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Based on DNN for Edge Computing
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Abstract—To improve the accuracy of Deep Neural Networks
(DNNs) applied to Network Intrusion Detection Systems (NIDS)
researchers often increase the complexity of their designed model.
Given the processing limitations of resource-constrained devices,
researchers have proposed offloading the NIDS task to the
cloud. However, simultaneously ensuring energy efficiency and
detection accuracy remains a challenge. This paper proposes
a DNN-based NIDS through early exits that operate following
an energy-efficient edge-computing architecture implemented
twofold. Firstly, we propose a DNN-based NIDS employing multi-
objective optimization for efficient inference and computation
offloading. It is designed to perform the classification task at
the edge device and configured to proactively offload events to
the cloud when additional processing capabilities are required.
Our insight is to utilize multi-objective optimization to identify
the optimal balance between accuracy and energy efficiency
in task offloading. Secondly, the final DNN branch performs
classification with a reject option to ensure reliability when
analyzing new network traffic patterns, while calibration adjusts
the model’s confidence values to enhance generalization. The
rejection mechanism allows the model to accept only its most
confident classifications enhancing the model’s generalization ca-
pabilities. Experiments conducted with our proposal’s prototype
through a new intrusion dataset encompassing one-year-long
network traffic with over 7TB of data attested to our proposal’s
feasibility. It can reduce the edge device’s energy consumption
and processing costs to only 1%, while maintaining accuracy.
This is achieved while demanding the offloading of only 10%
of network events to the cloud, optimizing resource utilization
across both the edge and cloud infrastructures.

Index Terms—Intrusion Detection, Deep Learning, Early Exits,
Energy-efficiency, Edge Computing.

I. INTRODUCTION

THE utilization of resource-constrained devices, partic-
ularly in the context of Internet of Things (IoT), has

consistently risen over the past years [1]. These devices typi-
cally consist of battery-powered embedded computing systems
with limited processing capabilities that often include network
connectivity, a feature that makes them a common target for
attackers. For example, according to a security report [2],
2023 alone experienced a 60% increase in intrusion campaigns
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eduardo.viegas, santin}@ppgia.pucpr.br)

Everton de Matos is with the Secure Systems Research Center, Technol-
ogy Innovation Institute (TII), Abu Dhabi (e-mail: everton.dematos@tii.ae)

compared to the previous year, highlighting the exposure of
all connected devices to cyberattacks.

To address this ever-increasing number of network threats,
operators often resort to Network Intrusion Detection Systems
(NIDSs), implemented through either rule-based or behavior-
based schemes [3]. On the one hand, rule-based NIDSs
conduct their detection according to a database of previously
known threats. Thus, they fall short in detecting new attack
variants [4]. On the other hand, behavior-based NIDSs as-
sesses the behavior of events and identifies anomalies based
on deviations from a previously established normal baseline.
As a result, they can identify new types of attacks, provided
these attacks exhibit significant deviations from the previously
established normal baseline [5].

In recent years, numerous studies have introduced highly
accurate behavior-based NIDSs, with Deep Neural Network
(DNN)-based approaches emerging as the most effective in
achieving the highest accuracy levels [6]. To achieve this
goal, DNN-based intrusion detection involves forwarding input
parameters throughout the entire network architecture until
the output layer is reached. In this process, multiple spatial
non-linear patterns and features are extracted, subsequently
serving as indicators for the classification task conducted at
the output layer [7]. To adequately depict network traffic
behavior, researchers often increase the complexity of the
DNN by adding more parameters and layers [8]. Hence, the
accuracy benefits often come at the expense of higher memory
and processing requirements, which hinders their application
on resource-constrained devices. Surprisingly, the literature
often neglects the processing limitations of these devices,
frequently assuming that the processing footprint and energy
requirements of the employed DNNs can be scaled without
constraint [9]. This situation often makes the implementation
of DNN-based intrusion detection on IoT devices impractical.

Edge Computing (EC) have emerged as a solution to this
challenge in the literature, where the edge, or an intermediate
infrastructure device, may cooperate with the cloud to conduct
the processing task [10]. More specifically, intrusion detection
can be achieved by offloading the DNN-based classification
task from the edge device to the edge infrastructure or the
cloud. Unfortunately, offloading all network traffic for clas-
sification purposes is not easily achievable. This is because
network traffic must be classified with minimal processing de-
lays, ensuring that identified attacks are blocked promptly [11].
Notwithstanding, offloading the network classification task
can quickly deplete the edge device’s bandwidth if all traffic
is continuously forwarded to the cloud. In practical terms,
edge devices must reliably and autonomously identify which
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network traffic needs to be further assessed in the cloud, a task
not easily achieved [12]. Adequate NIDS task offloading can
improve the overall IoT system’s energy efficiency, ultimately
paving the way for a green EC, as both edge and cloud
infrastructure can benefit from lower resource usage. However,
achieving the optimal balance between energy efficiency from
offloading and the error rate from local classification remains
a significant challenge in the literature.

Combining edge and cloud computing capabilities for in-
trusion detection is still in its infancy in the literature [13].
A promising approach relies on applying early exits with
the deployed DNN architectures. Early exits add multiple
termination points that split the neural network into branches,
enabling the inference task to conclude prematurely if the
currently extracted patterns and features can reliably lead to a
decision [14]. Alternatively, the task can be offloaded to the
cloud infrastructure when the additional processing capabili-
ties required by the final DNN branches become necessary.
While early exits typically reduce the DNN inference compu-
tational cost with minimal impact on accuracy, they are not
readily applicable to network intrusion detection, especially on
resource-constrained devices.

