [73]. A synthesized dataset based
on the Agrawal generator. It comprises six nominal and
three numerical features for a binary classification task.
The dataset includes three abrupt concept drifts for the
AGR-a dataset, and three gradual concept drifts for the
AGR-g dataset;

¢ YouChoose [74]. A real-world dataset that captures user
clicks and purchase events over several months was
collected from an online retailer in 2014. It consists of 16
characteristics and a target attribute indicating whether a
purchase was made;

We evaluated our scheme executed with 4 widely used SL
classifiers, namely Naive Bayes (NB) [70], Adaptive Random
Forest (ARF) [11], Hoeffding Tree (HT) [27], and Adaptive
Boosting (AdaBoost) [75]. The Gaussian distribution tech-
nique was used for the NB. The HT was evaluated with a
200 grace period, information gain as a split criterion, and
100 maximum tree size. The ARF was evaluated with 10 base
learners with the ADWIN drift detector, and information gain
as the split criterion. The AdaBoost was assessed with 5 HT
as the base learner with gini as the split criterion. The River
API v.0.21.2 (see Fig. 4) was used to implement the selected
classifiers. The parameters were set empirically, as often made
in related works, and no significant differences were observed
when varied.

B. The Stream Challenge

Our first experiment aims at answering RQ/. It investigates
the accuracy performance of the selected SL classifiers with an
incremental update implementation. In practice, we establish a
baseline detection accuracy before investigating the implemen-
tation aspects of our proposed MLOps architecture, as follows
(see Fig. 1):

e No-update. The classifier is initially trained using the first

1% of the dataset. The resulting model then evaluates in-
coming samples without performing incremental updates;

----- No-update —— Prequential —— Preq. Delayed
<D: 0.5 L ran e Lroy ot remaanes :<Df 0.5 Nty Mo
0.0 0.0 250k 500k 0.0 0.0 250k 500k
Event Event
(a) HT (AGR-a) (b) HT (AGR-g)
1.0 -mmemeeeeey oo : 1.0] -~
2 0.5 L ras e Lossvaronmrnss :<Df 0.5 vy ’ Nhertmnaseron
0.0 0.0 250k 500k 0.0 0.0 250k 500k
Event Event

(d) NB (AGR-a) (e) NB (AGR-g)

0.0 0.0

0.0 250k

Event

500k 0.0 250k

Event

500k

(2) ARF (AGR-a) (h) ARF (AGR-g)

0.0

0.0

0.0 250k

Event

500k 0.0 250k

Event

500k

(j) AdaBoost (AGR-a) (k) AdaBoost (AGR-g)

—— Holdout

o e

O
205

0.0

0.0 250k 500k

Event

750k 1000k

(c) HT (YouChoose)

0‘00.0 250k 500k 750k 1000k
Event
(f) NB (YouChoose)
1.0 appemmmgntvreemssrmcsuemmeosrmmmsmpestersiope
=
<05
0.0
0.0 250k 500k 750k 1000k
Event
(i) ARF (YouChoose)
1.0 ~yyemmprrertrrremmmmpmrme
=
<05
0.0
0.0 250k 500k 750k 1000k
Event

(1) AdaBoost (YouChoose)

Fig. 5: Accuracy of selected SL classifiers on common datasets with and without incremental model updates, measured for

every thousand-sample interval.

Event/sec.

—o— AGR-a -&- AGR-g -~ YouChoose
600 g
£ 400 g
2z 2z
5 5
> 200 >
[8a] [Sa]
0 0 0

1 2345678
Inference Endpoints

(a) HT

1 2345678
Inference Endpoints

(b) NB

1 2345678
Inference Endpoints

(c) ARF

1 2345678
Inference Endpoints

(d) AdaBoost

Fig. 6: Scalability of the Inference Endpoint of our proposed scheme without the application of incremental model updates,
measured by the average number of events classified per second.

e Prequential. Evaluate each incoming sample, apply it for
incremental model updates, and proceed to process the
next sample;

e Holdout. Process input in batches of 1,000 samples. Each
batch is partitioned such that 70% of the samples are
allocated for testing, while the remaining 30% are utilized
for incremental model updates;

e Delayed. Evaluate each incoming sample and apply it
for incremental model updates with a delay of 1,000
samples;

Therefore, we assess the accuracy of the selected classifiers
using multiple evaluation setups, both with and without incre-
mental model updates. According to the following equation,
we assess the accuracy of the selected classifiers by their Area
Under the Curve (AUC) values.

1
AUC = / TPR(t) dFPR(t) (1)
0

where the True-Positive Rate (TPR) denotes the ratio of
positive events correctly classified, the False-Positive Rate
(FPR) denotes the ratio of non-positive events incorrectly
classified as positive, and ¢ is the classification threshold set
of the classifier. As commonly used in the literature, the
AUC values are computed every thousand events. We used
AUC because it provides a comprehensive measure of the
model’s ability to distinguish between positive and negative
classes across all possible thresholds simultaneously. Since
the classification operation point should be determined at the
operator’s discretion, AUC allows for an unbiased evaluation
by considering both the TPR and FPR, regardless of class
distribution.

Figure 5 shows the obtained AUC values for the selected
SL classifiers with and without incremental model updates
being conducted. It is possible to note that the selected datasets
require the execution of model updates for all evaluated SL
classifiers, regardless of the utilized model update setup. For
example, the HT on AGR-a (Fig. 5a) significantly degrades the
measured AUC by an average of 0.13 throughout the evalua-
tion period when no model updates are performed. Conversely,
performing incremental model updates using the prequential,
holdout, or delayed strategies can accommodate the evolving
behavior of the selected datasets. Surprisingly, the selected
classifiers achieve similar detection accuracies, irrespective of
the underlying dataset and evaluation strategies. This demon-
strates that the delayed update strategy can be effectively used
for incremental model updates without significantly affecting
model accuracy. As a result, this evaluation shows the impact
that changes in behavior have on the classification performance
of selected techniques.

C. Towards a MLOps for Stream Learning

Our second experiment aims to address RQ2 by inves-
tigating the inference throughput of our proposed scheme
without applying incremental updates. To this end, we scale
the number of deployed Inference Endpoints on the deployed
Kubernetes pods (see Fig. 4). We set the CPU limit to 0.5
for each docker in use. The experiment aims to investigate

whether our implemented prototype can scale appropriately
according to the number of deployed inference endpoints
and the processing load. The goal is to ensure that our
proposed architecture is effectively designed for distributed
environments, demonstrating its ability to scale in response to
adding new peers.

Figure 6 shows the inference throughput according to the
number of deployed endpoints. It can be observed that our
proposed model has an improvement in inference throughput
as the number of endpoints increases. For example, when the
number of endpoints is increased from 1 to 8 on the AGR-a
dataset, the inference throughput of the HT model increases
from 124 to 688, an increase of 554% (Fig. 6a). Therefore,
adding new peers results in an average increase of approx-
imately 71% in inference throughput. This improvement is
achieved with minimal variation across different datasets and
classifiers. Thus, regardless of the SL application under con-
sideration, our proposed model can effectively scale inference.

Our third experiment aims to answer RQ3 and investigates
how the frequency with which model versions are generated
can affect both the accuracy of the inference and the through-
put. In practice, we vary the frequency at which model versions
are triggered (Pipeline 3a, t). This impacts the frequency of
generated new model versions, which can negatively affect
inference throughput given the frequent need to deserialize
new SL classifiers. We varied the model version triggering
frequency (Pipeline 3a, t), from 1,000 to 2,000 in intervals
of 250 events. The test was executed with various active
endpoints for each trigger frequency, from two to eight.

While the number of endpoints used in the test also influ-
ences the results, the primary focus of the evaluation is on the
frequency of model availability. To achieve such a goal, we
first examine the number of queued events on the update Kafka
queue across different availability frequencies (Fig. 4, Update
Queue). Recalling the proposed approach, unlike conventional
methods found in the literature, the inference module can
load the updated model into the endpoints’ memory without
recreating it, thus reducing the model update requirements
on computational costs. The inference, update, and versioning
endpoints also operate in parallel processes, allowing models
to be loaded with lower computational overhead when re-
placing them. However, despite this computational advantage,
deploying the model at very short intervals can still signifi-
cantly impact the system, leading to a decline in predictive
performance and system throughput

Figure 7 shows the number of events on the update queue
according to our scheme’s used model version triggering
frequency. An increase in the number of events in the update
queue can be observed as the availability frequency parameter
and the number of active endpoints in the system vary.
However, when the number of endpoints reaches higher values,
typically above 6, the queue often stabilizes or decreases for
certain frequency parameter values. Further analysis of the
results shows that for lightweight models like NB (Figs. 7d, 7e,
and 7f) and HT (Figs. 7a, 7b, and 7c), higher availability
frequency values (around 2,000 events) have less impact on
the update queue. Sometimes, the queue remains empty even
with as many active endpoints. As the availability frequency

Inference Endpoints

(2) ARF (AGR-a)

Inference Endpoints

(h) ARF (AGR-g)

—— Freq.2000 -<~- Freq. 1750 --4- Freq. 1500 —o— Freq. 1250 - - Freq. 1000
{20 poTTITT R ST sk
A DN 2 :)
o IOk S I ' o 180k
g % 8 sok| ST o g
8 60k A S B A = ;o ~ 5 120k
<o S o TS e ~| @
8 30k| . /et . @ 25k| T e £ 2 60k
3 e S g g | =
& 0le= & 0lef = = | & 0
- 2 4 6 g 2 2 4 6 g =
Inference Endpoints Inference Endpoints Inference Endpoints
(a) HT (AGR-a) (b) HT (AGR-g) (c) HT (YouChoose)
o 100k IR “w] 100k IR T 240k e —
N - N - N -
7 o 7 75k o" 7 180k o”
5 Tk ' P s e —o| g 80 K P .
B sok| T 5 sok| e S0k T
o R Lo NN R e | &y R Y A
& 25k 7 o 25k e @ 60k L
_g % ",/. e Ao _cg '/ 2 ——/,43 ——————— -0
2 0 B (leeees =] B ole e
- = 2 4 6 g = 2 4 6 8
Inference Endpoints Inference Endpoints Inference Endpoints
(d) NB (AGR-a) (e) NB (AGR-g) (f) NB (YouChoose)
3 3 3
= = S240k
(] (] (]
5 Gt 5 160k
& & &
I 5y o 80k
= = =
= = 2 o0
= = = 2 4 6 8

Inference Endpoints

(i) ARF (YouChoose)

Update Queue Size
Update Queue Size

Update Queue Size

Inference Endpoints

(j) AdaBoost (AGR-a)

Inference Endpoints

(k) AdaBoost (AGR-g)

Inference Endpoints

(1) AdaBoost (YouChoose)

Fig. 7: Number of events in the update queue according to the model version trigger frequency (Pipeline 3a, ?).

decreases (= 1,000 events), a consistent rise in the queue is
observed, sometimes exceeding 250 thousand events waiting
for consumption. In contrast, the ARF (Figs. 7g, 7h, and 7i)
and AdaBoost (Figs. 7j, 7k, and 71) classifiers does not exhibit
such large fluctuations. This is because their inference task
is computationally expensive, which slows event consumption
during inference. As a result, fewer instances are sent to the
update module, leading to smaller queue sizes.

Next, we examine the impact of model availability fre-
quency on system throughput. To achieve this, we measured
the number of events consumed per second and the number
of available models for each case. Figure 8 shows the event
inference throughput, considering the processing of the en-
tire pipeline across all availability frequency values and the

number of active endpoints. Higher model version triggering
frequency (= 2,000 events) results in greater consumption
of events per second compared to lower values. This occurs
because their inference task is computationally expensive,
slowing event consumption during inference. Consequently, a
similar update queue size is observed regardless of the model
versioning frequency, as the inference time is significantly
higher than the time required for model serialization at the
update endpoint and deserialization at the inference endpoints.
As a result, fewer instances are sent to the update module,
leading to smaller queue sizes.

Stabilization of the event consumption is observed when the
number of active endpoints exceeds 6, similar to the results
for the update queue. In practice, for the HT (Fig. 8a, 8b,

—=— Freq. 2000

—o— Freq. 1250 - % - Freq. 1000

640 « 5
- - 550 -
s:i = a = a A640
= 560 = 500 <3 560
=3 =% s =3
3= 480 3= 22
£8 £ S 400 g8
o B8, 400) «; 2400
= g 350 =
Inference Endpoints Inference Endpoints Inference Endpoints
(a) HT (AGR-a) (b) HT (AGR-g) (c) HT (YouChoose)
800
2.~ 700 2.~ 700 2.~ 700
58 58 58
5 2 600 S 2 600 = @ 600
2s 22 2 g
= 2500 = 2500 £ 2500
o |1 o 3 o |1
N N— N
£ 7400 £ 7400 £ 400
Inference Endpoints Inference Endpoints Inference Endpoints
(d) NB (AGR-a) (e) NB (AGR-g) (f) NB (YouChoose)
é_»-\260 EAZSO 2A350
o g 240 9 225 T § 325 Fh- h
2% 220 22 22 e
E S £ = 200 2 e300 T T T T T = I <
) = O = O
&-LEZOO ELE175 FU§275
EVISO Ev Ev PR #A_.—“i‘}'--é'}_‘
2 6 8 2 4 6 8
Inference Endpoints Inference Endpoints Inference Endpoints
(2) ARF (AGR-a) (h) ARF (AGR-g) (i) ARF (YouChoose)
éﬁzoo / g 20 5 _ 100 -
£y 180 £ g 180 58 80
B 140 Ts o B 140 Vom0 .
E il E) E il