Unlike other domains, network traffic behavior is notably
dynamic and continually evolving as time passes [15]. This
necessitates adequate DNN model generalization capabilities.
Conversely, existing intrusion detection strategies based on
early exits often fail to consider the trade-offs in the model
generalization that arise from prematurely terminating the
inference task at the edge device. Additionally, due to the
dynamic nature of network traffic behavior, the classification
unreliability caused by an outdated DNN model with a fixed
configuration is often assumed to be easily resolved through
periodic model updates [16]. A procedure that frequently re-
quires an extended time frame, often days or weeks, and large
amounts of labeled training data. As a result, the deployed
model must be able to provide a prolonged lifespan to ensure
its reliability while an updated model is still unavailable. Un-
der these assumptions, integrating edge and cloud computing
for NIDS remains an open challenge in the literature. The
offloading strategy must ensure the edge device’s security in
the presence of non-stationary network traffic behavior and
simultaneously support an energy-efficient EC architecture.
Achieving this balance is particularly challenging due to
the resource-constrained nature of edge devices. The critical
challenge lies in determining which set of events requires
further analysis with additional computational resources—a
decision that must be made autonomously, without operator
supervision.
Contribution. In light of this, this paper proposes a new DNN-
based NIDS through early exits that operate following an
energy-efficient EC architecture, implemented threefold. First,
we conduct DNN-based NIDS through early exits coped with
a multi-objective optimization strategy for adequate classifica-
tion offloading. Our model implements the classification task
at the edge and proactively offloads events to the cloud when
additional processing capabilities are required. Our insight is to
leverage multi-objective optimization to find the optimal com-
promise between accuracy and energy efficiency due to cloud

offloading. Secondly, to ensure reliability with new network
traffic behavior, we conduct classification with a reject option
at the last DNN branch while also calibrating the model’s
confidence values. The rejection ensures that only highly
confident classifications are accepted by our model, while
the calibration improves the model generalization. Thirdly, we
implement our proposed approach within an energy-efficient
EC architecture encompassing edge devices and cloud in-
frastructure. Our scheme enables reliable NIDS classification
offloading from edge devices to cloud infrastructure while
optimizing energy efficiency and classification latency.

In summary, the main contributions of this paper are:
• An evaluation of widely used DNN-based NIDS concern-

ing their accuracy, energy consumption and processing
costs. Our experiments reveal that current approaches
demand unfeasible amounts of processing and energy
while also experiencing a rapid degradation in accuracy
over time;

• A new DNN-based NIDS with early exits that oper-
ates within a energy-efficient architecture. Our proposed
scheme can autonomously offload computation to cloud
infrastructure when required while also dealing with
changes in network traffic behavior;

• A proposal prototype that demonstrates our scheme feasi-
bility under a variety of energy-efficient EC deployment
settings. Our scheme can reduce the edge device’s energy
consumption and processing costs up to only 1%, while
keeping or improving F1-Score by 0.02. This is achieved
while demanding the offloading of only 10% of network
events to the cloud, leading to resource optimization on
both the edge and cloud infrastructures;

Roadmap. The remainder of this paper is organized as follows.
Section II introduces the fundamentals behind DNN-based
NIDS and early exits. Section III describes the related works
on EC for behavior-based NIDS. Section IV evaluates widely
used DNN-based NIDSs with respect to their implementation
feasibility on resource-constrained edge devices. Section V
introduces our proposed energy-efficient EC architecture for
reliable DNN-based NIDS, Section VI describes the prototype
implementation, and Section VII evaluates its performance.
Finally, Section VIII concludes our work.

II. PRELIMINARIES

This section further describes the operation of DNN-based
NIDS and discusses the challenges related to implementing an
energy-efficient EC infrastructure in this context.

A. DNN-based Network Intrusion Detection

Network intrusion detection is typically implemented
through four sequential modules, namely Data Acquisition,
Feature Extraction, Classification, and Alert [3]. The Data
Acquisition module is responsible for the real-time collection
of network packets from a monitored Network Interface Card
(NIC). These collected packets are then continuously for-
warded to the Feature Extraction module, which extracts flow-
based features to depict network traffic behavior. In general,
network traffic behavior is characterized using flow-based
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TABLE I: Features set extracted at the network level for each
feature grouping in a time window interval of 15s.
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Minimum Packet Size (Bytes)
Maximum Packet Size (Bytes)

3rd quartile Packet Size (Bytes)
Number of Packets (SYN Flag)
Number of Packets (ACK Flag)

Number of Packets (ACK + PUSH Flag)
Number of Packets (FIN Flag)
Number of Packets (URG Flag)

Packet inter-arrival time (Avg, Min, Max, Med)

features, which summarize communication patterns between
hosts and their services within a defined time window. Table I
lists a set of flow-based features typically extracted for NIDS
classification tasks. The resulting feature set serves as input to
the Classification module, which can utilize a DNN model to
classify the input features as either normal or attack. Signaled
events are reported by the Alert module.

In recent years, extensive research effort has been con-
centrated on enhancing the detection accuracy of NIDSs,
with DNN-based approaches providing the most promising
results [6]. DNN-based intrusion detection involves forwarding
input parameters through the entire neural network architecture
until the output layer is reached. During this process, spatial
non-linear patterns and features are extracted and used as
indicators for the classification task, which occurs at the final
neural network layer [8]. To improve classification accuracy,
researchers often increase the number of neural network
parameters. Consequently, these methods typically enhance
system accuracy, but they come with significant trade-offs
regarding memory and processing requirements, which can
hinder their application to resource-constrained edge devices.

Notwithstanding, the dynamic behavior of network traffic
presents a significant challenge to the fixed configuration of
traditional DNN-based NIDSs [16]. Network traffic patterns
are not stationary; in contrast, they evolve over time due
to various factors such as changing user behaviors, varying
application demands, and network configurations. As a result,
intrusion detection models trained on static traffic datasets
often struggle to adapt to these evolving patterns, leading
to a degradation in performance. Fixed DNN-based NIDS
configurations, which rely solely on pre-trained models with-
out accommodating these dynamic changes, are particularly
vulnerable. The model’s accuracy declines as the network
traffic evolves, resulting in higher error rates and reduced
reliability. To maintain detection effectiveness, periodic model
updates are required to adapt to the changing traffic behavior,
which is not always feasible in real-world deployments.

B. Early Exits

Early exits are designed to address inference computational
cost challenges by introducing side branches that allow for the
premature termination of neural network inference tasks [14].

Each side branch typically includes fully connected layers
that classify the input at that stage. Suppose an input sample
achieves high confidence at a branch. In that case, it can
exit from that branch without traversing the remaining neural
network layers, reducing the depth some samples need to
traverse. As a result, the neural network branches can be
distributed, with the first branch executed at the resource-
constrained device and intermediate branches offloaded to the
cloud infrastructure.