Inference Endpoints

(j) AdaBoost (AGR-a)

Inference Endpoints

(k) AdaBoost (AGR-g)

6 8 2 4 6 8
Inference Endpoints

(1) AdaBoost (YouChoose)

Fig. 8: Inference throughput according to the number of inference endpoints vs. the frequency of triggering the model version

(Pipeline 3a,).

and 8c) and NB (Fig. 8d, 8e, and 8f) learners, the inference
throughput exceeds ~ 650 instances per second when the
model availability frequency is set to 2,000 events and the
number of active endpoints is 4 or more. As availability
frequency decreases, event consumption gradually declines,
with a maximum rate of about ~ 480 events per second. In
contrast, computational expensive models based on the ARF
(Fig. 8g, 8h, and 8i), and AdaBoost (Fig. 8j, 8k, and 8l)
exhibit lower event consumption rates due to their higher
computation requirements. As a result, the model availability
frequency significantly impacts system throughput. The system
consumed nearly twice as many instances per second with
the 2,000 events parameter set than with the 1,000 events
configuration, especially with more than 4 active endpoints.
Figure 9 shows the model version frequency according to

the number of inference endpoints and the model version trig-
gering. The system demonstrated high throughput, with model
versioning occurring every ~ 2.5, even when the availability
frequency was set to higher values (2,000 events) and the
number of active endpoints was kept low (2 endpoints). Due
to the significant system overhead in distributed environments,
variations in the availability frequency parameter often had
no direct impact on the number of models deployed per
second. Models based on the ARF (Fig. 9g, 9h, and 9i), and
AdaBoost (Fig. 9j, 9k, and 91) learners were more affected by
frequency changes due to their larger size, while lightweight
models, such as those based on NB (Fig. 9d, 9e, and 9f) and
HT (Fig. 9a, 9b, and 9c), maintained high deployment rates
regardless of frequency adjustments.

Consequently, our proposed model can conduct model up-

—— Freq.2000 -<~- Freq. 1750 --4- Freq. 1500 —o— Freq. 1250 - - Freq. 1000
o o o
2 45 2 48 g
4.0
,5/.\4'0 .564'2 .5/.\ '
©n n Q9 2935
§§3.5 §§/3.6 §§30
5 30 = 30 = >
g 2 B 25
s S S 2 4 6 8
Inference Endpoints Inference Endpoints Inference Endpoints
(a) HT (AGR-a) (b) HT (AGR-g) (c) HT (YouChoose)
g g 48 g ag/"
— — —
~ 42 ~ 42 =
=) = £ 4.0
.5/33.6 - '833‘6 ‘%G
8 23,0 8 2 3.0 53232
_Té 2.4 g 2.4 _Té 24
[©]]]
Inference Endpoints Inference Endpoints Inference Endpoints
(d) NB (AGR-a) (e) NB (AGR-g) (f) NB (YouChoose)
g 90 S 9.0 g 60 \/ﬁ\g
— — I — >
T80 T80 R 0| T 54|s.
L~ S~ Beme T .8 R SEEEREEES B
z2g70- 2870l i e I
>z >Z =TT > Z = N
~ 60 T 6.0] e <= B B’ %) P P T SN— <
5 5 e R 35 PO oo -
3 50 S 50— 3 36 ————
S S 2 4 6 8 = 2 4 6 8
Inference Endpoints Inference Endpoints Inference Endpoints
(g) ARF (AGR-a) (h) ARF (AGR-g) (i) ARF (YouChoose)
o =y
= =
£ 105 =105 =
g ~ g ~ g
‘7 9.0 ‘7 s 9.0 g7
832 s 3 3
=175 75 >
(] (o] (]
ks, =, ks,
3 S 3
= = =

Inference Endpoints

(j) AdaBoost (AGR-a)

Inference Endpoints

(k) AdaBoost (AGR-g)

Inference Endpoints

(1) AdaBoost (YouChoose)

Fig. 9: New model version frequency provision, according to the number of inference endpoints vs. the model version trigger

frequency (Pipeline 3a, t).

dates and versioning at a significantly high frequency. In
practice, the achieved model versioning frequency can be
relaxed according to the considered application dataset and
model. For example, the ARF learner can adjust quicker to
changes in the environment than other classifiers. As a result,
model generation can be conducted less often, which results in
a higher inference throughput without degrading the system’s
accuracy.

Finally, we answer RQ4 by investigating how each cho-
sen configuration can affect our scheme accuracy. Using the
model version triggering frequency parameter, we investigated
classifier accuracy as a function of the number of inference
endpoints.

Figure 10 shows the accuracy performance of the selected

classifiers on the AGR-a dataset as a function of the number
of inference endpoints used and the frequency of model
versioning. The selected classifiers respond differently to
updates due to the different characteristics of each learner.
The NB (Fig. 10e, 10f, 10g, and 10h), known for their high
elasticity, retain old concepts and adapt minimally to new
data. Even with lower availability frequency and maximum
active endpoints, the AUC metric remains stable, indicat-
ing minimal variation and close alignment with the base-
line. The ARF (Fig. 10i, 10j, 10k, and 101), and AdaBoost
(Fig. 10m, 10n, 100, and 10p) learners, on the other hand,
adapts quickly to current data and forgets older concepts. How-
ever, its large size slows inference throughput, which reduces
the size of the update queue and allows updating with more

—— Model Versioning Freq. (2k events)

—— Model Versioning Freq. (1k events)

=== Prequential Preq Delayed === Holdout

1.00 1.00 . By 1.00 1.00
» ot ‘, 7 "‘-' e A
0.75 0.751 f 0.751 ; 075!
&) &) &) '
= 0.50 = 0.50 S 0.50 8 0.50
= = = =
025 0.25 025 0.25
0.00075 250k sook %% 250k sook %% 250k sook %% 250K 500k
Events Events Events Events

(a) HT 2 Inf. End. (AGR-a) (b) HT 4 Inf. End. (AGR-a)

(c) HT 6 Inf. End. (AGR-a) (d) HT 8 Inf. End. (AGR-a)

1.00 1.00 1.00 1.00
0.75 0.75 0.75 0.75
Q Q O ' Q
= 0.50 = 0.50 = 0.50 S 0.50
< < < <
0.25 0.25 0.25 0.25
0.00 0.0 250k 500k 0'000.0 250k 500k 0'000.0 250k 500k 0'000.0 250k 500k
Events Events Events Events

() NB 2 Inf. End. (AGR-a) (f) NB 4 Inf. End. (AGR-a)

(2) NB 6 Inf. End. (AGR-a) (h) NB 8 Inf. End. (AGR-a)

1.00 Ve 1.00 " iy 1.00 1.007
0.75 (i 0.75 ‘ 0.75 0.751|
) | &) I Q Q
DO.SO | D0.50 DO.SO DO.SO
< < < <
0.25 0.25 0.25 0.25
0'000.0 250k 500k O'000.0 250k 500k 0'000.0 250k 500k 0’000.0 250k 500k
Events Events Events Events

(i) ARF 2 Inf. End. (AGR-a) (i) ARF 4 Inf. End. (AGR-a)

(k) ARF 6 Inf. End. (AGR-a) (I) ARF 8 Inf. End. (AGR-a)

1.00 1.00 1.00 1.00
0.751 | 0.75] " 0.751 1" 0751
@) ’ &) ’ &) : &) ’
S 0.50 = 0.50 = 0.50) 0.50
< < < <
0.25 0.25 0.25 0.25
0'000.0 250k 500k 0'000.0 250k 500k 0'000.0 250k 500k O’000.0 250k 500k
Events Events Events Events

(m) AdaBoost 2 Inf. End. (AGR-a) (n) AdaBoost 4 Inf. End. (AGR-a) (0) AdaBoost 6 Inf. End. (AGR-a) (p) AdaBoost 8 Inf. End. (AGR-a)

Fig. 10: AUC values for each selected classifier on the AGR-a dataset as a function of the number of inference endpoints and
the model version trigger threshold. Our proposed scheme achieves similar baseline accuracy while implementing distributed

MLOps.

recent data, which helps manage concept drift. Although occa-
sional update queue spikes occur as drift detection mechanisms
consume additional resources, system instance consumption
normalizes as data concepts stabilize, keeping performance
near baseline. Finally, changes in model availability frequency
significantly affect the HT models.

Figure 11 further investigates the accuracy distribution of
the ARF SL classifier on the AGR-a dataset compared to the
selected evaluation setups. The Prequential evaluation setup
achieves the highest median accuracy, reaching an AUC of
0.9792. However, our proposed scheme demonstrates a similar
accuracy distribution to the Prequential setup, even when
employing a high model versioning frequency. For instance,

with a model versioning frequency of one thousand events
and eight inference endpoints (Fig. 101), our model achieves a
median AUC of 0.9754, representing only a 0.39% decrease
compared to the best-performing evaluation setup. Addition-
ally, the accuracy distribution range remains comparable to
the Prequential setup, with an interquartile range of 0.0259
versus 0.0249, an increase of merely 4%. It is important to note
that these results are obtained while performing near real-time
model updates and versioning, along with inference at scale.

D. Discussion

The conducted experiments showed that our proposed
scheme enabled the implementation of SL algorithms under

the MLOps framework. In practice, the following remarks
were observed.

e RQI. Incremental model updates, in which the model is
updated and then used to predict the next event, allow for
rapid adaptation to changes in the data while maintaining
satisfactory predictive performance throughout the data
flow (Fig. 5). This incremental update behavior is often
a must to ensure reliable SL performance;

e RQ2. Scaling the number of inference endpoints sig-
nificantly increases the inference throughput. However,
this increase is not linear due to the distributed system
overhead (Fig. 6). Actual performance deviates from the
ideal as the number of active endpoints increases, with
actual performance averaging 30% less than the ideal
for 8 active endpoints. Due to their size and complexity,
models based on the ARF learner perform less than their
counterparts. The scalability of the inference throughput
does not significantly fluctuate according to the used
dataset, attesting to the general purpose of our architec-
ture;

e RQ3. Model versioning frequency has an impact on the
number of events in the update queue, which significantly
degrades other results (Fig. 7). Although system over-
head can affect these values, higher model versioning
frequencies tend to increase event consumption and the
number of updated models per second. Model frequency
also has different effects on the predictive performance of
models, with each type of learner responding differently
to changes in frequency and update queue size. In general,
higher values for the model frequency trigger will lead
to a better predictive performance than lower values.

e RQ4. Increasing the number of active endpoints directly
affects the update queue, inference throughput, and model
predictive performance. As the number of endpoints
increases, there is a tendency for the update queue to grow
significantly. This expansion leads to decreased system
throughput and a deterioration in predictive performance.
The growing queue can result in outdated models and
slower recovery as the time between instance arrival and
consumption increases.

The analysis of the results indicates that careful configura-
tion of parameters, such as availability frequency and the num-
ber of endpoints, is needed for balancing system throughput,
queue size, and model predictive performance. Proper adjust-
ment of these parameters helps to optimize event consumption
per second, minimize processing delays, and prevent excessive
data accumulation while maintaining model accuracy. Addi-
tionally, each learner’s intrinsic characteristics and model size
significantly affect system behavior. For instance, NB models,
which are less sensitive to parameter variations, show more
stable performance. Computationally heavier models, such as
those based on ARF and AdaBoost, exhibit less performance
fluctuation due to parameter changes. In contrast, HT mod-
els, with their favorable balance of elasticity and relatively
small sizes, are more impacted by parameter variations. It
is essential to note that these results were obtained under
significant hardware constraints to highlight the main system

Ours(1K Events, 2 Endpoints) o o ——— | GGz
Ours(1K Events, 4 Endpoints) | o eo—— |-
Ours(1K Events, 6 Endpoints) 1 [H
Ours(1K Events, 8 Endpoints) p@ @oo
Ours(2K Events, 2 Endpoints)
Ours(2K Events, 4 Endpoints) p ex——— |G-
Ours(2K Events, 6 Endpoints) | o ——— |G-
Ours(2K Events, 8 Endpoints)
Prequential | occo o

Preq. Delayed

S T —

0.90 0.95 1.00
AUC

Fig. 11: Accuracy distribution of the ARF classifier on the
AGR-a dataset considering multiple architecture configura-
tions vs traditional evaluation setups.

bottlenecks. Overall, the choice of configuration parameters
is fundamental to the system’s performance, with optimal
results achieved through detailed and customized parameter
settings that account for learner characteristics and production
environment needs.

The frequency of model versioning is an important aspect
of balancing system performance and accuracy. Operators
should define a model versioning triggering frequency that
ensures accuracy is maintained in proportion to the number
of deployed inference endpoints. However, it is essential to
consider the trade-offs of frequent model versioning. While
more frequent updates may improve responsiveness to changes
in data, they can also negatively affect inference throughput by
introducing delays and increasing the load on the model update
queue. As a result, the operator should consider finding the
operation point that can optimize both accuracy and inference
throughput when deploying our proposed architecture.