Several approaches can be employed to design an early
exit strategy, including modifying the location and structure
of side branches within the DNN, as well as customizing the
training loss function to optimize the performance of these
early exits [17]. Typically, the side branch structure includes a
fully connected layer that flattens the output of the preceding
layer to perform the classification task. While this approach
enables classification at intermediate branches with minimal
computational trade-offs, it may struggle if the preceding layer
does not provide sufficient features for accurate classification.
As a result, the placement of side branches is generally guided
by the architecture of the DNN, with particular attention to
the location of convolutional layers. Placing a side branch
on earlier layers can significantly reduce computational costs.
However, it often results in lower accuracies at those branches
due to the limited feature representation available at early
stages of the network.

Researchers often adopt a joint training approach to conduct
the DNN training procedure with early exits [18]. Let N be the
number of exit branches, and ỹi be the classification output of
each branch i on a given event with label yi. We can compute
the joint loss function as a weighted sum of losses of each
branch through Equation 1.

Ljoint(ỹ
i, yi) =

N∑
i=1

wiL(ỹi, yi) (1)

where Ljoint is the joint loss function, L the loss function,
and wi the branch i weight. Here, wi can be used to fine-
tune the accuracies at each branch, such as allowing for a
preference towards more accurate earlier branches, resulting
in more events classified at the resource-constrained device.

During the test phase, the network inference task processes
the input event until it reaches the first branch, potentially
stopping the inference prematurely based on whether the
classification confidence surpasses a given threshold t. This
acceptance threshold is typically set based on the operator’s
judgment, considering the desired trade-off between accuracy
and average inference time. If the final branch is reached, the
event’s class is determined based on the decision made at that
branch.

C. Edge-Computing for NIDS

Edge computing (EC) aims to enable resource-constrained
devices, such as those from IoT, to offload their tasks to
edge-cloud infrastructure, paving the way for more processing
resources [10]. In this context, a energy-efficient EC should
address the energy management challenges created by task
offloading, such as additional network usage, task dispatch,
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and adequate management [19]. Offloading security-related
tasks can greatly benefit from EC, given the limited processing
capabilities of targeted devices that attackers can explore
to circumvent detection [20]. A typical security application
involves network traffic analysis for intrusion detection pur-
poses. However, forwarding all network traffic for offloading
the analysis task is not practical in EC settings, as it can
quickly saturate the device’s network bandwidth. Therefore,
approaches capable of effectively determining when network
traffic requires additional processing resources are essential.

Splitting NIDS-related tasks from resource-constrained de-
vices to edge-cloud infrastructures is still a challenge in the
literature [21]. Although early exits for DNNs have shown
great success in several tasks, their application for NIDS in
EC is still in its infancy. Finding the optimal compromise
between accuracy, energy efficiency, and classification latency
poses a significant challenge to designed schemes. This is
because offloading a neural network branch from edge to
cloud (see Section II-B) also requires sending the features
extracted by the prior branch. As a result, the benefits of
energy efficiency and accuracy can often only be achieved
with significant tradeoffs in network communication.

Another challenge arises from the dynamic behavior of
network traffic, which can be caused by the discovery of
new attacks or even the provision of new services [15].
Changes in network traffic behavior cause designed DNN-
based schemes to degrade in accuracy compared to their
performance measured during the testing phase [16]. Current
approaches assume that periodic model updates are conducted
to adequately account for these changes, often requiring weeks
or even months to complete. Conversely, new network traffic
must be collected and its behavior adequately labeled as
normal or attack, often requiring human assistance. Only then
can the computationally expensive process of model training
be conducted. This situation often leads to the unreliable use
of outdated DNN models in production for extended periods
before an updated model becomes available.

Under these circumstances, splitting NIDS-related tasks
between resource-constrained devices and cloud infrastructure
can pose a significant challenge, as the deployed model may
generate a higher rate of false alerts than anticipated. This
situation highlights the need for the DNN model to adequately
generalize to changes in network traffic behavior over time. As
a result, achieving reliable offloading of DNN-based NIDS
while considering a EC setting remains a challenge in the
literature.

III. RELATED WORKS

This section further assesses the current landscape of DNN-
based NIDS in EC infrastructures. Specifically, we first exam-
ine DNN-based approaches tailored for resource-constrained
devices, followed by an investigation into how EC facilitates
reliable NIDS offloading tasks.

A. Behavior-based NIDS for Resource-constrained Devices

In general, DNN-based NIDSs proposed in the literature
aims at improving detection accuracy on specific datasets [22].

For example, M. Ge et al. [23] propose a DNN-based ap-
proach for intrusion detection in IoT. Their scheme utilizes
embedding layers for high-dimensional categorical feature
encoding, which improves classification accuracy. However,
they assume a static behavior of network traffic while over-
looking the associated processing costs. Similarly, V. Ravi et
al. [24] employ a feature dimensionality reduction technique
in their DNN model to reduce processing requirements. Their
model outperforms related works but overlooks changes in
network traffic behavior. H. Nandanwar et al. [25] propose a
DNN-based approach for IoT attack detection using a Gated
Recurrent Unit (GRU) for temporal feature representation.
Their approach improves classification accuracy but overlooks
the computational costs associated with applying GRU on
resource-constrained devices.

In recent years, several authors have pursued more resource-
efficient approaches for intrusion detection, aiming to fa-
cilitate their implementation on IoT devices. For instance,
S. Khandelwal et al. [26] reduce the precision of floating
point operations in their DNN model to 2 bits. Their scheme
significantly decreases inference costs with minimal impact
on accuracy. However, the model’s performance in assessing
highly dynamic network traffic behavior is overlooked. An-
other approach based on model quantization was proposed by
L. Zhang et al. [27], where a DNN model is converted to
a binarized version with no significant impact on accuracy.
Their scheme significantly improves inference throughput but
overlooks the impact on model generalization for network
traffic analysis. Reducing the number of input features is
another effective method to minimize processing costs while
maintaining detection performance. R. Zhao et al. [28] im-
plement a feature reduction approach to decrease the number
of required DNN parameters. While their scheme improves
inference throughput, it overlooks the implications of model
generalization and how it affects reliability. Similarly, O. R.
Sanchez et al. [29] propose a feature selection technique to
decrease inference costs while maintaining classification ac-
curacy. Although their model significantly reduces processing
costs, it also neglects the implications on model generalization
capabilities.

Intrusion detection under highly dynamic network traffic
behavior remains a significant challenge in the literature [4].
Generally, authors assume that model updates can be easily
conducted to address this issue, often overlooking the as-
sociated challenges (see Section II-C). As an example, O.
A. Wahab [30] employs a drift detector combined with a
feature reduction scheme to identify changes in network traffic
behavior on IoT devices. Their model aims to maintain stable
accuracy performance over time but assumes a supervised
learning setting where a network operator can assess the
model’s accuracy and label events accordingly. Another ap-
proach was proposed by G. Andresini et al. [31], where a
semi-supervised approach detects concept drifts. The authors
incrementally adjust the deployed model using events with
new behaviors in an active learning strategy. However, they
only evaluate their performance on synthetic data and overlook
resource-constrained device applications.
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B. Edge Computing Offloading

Several authors have increasingly adopted EC strategies in
recent years, reporting promising results to facilitate access
to additional processing resources [21]. In such contexts,
proposed approaches vary from enhancing intrusion detection
accuracy to effectively managing task offloading. For instance,
X. Zhao et al. [32] propose a reinforcement learning strategy
to select an edge server for offloading intrusion detection tasks
based on energy consumption and detection delay metrics.
Their approach aims to reduce IoT device energy consumption
but overlook trade-offs in accuracy and network traffic usage.
Another approach to task offloading through blockchain is
presented by H. Liu et al. [33]. Their method aims to minimize
processing trade-offs through blockchain-based offloading but
neglects network communication and energy efficiency. A.
Mourad et al. [34] propose offloading intrusion detection tasks
based on the proximity of edge devices. While their model
reduces resource usage on IoT devices, it overlooks challenges
such as the dynamic behavior of network traffic and the
communication overheads associated with intrusion detection.

In recent years, a popular approach to task offloading has
involved the use of DNN inference splitting strategies (see
Section II-B). For instance, M. Ayyat et al. [35] proposed
the class-aware early exit DNN to prioritize class importance
at different side branches. Their approach reduces inference
processing costs while enhancing classification accuracy on
resource-constrained devices. However, the authors did not
implement the DNN side branches in a distributed manner.
A. Bakhtiarnia et al. [36] introduced a new training strategy
for early exits where earlier branches are optimized to classify
more samples. This approach enhances inference throughput
but does not address deployment in a distributed setting. R.
G. Pacheco et al. [37] distributed DNN side branches in an
edge-cloud environment for effective task offloading. They
highlighted the critical role of communication bandwidth in
inference offloading and examined the impact of cloud location
on Round Trip Time (RTT) time. However, their evaluation
was limited to vision-related tasks. In a subsequent work [14],
they emphasized the significant impact of classification con-
fidence calibration on effective task offloading. As a result,
applying early exits within the NIDS domain remains an
open challenge in the literature. This is primarily due to the
complexity of achieving an optimal trade-off between energy
consumption and error rate during task offloading. Determin-
ing when to terminate inference locally or offload it to the
cloud requires careful calibration, as premature offloading
may lead to higher energy consumption, while incorrect local
classification can increase error rates. This balancing is further
complicated by the dynamic nature of network traffic, which
necessitates adequate mechanisms to maintain reliability in
real-time intrusion detection scenarios.

C. Discussion

Current approaches to DNN-based NIDS for resource-
constrained devices typically focus on reducing the compu-
tational cost of the inference task, employing techniques such
as model quantization [26], [27] and feature reduction [28],

TABLE II: MAWIFlow dataset statistics.

Property Value
Average Daily Network Packets 105 Millions
Average Daily Network Flows 9 Millions
Average Daily Throughput 610 Mbps
Average Daily Anomalous Flows 1.8 Millions
Average Daily Dataset Size 19.7 GB
Total Network Packets 27.72 Billions
Total Network Flows 6.14 Billions
Total Dataset Size 7.1 TB

[29]. While these methods show promise in enhancing effi-
ciency, they often fall short of accounting for the trade-offs in
model generalization, particularly in dynamic network traffic
environments [16]. This inability to adapt to the evolving
nature of network traffic is a significant limitation, as these
methods may struggle to maintain accuracy in real-world,
ever-changing conditions. Additionally, while offloading tasks
to edge or cloud infrastructures has been proposed as a
means to overcome hardware constraints, the literature often
overlooks the critical trade-offs between energy efficiency and
reliability in NIDS-related tasks [32], [33]. In this context,
DNN splitting strategies may effectively facilitate intrusion
detection offloading when necessary, but authors frequently
overlook their implementation in a distributed and realistic
manner [35], [36].

In response to these challenges, our proposal addresses
several key gaps in the literature. Specifically, we focus on
enabling the deployment of DNN-based NIDSs on resource-
constrained devices by improving both energy efficiency and
reliability in dynamic network traffic environments. We aim
to enhance the reliability of intrusion detection systems in
scenarios where network behavior continuously evolves—an
issue that has been largely overlooked in current solutions.
Furthermore, we tackle the research gap in existing methods
by optimizing the balance between energy efficiency and
reliability during intrusion detection offloading. Additionally,
we explore a DNN splitting strategy for distributed offloading.
This topic has been overlooked in the literature but is a must
for practical, and scalable deployment of DNN-based NIDSs
in real-world settings.

IV. PROBLEM STATEMENT

In real networked environments, deployed DNN-based
NIDSs must accurately capture the non-stationary behavior
of network traffic. In this section, we delve deeper into the
performance of widely used DNN-based NIDSs in detecting
network intrusions on resource-constrained devices. We begin
by introducing the dataset utilized in our study. Subsequently,
we evaluate the performance of various DNN models in terms
of accuracy and processing costs.

A. A realistic network intrusion dataset

Current datasets widely used in the literature often assume
a static behavior of network traffic [38]. These datasets are
typically divided into training and testing sets, neglecting the
dynamic and evolving nature of real-world network traffic.
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Fig. 1: MAWIFlow network flow distribution over the year.