VII. CONCLUSION

This paper presents a novel architecture for deploying SL
models under the MLOps framework, which incorporates
incremental updates and frequent model versioning. The ar-
chitecture suits various systems, including cloud environments,
because it is based on containerized microservices that ensure
portability and flexibility. Unlike traditional approaches that
periodically update models in batches, our architecture ad-
dresses the challenge of continuously adapting to data changes
through incremental updates. The implementation provides a
scalable inference service that maintains efficiency while ad-
dressing key issues such as rapidly updating models, managing
multiple model versions, and handling large data streams.
Extensive experiments validated the architecture, highlighting
the critical role of parameter configuration in the balance
between throughput, queue size, and predictive performance.
The architecture demonstrated robustness, maintaining low
model availability times and high predictive accuracy, even
in demanding scenarios

Future work will evaluate the architecture’s performance
with multiple concurrent models, examine its ability to manage
different data flows and model versioning and optimize its
adaptability and scalability for more complex situations.

The source code and used datasets are publicly available
for download at https://github.com/mgrodrigues001/MLOps-
Architecture.

ACKNOWLEDGMENT

This work was partially sponsored by the Brazilian Na-
tional Council for Scientific and Technological Develop-
ment (CNPq), grants n° 304990/2021-3, 407879/2023-4, and
302937/2023-4.

[1]

[2]

[3

=

[4]

[5]

[6]

[7

—

8

[

[9

—

[10]

[11]

[12]

[13]

[14]

REFERENCES

E. C. P. Neto, S. Dadkhah, S. Sadeghi, H. Molyneaux, and A. A.
Ghorbani, “A review of machine learning (ml)-based iot security in
healthcare: A dataset perspective,” Computer Communications, vol.
213, p. 61-77, Jan. 2024. [Online]. Available: http://dx.doi.org/10.1016/
j.comcom.2023.11.002

J. A. Pruneski, R. J. Williams, B. U. Nwachukwu, P. N. Ramkumar,
A. M. Kiapour, R. K. Martin, J. Karlsson, and A. Pareek, “The
development and deployment of machine learning models,” Knee
Surgery, Sports Traumatology, Arthroscopy, vol. 30, no. 12, p.
3917-3923, Sep. 2022. [Online]. Available: http://dx.doi.org/10.1007/
s00167-022-07155-4

V. Chaoji, R. Rastogi, and G. Roy, “Machine learning in the real world,”
Proceedings of the VLDB Endowment, vol. 9, no. 13, p. 1597-1600, Sep.
2016. [Online]. Available: http://dx.doi.org/10.14778/3007263.3007318
R. Ashmore, R. Calinescu, and C. Paterson, “Assuring the machine
learning lifecycle: Desiderata, methods, and challenges,” ACM
Computing Surveys, vol. 54, no. 5, p. 1-39, May 2021. [Online].
Available: http://dx.doi.org/10.1145/3453444

A. M. Burgueiio-Romero, C. Barba-Gonzdlez, and J. F. Aldana-
Montes, “Big data-driven mlops workflow for annual high-resolution
land cover classification models,” Future Generation Computer
Systems, vol. 163, p. 107499, Feb. 2025. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2024.107499

P. P. Shinde and S. Shah, “A review of machine learning and
deep learning applications,” in 2018 Fourth International Conference
on Computing Communication Control and Automation (ICCUBEA).
IEEE, Aug. 2018. [Online]. Available: http://dx.doi.org/10.1109/
ICCUBEA.2018.8697857

MLflow Project, “An open source platform for the machine learning
lifecycle,” 2018. [Online]. Available: https://mlflow.org/

Amazon Web Services, Inc, “Amazon sagemaker,” 2017. [Online].
Available: https://aws.amazon.com/sagemaker/

Google, “Google cloud ai plataform,” 2018. [Online]. Avail-
able: https://console.cloud.google.com/marketplace/product/google-
cloud-platform/cloud- machine-learning-engine?project=curso-403115
O. Bentaleb, A. S. Z. Belloum, A. Sebaa, and A. EI-
Maouhab, “Containerization technologies: taxonomies, applications
and challenges,” The Journal of Supercomputing, vol. 78,
no. 1, p. 1144-1181, Jun. 2021. [Online]. Available:
http://dx.doi.org/10.1007/s11227-021-03914-1

H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey
on ensemble learning for data stream classification,” ACM Computing
Surveys, vol. 50, no. 2, p. 1-36, Mar. 2017. [Online]. Available:
http://dx.doi.org/10.1145/3054925

S. Agrahari and A. K. Singh, “Concept drift detection in data
stream mining: A literature review,” Journal of King Saud University -
Computer and Information Sciences, vol. 34, no. 10, p. 9523-9540, Nov.
2022. [Online]. Available: http://dx.doi.org/10.1016/j.jksuci.2021.11.006
S. R. Upadhyaya, “Parallel approaches to machine learning—a
comprehensive survey,” Journal of Parallel and Distributed Computing,
vol. 73, no. 3, p. 284-292, Mar. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2012.11.001

F. Kiaece and E. Arianyan, “Joint vm and container consolidation
with auto-encoder based contribution extraction of decision criteria
in edge-cloud environment,” Journal of Network and Computer
Applications, vol. 233, p. 104049, Jan. 2025. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2024.104049

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

S. Garg, P. Pundir, G. Rathee, P. Gupta, S. Garg, and S. Ahlawat,
“On continuous integration / continuous delivery for automated
deployment of machine learning models using mlops,” in 2021
IEEE Fourth International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE). IEEE, Dec. 2021. [Online]. Available:
http://dx.doi.org/10.1109/AIKE52691.2021.00010

N. J. Yadwadkar, F. Romero, Q. Li, and C. Kozyrakis, “A case
for managed and model-less inference serving,” in Proceedings of
the Workshop on Hot Topics in Operating Systems, ser. HotOS
’19. ACM, May 2019. [Online]. Available: http://dx.doi.org/10.1145/
3317550.3321443

M. Barry, J. Montiel, A. Bifet, S. Wadkar, N. Manchev, M. Halford,
R. Chiky, S. E. Jaouhari, K. B. Shakman, J. A. Fehaily, F. Le Deit, V.-T.
Tran, and E. Guerizec, “Streammlops: Operationalizing online learning
for big data streaming amp; real-time applications,” in 2023 IEEE 39th
International Conference on Data Engineering (ICDE). IEEE, Apr.
2023. [Online]. Available: http://dx.doi.org/10.1109/ICDE55515.2023.
00272