Consequently, designed schemes can typically achieve high
detection accuracies during the testing phase but may perform
poorly when deployed in production. This scenario becomes
increasingly challenging over time as new services are intro-
duced or novel attack patterns are discovered.

To address such a challenge, we utilize the MAWIFlow
dataset, a publicly available intrusion dataset containing real,
valid, and labeled network traffic collected from produc-
tion environments spanning an extended period. To achieve
these characteristics, the MAWIFlow dataset is built upon the
MAWI [39] working group traffic archive. It includes network
traffic from MAWI samplepoint-F, a transit link between Japan
and the USA, collected in 15-minute intervals. The network
data is collected daily, resulting in a network PCAP file for
each day over the evaluation period, totaling over 7TB of data
and encompassing more than 70 billion in network flows. For
this research, we utilized the network data collected throughout
the entire year of 2016. Table II presents the statistics of the
MAWIFlow dataset, while Figure 1 illustrates the distribution
of network flows over the year.

The collected data is organized into network flows based on
the hosts and services involved in each communication. Each
network flow represents a 15-second segment of client/service
and server/service data, which is then summarized into an
associated feature set. For this study, we extracted 58 features
from Moore’s work [40]. Table I lists the set of features
used. To assign labels, our study employs the MAWILab [41]
unsupervised machine learning algorithms designed to identify
network anomalies.

Consequently, the constructed dataset facilitates the evalu-
ation of proposed intrusion detection schemes, particularly in
assessing their accuracy over time. This is because MAWIFlow
includes daily labeled network traffic data collected from
a real network environment over a year-long period. The
resulting dataset allows for an in-depth analysis of how the
dynamic behavior of network traffic impacts the accuracy of
the proposed schemes. In addition, the built dataset is publicly
available for the research community.

B. Model Building

To investigate the accuracy degradation and processing
costs on resource-constrained devices, we evaluate the perfor-
mance of two widely used DNN architectures: AlexNet and
MobileNetV2. This evaluation covers a resource-demanding
architecture, demonstrated by AlexNet, and a more lightweight

counterpart, represented by MobileNetV2. The selected DNN
architectures are widely used for intrusion detection to enhance
the accuracy of designed systems. Therefore, we use them as
a traditional baseline approach to evaluate their performance
in terms of both accuracy and energy consumption.

Both architectures were adjusted to fit MAWIFlow tabular
format (features are listed on Table I). To be more precise,
we first transform the 58 features input into a single-channel
8x8 square shape, zeroing the remaining features during such
a process. This adapted input is then reshaped to a 48x48x1
using average pooling, subsequently serving as input to the
DNN architectures. In practice, the resulting feature conver-
sion is represented as a one-color image, which can be used
as input by the DNNs. The goal is to enable the appropriate
transformation of the input format from MAWIFlow into a
matrix format required by the selected DNNs, ensuring that
no information is lost during the process. This is achieved by
applying average pooling to the generated matrix and leverag-
ing the convolutional layers of the selected DNN architectures
to extract and preserve the feature relationships.

The DNNs were trained using adam optimizer, running for
1, 000 training epochs, with a batch size of 1, 000 events.
We utilized categorical cross-entropy as the loss function.
The learning rate was set at 0.001 with a learning rate
scheduler that stops training if there is no improvement in
the validation accuracy over 50 epochs. To ensure the proper
model training, as most events on the MAWIFlow dataset
are normal (see Table 1), we apply a random undersampling
without replacement at every training task. Similarly, we also
apply a min-max scaling procedure to adequately normalize the
dataset between −1 and +1. These models were implemented
using PyTorch API version 2.1.0.

We evaluate the selected classifiers using the following
classification performance metrics:

• True Positive (TP): number of attack samples correctly
classified as an attack.

• True Negative (TN): number of normal samples correctly
classified as normal.

• False Positive (FP): number of normal samples incor-
rectly classified as an attack.

• False Negative (FN): number of attack samples incor-
rectly classified as normal.

Further, we measure the F-Measure according to the har-
monic mean of precision and recall values while considering
attack samples as positive and normal samples as negative, as
shown in Eq. 4.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F -Measure = 2× Precision ·Recall

Precision+Recall
(4)
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Fig. 2: Accuracy trends of commonly used classifiers over a
year without periodic model updates. The classifiers are trained
in January and evaluated in the subsequent months without
updates.

C. DNN-based Network Intrusion Detection for Resource-
Constrained Devices

This section further investigates the accuracy performance
and processing costs of widely used DNN-based NIDSs.
More specifically, we aim to answer the following Research
Questions (RQs):

• RQ1: What is the accuracy performance of DNN-based
NIDS when exposed to non-stationary network traffic?

• RQ2: What are the processing costs of selected tech-
niques on resource-constrained devices?

Our first experiment aims to address RQ1 by investigating
the accuracy performance of the selected DNN architectures
for intrusion detection. To achieve this, we train each selected
DNN architecture using data from the entire month of January
(see Fig. 1) and evaluate the model’s performance over the
remaining year without periodic updates. This simulates a
realistic scenario where the designed schemes must operate for
extended periods before an updated model becomes available.
The experiment aims to determine if the current widely used
DNN-based NIDSs in the literature can reliably perform intru-
sion detection under non-stationary network traffic behavior.

Figure 2 shows the monthly accuracy performance of the
selected techniques without periodic model updates. The eval-
uation indicates that these techniques provide significantly
high detection accuracies in the initial months following
the training period. However, as time progresses, there is
a noticeable downward trend in accuracy, as indicated by
the decline in TN rates towards December. For instance, the
selected DNNs showed a decrease in TN rates in November
compared to their accuracies in January by 28% and 29%
for AlexNet and MobileNetV2, respectively. This trend poses
a significant challenge for intrusion detection, especially for
resource-constrained devices, because of the delay required
in updating the deployed DNN models. Consequently, this
evaluation demonstrates that current DNN-based approaches in
the literature cannot reliably perform intrusion detection under
non-stationary network traffic behavior. Furthermore, relying
solely on a computationally demanding DNN for reliability
improvement, as measured by AlexNet, does not yield a
significant accuracy improvement compared to its lightweight
counterpart, MobileNetV2.

Our second experiment aims to answer RQ2 by evaluating
the processing costs of the selected DNN techniques for

TABLE III: Average event detection throughput (events/sec).

DNN
System

Raspberry Desktop
CPU GPU

AlexNet 7.36 247.34 17, 609
MobileNetV2 7.93 509.58 3, 419

implementation on resource-constrained devices. We assess
the average inference computational costs in both Desktop
and Raspberry Pi environments. The Desktop environment is
equipped with a 16-core Intel Xeon E5-2640 v3 CPU, 32 GB
of memory, and an Nvidia Tesla T4 GPU running on Ubuntu
Linux 22.04. The Raspberry environment is a Raspberry Pi 3
Model B, with a 4-core Broadcom CPU and 1 GB of memory
running on Raspberry Pi OS with kernel version 6.1. The goal
is to investigate further the implementation feasibility of the
selected DNN architectures in a resource-constrained setting.

Table III shows the average event detection throughput,
measured by the number of classified events per second.
Evidently, the use of a GPU for inference significantly im-
pacts detection throughput, as demonstrated by the Desktop
environment utilizing the GPU. However, when deployed on a
resource-constrained device, the selected DNNs achieves poor
detection throughput, reaching only ≈ 7 events per second
for both architectures. Consequently, despite their challenges
in providing reliable detection under non-stationary network
traffic conditions, their low detection throughput on resource-
constrained devices renders them unsuitable for production
implementation. Surprisingly, this situation applies to both
selected DNN architectures, regardless of their number of
parameters.

D. Discussion

This section evaluated the accuracy and processing impact
of widely used DNN architectures for intrusion detection. The
experiments demonstrated that current approaches could not
cope with the evolving behavior of network traffic, leading to
a significant degradation in accuracy months after the training
period (Fig. 2). Regardless of the complexity of the used
DNN model, the evaluated approaches fail to provide reliable
detection, highlighting the need for new methods to address
the non-stationary nature of network traffic. Additionally, the
detection throughput of the evaluated schemes makes them
unsuitable for implementation on resource-constrained devices
(Table III). Therefore, ensuring detection reliability for evolv-
ing network traffic while enabling implementation on resource-
constrained devices remains a challenge in the literature.

V. A DNN-BASED NIDS WITH EARLY EXITS FOR
DETECTION OFFLOADING IN EDGE COMPUTING

To address the aforementioned challenges, our work pro-
poses a new DNN-based NIDS through early exits that operate
following an energy-efficient EC rationale. The workflow
of our proposed scheme is illustrated in Figure 3, and is
implemented in three main stages.

First, we conduct intrusion detection using a DNN model
with early exits. Our insight is to leverage early exits to dis-
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Fig. 3: Workflow of the proposed DNN-based NIDS through
early exits for intrusion detection offloading in EC settings.
DNN Branches are distributed from end device, edge, and
cloud infrastructure.

tribute the DNN-based inference NIDS task within an energy-
efficient EC architecture. Consequently, the intrusion detection
task can be split between the End Device, Edge, and Cloud
infrastructure based on the classification difficulty of the evalu-
ated event. This approach aims to offload computation only for
a subset of events requiring additional processing capabilities,
thereby simultaneously decreasing the End Device’s energy
consumption and reducing the Cloud infrastructure’s resource
usage. Second, to find the optimal tradeoff for each DNN
branch (Fig. 3, Branch 1 to N ), we conduct a multi-objective
optimization task. We aim to adequately assess the accuracy
and energy consumption tradeoff when offloading intrusion
detection tasks among the EC entities. Third, to improve the
model’s generalization capabilities for adequately addressing
the non-stationary behavior of network traffic, we perform
the classification task with model calibration and a reject
option. On the one hand, model calibration ensures that the
model’s confidence values accurately reflect their reliability,
enabling a reliable assessment of classification confidence. On
the other hand, the reject option in the final model branch
(Fig. 3, Branch N ) allows the model to reject potential
misclassifications at the Cloud infrastructure. As a result, our
proposed model can reduce the energy consumption of End
Devices and the resource usage of the Cloud infrastructure,
improve the model’s generalization capabilities, and ultimately
pave the way for an effective energy-efficient EC.

The next subsections further describe the implementation of
our proposed model, including the modules that implement it.

A. A NIDS Model With Early Exits

Current DNN-based NIDSs demand computational process-
ing capabilities that are unfeasible for implementation on
resource-constrained devices (see Table III). To address this,
edge offloading for DNNs can be performed based on the
input’s complexity by introducing early exits. This is because
conducting the side branches on the same End Device, as often
assumed in the literature, can still pose challenges related to
energy consumption and processing requirements for events

reaching the final branches. To address these challenges, our
model distributes the deployment of DNN branches between
End Device, Edge, and Cloud infrastructure according to the
current evaluated event, as illustrated in Figure 3.

Consider an intrusion detection task where x ∈ RD denotes
a D-dimensional feature vector input and y ∈ {n, a}, where n
denotes a normal event, and a denotes attack labeled events.
Our model aims at learning a DNN that can model the
probabilistic predictive distribution p(y|x) over ground truth
labels. Following a typical early exit framework, during the
model learning process, we introduce N classifiers c{0,...,N}
for a given set of intermediate DNN layers f{0,...,N}. Namely,
let ci be the i-th classifier that receives the xi feature vector
output by the fi DNN layer, the DNN will prematurely end
inference if the ci classification confidence level surpasses
the classification threshold tci for normal-classified (tcin ), or
attack-classified (tcia ) events, as illustrated in Figure 3.

Here, the classification threshold tci , denotes a tuple where
tcin establishes the acceptance threshold for normal events, and
tcia the acceptance threshold for attack events. As a result,
relying on lower tci for a given classifier ci can increase
the number of accepted events, whereas using higher tci will
lead to a higher acceptance rate on branch i. The acceptance
thresholds should be defined based on the operator’s needs,
as they directly impact energy consumption and processing
costs. The proposed approach for optimizing the acceptance
thresholds is further described in Section V-B.