A. L. Sudrez-Cetrulo, D. Quintana, and A. Cervantes, “A survey on
machine learning for recurring concept drifting data streams,” Expert
Systems with Applications, vol. 213, p. 118934, Mar. 2023. [Online].
Available: http://dx.doi.org/10.1016/j.eswa.2022.118934

A. Bifet, S. Maniu, J. Qian, G. Tian, C. He, and W. Fan, “Streamdm:
Advanced data mining in spark streaming,” in 2015 IEEE International
Conference on Data Mining Workshop (ICDMW). IEEE, Nov. 2015.
[Online]. Available: http://dx.doi.org/10.1109/ICDMW.2015.140

M. Komisarek, M. Choras, R. Kozik, and M. Pawlicki, “Real-time
stream processing tool for detecting suspicious network patterns using
machine learning,” in Proceedings of the 15th International Conference
on Availability, Reliability and Security, ser. ARES 2020. ACM, Aug.
2020. [Online]. Available: http://dx.doi.org/10.1145/3407023.3409189
A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in deploying
machine learning: A survey of case studies,” ACM Computing
Surveys, vol. 55, no. 6, p. 1-29, Dec. 2022. [Online]. Available:
http://dx.doi.org/10.1145/3533378

I. L. Markov, H. Wang, N. S. Kasturi, S. Singh, M. R. Garrard,
Y. Huang, S. W. C. Yuen, S. Tran, Z. Wang, I. Glotov, T. Gupta,
P. Chen, B. Huang, X. Xie, M. Belkin, S. Uryasev, S. Howie,
E. Bakshy, and N. Zhou, “Looper: An end-to-end ml platform
for product decisions,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, ser. KDD

’22, vol. 28. ACM, Aug. 2022, p. 3513-3523. [Online]. Available:
http://dx.doi.org/10.1145/3534678.3539059
J. Lu, A. Liu, F Dong, F. Gu, J. Gama, and G. Zhang,

“Learning under concept drift: A review,” IEEE Transactions on
Knowledge and Data Engineering, p. 1-1, 2018. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2018.2876857

J. P. Barddal, H. M. Gomes, F. Enembreck, and B. Pfahringer, “A survey
on feature drift adaptation: Definition, benchmark, challenges and future
directions,” Journal of Systems and Software, vol. 127, p. 278-294, May
2017. [Online]. Available: http://dx.doi.org/10.1016/j.js5.2016.07.005

P. M. Gongalves, S. G. de Carvalho Santos, R. S. Barros, and
D. C. Vieira, “A comparative study on concept drift detectors,” Expert
Systems with Applications, vol. 41, no. 18, p. 8144-8156, Dec. 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.eswa.2014.07.019

A. R. Moya, B. Veloso, J. Gama, and S. Ventura, “Improving hyper-
parameter self-tuning for data streams by adapting an evolutionary
approach,” Data Mining and Knowledge Discovery, vol. 38, no. 3, p.
1289-1315, Dec. 2023. [Online]. Available: http://dx.doi.org/10.1007/
s10618-023-00997-7

F. Banar, A. Tabatabaei, and M. Saleh, “Stream data classification
with hoeffding tree: An ensemble learning approach,” in 2023 9th
International Conference on Web Research (ICWR). 1EEE, May
2023. [Online]. Available: http://dx.doi.org/10.1109/ICWR57742.2023.
10139228

J. Gama, R. Sebastido, and P. P. Rodrigues, “On evaluating stream
learning algorithms,” Machine Learning, vol. 90, no. 3, p. 317-346, Oct.
2012. [Online]. Available: http://dx.doi.org/10.1007/s10994-012-5320-9
H. M. Gomes, J. Read, A. Bifet, J. P. Barddal, and J. Gama,
“Machine learning for streaming data: state of the art, challenges,
and opportunities,” ACM SIGKDD Explorations Newsletter, vol. 21,
no. 2, p. 6-22, Nov. 2019. [Online]. Available: http://dx.doi.org/10.
1145/3373464.3373470

S. Anandan, M. Bogoevici, G. Renfro, I. Gopinathan, and P. Peralta,
“Spring xd: a modular distributed stream and batch processing system,”
in Proceedings of the 9th ACM International Conference on Distributed

http://dx.doi.org/10.1016/j.comcom.2023.11.002
http://dx.doi.org/10.1016/j.comcom.2023.11.002
http://dx.doi.org/10.1007/s00167-022-07155-4
http://dx.doi.org/10.1007/s00167-022-07155-4
http://dx.doi.org/10.14778/3007263.3007318
http://dx.doi.org/10.1145/3453444
http://dx.doi.org/10.1016/j.future.2024.107499
http://dx.doi.org/10.1109/ICCUBEA.2018.8697857
http://dx.doi.org/10.1109/ICCUBEA.2018.8697857
https://mlflow.org/
https://aws.amazon.com/sagemaker/
https://console.cloud.google.com/marketplace/product/google-cloud-platform/cloud-machine-learning-engine?project=curso-403115
https://console.cloud.google.com/marketplace/product/google-cloud-platform/cloud-machine-learning-engine?project=curso-403115
http://dx.doi.org/10.1007/s11227-021-03914-1
http://dx.doi.org/10.1145/3054925
http://dx.doi.org/10.1016/j.jksuci.2021.11.006
http://dx.doi.org/10.1016/j.jpdc.2012.11.001
http://dx.doi.org/10.1016/j.jnca.2024.104049
http://dx.doi.org/10.1109/AIKE52691.2021.00010
http://dx.doi.org/10.1145/3317550.3321443
http://dx.doi.org/10.1145/3317550.3321443
http://dx.doi.org/10.1109/ICDE55515.2023.00272
http://dx.doi.org/10.1109/ICDE55515.2023.00272
http://dx.doi.org/10.1016/j.eswa.2022.118934
http://dx.doi.org/10.1109/ICDMW.2015.140
http://dx.doi.org/10.1145/3407023.3409189
http://dx.doi.org/10.1145/3533378
http://dx.doi.org/10.1145/3534678.3539059
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1016/j.jss.2016.07.005
http://dx.doi.org/10.1016/j.eswa.2014.07.019
http://dx.doi.org/10.1007/s10618-023-00997-7
http://dx.doi.org/10.1007/s10618-023-00997-7
http://dx.doi.org/10.1109/ICWR57742.2023.10139228
http://dx.doi.org/10.1109/ICWR57742.2023.10139228
http://dx.doi.org/10.1007/s10994-012-5320-9
http://dx.doi.org/10.1145/3373464.3373470
http://dx.doi.org/10.1145/3373464.3373470