In contrast to traditional early exit strategies, to further
increase the model’s generalization, we incorporate a reject
option at the last DNN branch to reliably handle the classifica-
tion decision (Fig. 3, Branch N). Our model accepts or rejects
the classification at the final branch based on its associated
confidence value p̂. To achieve such a goal, the module’s
implementation is coped with a rejection rej function, as
determined by the following equation:

rej(p̂, tCN )

{
∅ if p̂ ≤ tCN

p̂ otherwise
(5)

where ∅ denotes events likely to be incorrect decisions the
DNN model final branch performs, and tCN the acceptance
thresholds at the final model branch. As a result, the rej mod-
ule suppresses unreliable classification as measured by their
associated classification confidence values at the final DNN
branch (Fig. 3, Branch N). Similarly, the rejection threshold
should be determined based on the operator’s judgment. A
higher rejection threshold will enhance system reliability but
result in a higher proportion of rejected events. Conversely, a
lower threshold will accept more events but expose the system
to unreliable classifications.

Therefore, by relying on our proposed early exit approach,
the NIDS inference task can be split between the End Device,
Edge, and Cloud. When offloading a given branch i, the
network tradeoff only involves sending the output of the
current DNN layer fi, namely vector xi, as opposed to the
traditional approach where the entire network traffic must be
transmitted. Thus, our proposed model enables the adequate
NIDS inference splitting in a EC setting.
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Fig. 4: Multi-objective optimization for DNN-based NIDS
with Early Exits. Here, σi measures the average DNN in-
ference energy consumption, and ϵi measures the error rate
obtained using the selected acceptance thresholds tci .

B. Multi-objective Optimization

Finding the optimal acceptance thresholds tc{1,...,N} for each
branch i is challenging. This is because each branch threshold
affects the subsequent branches’ performance while directly
influencing the overall energy consumption and accuracy.
Given this challenge, we conduct the model building as a
multi-objective optimization task, as illustrated in Figure 4.

We consider a DNN model h implemented with N branches,
coped with a rej module at the final branch N (see Sec-
tion V-A). In such a case, the goal of the multi-objective
optimization is to find N associated tc{1,...,N} branches thresh-
olds that simultaneously minimize the resulting system energy
consumption (σ) and the error rate (ϵ). Our central assumption
is that energy consumption decreases with the acceptance of
additional events at earlier branches. Conversely, the error rate
decreases with a higher rejection rate, which leads to increased
processing costs as more events are routed to the final branch.

Therefore, we can conduct the multi-objective by solving
the following equation:

argmin
{tc1 ,...,tcN }

σ(h(D, {tc1 , ..., tcN }))

and
argmin

{tc1 ,...,tcN }
ϵ(h(D, {tc1 , ..., tcN }))

(6)

where h denotes the DNN model with multiple branches,
coped with our rej (see Fig. 3). Here, σ is a function that
measures the model average inference energy consumption on
a given dataset D when using the {tc1 , ..., tcN } thresholds,
whereas ϵ is a function that measures the resulting error
rate. As a result, our proposed scheme aims to identify
the optimal system thresholds that simultaneously minimize
energy consumption and error rates. In practice, we can solve
equation 6 by implementing it as a multi-objective optimiza-
tion, later discussed in Section VII-C, our energy consumption
measurement approach is presented in Section VII-B.

Therefore, in terms of overheads, the computational require-
ments for solving the multi-objective optimization process are
only necessary during the training phase, which occurs off
the end device. During this phase, the optimization process is
performed to compute the trade-offs between error rate and
energy consumption for the classification branch thresholds.

Once trained, the system operates with the predefined thresh-
olds. Additionally, to address dynamic network environments,
the network operator has the flexibility to periodically reeval-
uate and adjust the classification thresholds without requiring
model updates. This allows for the rejection of a greater
number of events in response to changing conditions, thus
giving the network operator more time to perform model
training tasks as needed.

C. Addressing the Generalization Challenge

The network traffic behavior is highly dynamic and changes
over time. This non-stationary behavior poses a challenge
for current DNN-based NIDSs, as they often struggle to
generalize network traffic behavior adequately (see Fig. 2). In
this context, a key assumption of our model involving early
exits revolves around assessing the classification confidence
of the model’s branches to terminate inference prematurely.
Therefore, the model’s predicted confidence vector should
reflect the ground-truth probabilities of the correctness of the
model.

However, DNNs are known to produce both overconfident
and underconfident classifications for input events. For exam-
ple, if the model predicts a probability of 0.7 for a given class,
it is expected that out of 100 predictions, approximately 70%
of those are correct. If the percentage of correct predictions is
below 70%, the model is overconfident, whereas if it is above
70%, it is underconfident. Therefore, to reliably deploy DNN-
based NIDSs with early exits, it is essential to ensure that their
confidence levels accurately reflect their expected accuracy.

To address such a challenge, our proposed scheme conducts
the confidence calibration of our designed DNN model (see
Section V-A). In practice, we calibrate each DNN branch con-
fidence output to ensure their sampled confidence can function
as their expected accuracy. Given this goal and recognizing
that achieving perfect model calibration is not feasible because
the model confidence is a continuous random variable, we
conduct model calibration through empirical approximation.

We aim to calibrate each classifier ci at every branch i,
such that their output classification confidence p̂ reflects their
accuracy. To estimate the expected accuracy from a finite
number of samples with a continuous random variable, we
group predictions into M interval bins, each of size 1/M ,
and compute the accuracy over each bin. Each bin separates
the classification confidence into finite intervals. For example,
assuming M = 10, the first bin will contain all events
with classification confidence values ranging from 0.0 to 0.1,
whereas the second bin will contain those ranging from 0.1
up to 0.2.

Let Bm be the samples whose classification confidence p̂
falls within the bin interval m, the accuracy of Bm can be
computed as:

acc(Bm) =
1

|Bm|
∑
i∈Bm

(ŷi = yi) (7)

where ŷi is the predicted label, and yi the true label. Then,
we can compute the average confidence within the bin interval
Bm according to the following equation:
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conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (8)

where p̂i is the classifier confidence for event i. Thus, a
perfectly calibrated model will have acc(Bm) = conf(Bm)
for every m ∈ {1, ...,M}. Finally, we can measure the
calibration correctness through Expected Calibration Error
(ECE) approach, as follows

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (9)

where n is the number of samples. The difference between
acc (Eq. 7) and conf (Eq. 8) denotes the calibration gap for
a given bin. The ECE can be used as an empirical metric
of model calibration, where values close to zero denote a
perfectly calibrated model.