[31]
(32]
[33]
[34]
[35]

[36]

(371
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
(471

[48]

[49]

(501

(511

[52]

Event-Based Systems, ser. DEBS ’15. ACM, Jun. 2015, p. 217-225.
[Online]. Available: http://dx.doi.org/10.1145/2675743.2771879

The Apache Software Foundation, “Apache airflow,” 2014. [Online].
Available: https://airflow.apache.org/
The Kubeflow Authors, “Kubeflow,”
https://www.kubeflow.org/

Seldon Technologies Limited, “Seldon,” 2014. [Online]. Available:
https://www.seldon.io/

Microsoft Corporation, “Azure machine learning,” 2018. [Online].
Available: https://azure.microsoft.com/

The University of Waikato, “Moa - massive online analysis,” 2010.
[Online]. Available: https://moa.cms.waikato.ac.nz/

Apache Software Foundation, “Samoa - scalable advanced massive
online analysis,” 2014. [Online]. Available: https://incubator.apache.org/
projects/samoa.html

——, “Storm,” 2014. [Online]. Available: https://storm.apache.org/
——, “Samza,” 2018. [Online]. Available: https://samza.apache.org/
Jacob Montiel and Jesse Read and Albert Bifet and Talel Abdessalem,
“Scikit-multiflow: A multi-output streaming framework,” Journal of
Machine Learning Research, vol. 19, no. 72, pp. 1-5, 2018. [Online].
Available: http://jmlr.org/papers/v19/18-251.html

Python Software Foundation, “Creme,” 2020. [Online]. Available:
https://pypi.org/project/creme/

Montiel, Jacob and Halford, Max and Mastelini, Saulo Martiello and
Bolmier, Geoffrey and Sourty, Raphael and Vaysse, Robin and Zouitine,
Adil and Gomes, Heitor Murilo and Read, Jesse and Abdessalem, Talel
and others, “River: machine learning for streaming data in python,”
2021. [Online]. Available: https://riverml.xyz/

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

W. Jamil, N.-C. Duong, W. Wang, C. Mansouri, S. Mohamad, and
A. Bouchachia, “Scalable online learning for flink: Solma library,” in
Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, ser. ECSA *18, vol. 58. ACM, Sep. 2018,
p. 1-4. [Online]. Available: http://dx.doi.org/10.1145/3241403.3241438
Apache Software Foundation, “Apache flink: Stateful computations
over data streams,” 2014. [Online]. Available: https:/flink.apache.org/
D. Xu, D. Wu, X. Xu, L. Zhu, and L. Bass, “Making real time
data analytics available as a service,” in Proceedings of the 1lth
International ACM SIGSOFT Conference on Quality of Software
Architectures, ser. CompArch ’15. ACM, May 2015, p. 73-82.
[Online]. Available: http://dx.doi.org/10.1145/2737182.2737186
Apache Software Foundation, “Apache spark,” 2013. [Online].
Available: https://spark.apache.org/

——, “Mllib: Machine learning library,” 2014. [Online]. Available:
https://spark.apache.org/mllib/

R. Minon, J. Diaz-de Arcaya, A. 1. Torre-Bastida, G. Zarate, and
A. Moreno-Fernandez-de Leceta, “Mlpacker: A unified software tool
for packaging and deploying atomic and distributed analytic pipelines,”
in 2022 7th International Conference on Smart and Sustainable
Technologies (SpliTech), vol. 20. 1EEE, Jul. 2022, p. 1-6. [Online].
Available: http://dx.doi.org/10.23919/SpliTech55088.2022.9854211

R. Fayos-Jordan, S. Felici-Castell, J. Segura-Garcia, J. Lopez-
Ballester, and M. Cobos, “Performance comparison of container
orchestration platforms with low cost devices in the fog, assisting
internet of things applications,” Journal of Network and Computer
Applications, vol. 169, p. 102788, Nov. 2020. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2020.102788

R. Ramanath, K. Salomatin, J. D. Gee, K. Talanine, O. Dalal,
G. Polatkan, S. Smoot, and D. Kumar, “Lambda learner: Fast
incremental learning on data streams,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery amp; Data
Mining, ser. KDD °21. ACM, Aug. 2021. [Online]. Available:
http://dx.doi.org/10.1145/3447548.3467172

F. Carcillo, A. Dal Pozzolo, Y.-A. Le Borgne, O. Caelen, Y. Mazzer,
and G. Bontempi, “Scarff: A scalable framework for streaming credit
card fraud detection with spark,” Information Fusion, vol. 41, p.
182-194, May 2018. [Online]. Available: http://dx.doi.org/10.1016/j.
inffus.2017.09.005

J. Kranjc, R. Ora¢, V. Podpecan, N. Lavra¢, and M. Robnik—§ik0nja,
“Clowdflows: Online workflows for distributed big data mining,” Future
Generation Computer Systems, vol. 68, p. 38-58, Mar. 2017. [Online].
Available: http://dx.doi.org/10.1016/j.future.2016.07.018

2018. [Online]. Available:

(53]

[54]

[55]

[56]

(571

(58]
[59]
[60]

[61]

[62]
[63]

[64]
[65]

[66]
[67]
[68]

[69]

[70]

(71]
[72]

[73]

[74]

[75]

S. Garcia-Rodriguez, M. Alshaer, and C. Gouy-Pailler, “Streamer:
A powerful framework for continuous learning in data streams,” in
Proceedings of the 29th ACM International Conference on Information
amp; Knowledge Management, ser. CIKM ’20. ACM, Oct. 2020.
[Online]. Available: http://dx.doi.org/10.1145/3340531.3417427

C. Martin, P. Langendoerfer, P. S. Zarrin, M. Diaz, and B. Rubio,
“Kafka-ml: Connecting the data stream with ml/ai frameworks,” Future
Generation Computer Systems, vol. 126, p. 15-33, Jan. 2022. [Online].
Available: http://dx.doi.org/10.1016/j.future.2021.07.037

D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: a low-latency online prediction serving system,” in
Proceedings of the 14th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’17. USA: USENIX Association,
2017, p. 613-627.

D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque,
S. Haykal, M. Ispir, V. Jain, L. Koc, C. Y. Koo, L. Lew, C. Mewald,
A. N. Modi, N. Polyzotis, S. Ramesh, S. Roy, S. E. Whang, M. Wicke,
J. Wilkiewicz, X. Zhang, and M. Zinkevich, “Tfx: A tensorflow-based
production-scale machine learning platform,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD *17. ACM, Aug. 2017. [Online]. Available:
http://dx.doi.org/10.1145/3097983.3098021

A. Pareek, B. Zhang, and B. Khaladkar, “A demonstration of striim a
streaming integration and intelligence platform,” in Proceedings of the
13th ACM International Conference on Distributed and Event-based
Systems, ser. DEBS ’19. ACM, Jun. 2019, p. 236-239. [Online].
Available: http://dx.doi.org/10.1145/3328905.3332519
Apache Software Foundation, “Apache kafka,”

Available: https://kafka.apache.org/

Elastic, “Elasticsearch,” 2010. [Online]. Available: https://www.elastic.
co/elasticsearch/

——, “Kibana,” 2013.

2011. [Online].

[Online]. Available: https://www.elastic.co/

kibana/
Apache Software Foundation, “Hadoop distributed file system
(hdfs),” 2006. [Online]. Available: https://hadoop.apache.org/docs/

stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html

Pivotal Software, “Rabbitmq,” 2007. [Online]. Available: https:
/lwww.rabbitmq.com/
Apache Software Foundation, “Apache hadoop,” 2006. [Online].

Available: https://hadoop.apache.org/

Redis Labs, “Redis,” 2009. [Online]. Available: https://redis.io/
Apache Software Foundation, “Apache zookeeper,” 2010. [Online].
Available: https://zookeeper.apache.org/
InfluxData, “Influxdb,” 2013. [Online].
influxdata.com/products/influxdb/

Google Brain Team, “Tensorflow: An open-source machine learning
framework,” 2015. [Online]. Available: https://www.tensorflow.org/
PyTorch Foundation, “Pytorch: An open-source machine learning
library,” 2016. [Online]. Available: https://pytorch.org/

P. Horchulhack, E. K. Viegas, A. O. Santin, F. V. Ramos, and
P. Tedeschi, “Detection of quality of service degradation on multi-
tenant containerized services,” Journal of Network and Computer
Applications, vol. 224, p. 103839, Apr. 2024. [Online]. Available:
http://dx.doi.org/10.1016/j.jnca.2024.103839

F-J. Yang, “An implementation of naive bayes classifier,” in 2018
International Conference on Computational Science and Computational
Intelligence (CSCI). IEEE, Dec. 2018. [Online]. Available: http:
//dx.doi.org/10.1109/CSCI46756.2018.00065

Canonical Ltd., “Microk8s: Lightweight kubernetes for developers and
devops,” 2018. [Online]. Available: https://microk8s.io/

Pallets Projects, “Flask: A python microframework,” 2010. [Online].
Available: https://flask.palletsprojects.com/

R. Agrawal, T. Imielinski, and A. Swami, “Database mining: a
performance perspective,” IEEE Transactions on Knowledge and Data
Engineering, vol. 5, no. 6, p. 914-925, Dec. 1993. [Online]. Available:
http://dx.doi.org/10.1109/69.250074

N. Asghar, “Yelp dataset challenge: Review rating prediction,” 2016.
[Online]. Available: https://arxiv.org/abs/1605.05362

N. Oza, “Online bagging and boosting,” in 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3. IEEE, p.
2340-2345. [Online]. Available: http://dx.doi.org/10.1109/ICSMC.2005.
1571498

Available: https://www.

http://dx.doi.org/10.1145/2675743.2771879
https://airflow.apache.org/
https://www.kubeflow.org/
https://www.seldon.io/
https://azure.microsoft.com/
https://moa.cms.waikato.ac.nz/
https://incubator.apache.org/projects/samoa.html
https://incubator.apache.org/projects/samoa.html
https://storm.apache.org/
https://samza.apache.org/
http://jmlr.org/papers/v19/18-251.html
https://pypi.org/project/creme/
https://riverml.xyz/
http://dx.doi.org/10.1145/3241403.3241438
https://flink.apache.org/
http://dx.doi.org/10.1145/2737182.2737186
https://spark.apache.org/
https://spark.apache.org/mllib/
http://dx.doi.org/10.23919/SpliTech55088.2022.9854211
http://dx.doi.org/10.1016/j.jnca.2020.102788
http://dx.doi.org/10.1145/3447548.3467172
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.inffus.2017.09.005
http://dx.doi.org/10.1016/j.future.2016.07.018
http://dx.doi.org/10.1145/3340531.3417427
http://dx.doi.org/10.1016/j.future.2021.07.037
http://dx.doi.org/10.1145/3097983.3098021
http://dx.doi.org/10.1145/3328905.3332519
https://kafka.apache.org/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana/
https://www.elastic.co/kibana/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://hadoop.apache.org/
https://redis.io/
https://zookeeper.apache.org/
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://www.tensorflow.org/
https://pytorch.org/
http://dx.doi.org/10.1016/j.jnca.2024.103839
http://dx.doi.org/10.1109/CSCI46756.2018.00065
http://dx.doi.org/10.1109/CSCI46756.2018.00065
https://microk8s.io/
https://flask.palletsprojects.com/
http://dx.doi.org/10.1109/69.250074
https://arxiv.org/abs/1605.05362
http://dx.doi.org/10.1109/ICSMC.2005.1571498
http://dx.doi.org/10.1109/ICSMC.2005.1571498

Miguel G. Rodrigues is a Computer Science MSc.
candidate at the Pontifical Catholic University of
Parand (PUCPR). He received his bachelor’s degree
in Big Data and Data Science from PUCPR in 2021.
His research includes stream learning applications,
Big Data, Distributed Systems, and MLOps.

Eduardo K. Viegas received his BS in computer
science in 2013, the MSC in computer science in
2016 from PUCPR, and the Ph.D. degree from
PUCPR in 2018. He is an associate professor of
the Graduate Program in Computer Science (PPGla).
His research interests include machine learning, net-
work analytics, and computer security.

Altair O. Santin received the BS degree in Com-
puter Engineering from the PUCPR in 1992, the
M.Sc. degree from UTFPR in 1996, and the Ph.D.
degree from UFSC in 2004. He is a full professor of
the Graduate Program in Computer Science (PPGla)
and head of the Security & Privacy Lab (SecPLab)
at PUCPR. He is an IEEE, ACM, and Brazilian
Computer Society member. https://orcid.org/0000-
0002-2341-2177.

Fabricio Enembreck holds a degree in Computer
Science from the State University of Ponta Grossa
(1997), a master’s degree in Computer Science from
the Pontifical Catholic University of Parand (1999),
and a PhD in Information and Systems Technologies
from the Universite de Technologie de Compiegne
(2003). He is currently an Assistant Professor at
the Pontifical Catholic University of Parand. He
has experience in the area of Computer Science,
with an emphasis on Computer Systems. He works
mainly on the following topics: assistant agents,

autonomous agents, adaptive autonomous agents, distributed artificial intel-
ligence, multi-agent systems, and machine learning.