Our proposal uses the ECE metric to calibrate the post-
training model. To achieve this, we rely on the temperature
scaling technique. Each DNN branch classifier outputs a vector
called logits, which is then passed through a softmax function
to obtain the class probabilities. The temperature scaling goal
is to find a temperature vector T that can be used to divide the
DNN logits such that it minimizes the resulting model ECE.
Hence, we can use temperature vector T during the inference
phase as follows:

softmax(zi) =
ezi/T∑
j e

zj/T
(10)

where zi is the sample i logit, and T the temperature vector.
Temperature scaling does not affect the resulting model’s
accuracy, as T does not change the maximum of the softmax
function. Therefore, it is possible to conduct simple parameter
search to find a T vector that can reduce ECE. The resulting
model will then use T to calibrate the classification confidence
for later use to measure classification correctness.

D. Discussion

Our proposed model aims to facilitate the offloading of
DNN-based NIDS inference while complying with energy-
efficient EC requirements. To achieve this goal, we rely on
the application of early exits, where model branches can be
deployed across End Device, Edge, and Cloud infrastructures
(see Fig. 3). To ensure our model can reliably handle the
dynamic behavior of network traffic, we incorporate a reject
option at the final model branch executed in the cloud,
which aims at identifying unreliable decisions over time (see
Section V-A). In addition, we formulate the threshold finding
as a multi-objective optimization task to determine the optimal
tradeoffs between energy consumption and error rate (see
Eq.6). Finally, we calibrate the resulting model confidence
values to effectively generalize network traffic behavior while
employing early exits, ensuring a reliable indication of model
correctness (see Eq.10). As a result, our proposed model facil-
itates the implementation of DNN-based NIDS on resource-
constrained devices. Our approach enables efficient offloading

Edge Infrastructure Cloud Infrastructure

Broker (RabbitMQ)

Result Queue

Offload Queue

Cloud Processor

Producer (Pika)

Class. Branch 2 (Pytorch)

Consumer (Pika)

Label

x1

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

End Device N

Data Acquisition (Scapy)

Feat. Ext. (Numpy)

Class. Branch 1 (Pytorch)

Alert
Offload 

(Pika)

Consumer 

(Pika)

Net. Packet

Feature set

x1Label

Label

Fig. 5: Prototype implementation overview of our proposed
Edge Computing DNN-based NIDS model.

while decreasing energy consumption at the End Device and
lowering the resulting system error rate.

In addition, the multi-objective optimization model allows
the network operator to define the desired acceptance rate for
the utilized DNN branches. This is because the rejection rate
should be carefully determined based on the operator’s specific
needs. A high rejection rate may lead to a substantial number
of events being offloaded to the cloud environment, potentially
increasing costs associated with storage and processing, such
as for later model update purposes. Conversely, accepting more
samples on the first DNN branch at the end device could
result in a higher error rate. In practice, our model provides
flexibility for the network operator to adjust the operation
points dynamically based on current network conditions. This
approach allows for gradually increasing rejection rates as
the deployed model ages, ensuring system reliability until the
model update process is performed.

VI. PROTOTYPE

We implemented a proposal prototype in a distributed envi-
ronment as illustrated in Figure 5. It considers the implementa-
tion of multiple End Devices executed on a Edge Infrastructure
and a single Cloud Infrastructure for executing the offloaded
task. The prototype’s goal is to evaluate the performance of
our proposed mechanism. To achieve this, the hardware and
software components of the prototype are designed to create an
edge computing environment where end devices operate under
resource constraints. At the same time, the cloud infrastructure
provides additional computational capabilities when required.
The selected network protocols are intended to facilitate a
lightweight communication interface between the end devices
and the cloud infrastructure, ensuring low communication
overhead within edge computing architecture.

Each End Device executes our DNN-based NIDS pipeline
with our proposed model (see Fig. 3). To achieve this goal,
it continuously collects the network packets from a given
monitored NIC through Scapy API v.2.5.0. The behavior
of the collected packets is then extracted using numpy API
v.1.26, compounding a feature set with the features listed on
Table I. We implement a single early exit on the chosen DNNs,
where the first branch is executed at the End Device, and the
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second branch at the Cloud Infrastructure. The details regard-
ing the DNN early exit implementation are later discussed in
Section VII-A. The extracted feature set is used as input to the
first DNN branch, implemented through Pytorch API v.2.1.0
(Fig. 5, Class. Branch 1). The associated event label is used
as input to the Alert module, if its classification confidence
level surpasses acceptance threshold (Fig. 3, tc1 ). Otherwise,
the output of the intermediate DNN layer at the first branch
is offloaded to the cloud (Fig. 5, Offload).

The communication channel between the Edge Infrastruc-
ture and the Cloud Infrastructure was implemented through
a RabbitMQ broker. To this end, the prototype relies on two
queues, namely Offload and Result. The first sends the first
branch intermediate output from the End Device to the cloud,
whereas the latter sends back the associated Label from the
second branch as executed at the cloud. The sending and
reading of the RabbitMQ messages were implemented through
Pika API v.1.3.2.

At the Cloud Infrastructure, we deploy the RabbitMQ
broker and the second DNN branch. To achieve this objective,
we execute a Cloud Processor module, which continuously
consumes the Offload Queue messages and feeds them as input
to a Class. Branch 2 module. The module executes the second
(final) DNN branch and forwards the resulting Label to the
Producer module, which produces a message to the Result
RabbitMQ queue. Finally, the End Device reads the generated
message through a Consumer module and forwards it to the
Alert module.

To generate a resource-constrained device behavior, we
implemented the End Device through a Raspberry Pi 3 Model
B, with a 4-core Broadcom CPU and 1 GB of memory
running on top of Raspberry Pi OS with kernel version
6.1. The Cloud Processor module was implemented through
a dedicated Virtual Machine (VM) on top of IBM Cloud
Computing. The VM was equipped with 2 virtual CPU cores,
8 GB of memory running on top of Ubuntu OS v.24.04.
We execute the Cloud Infrastructure through multiple zones
to adequately measure the resulting trade-offs of our scheme
(latter discussed in Section VII-D).

VII. EVALUATION

The proposal evaluation aims at answering the following
RQs:

• RQ3: How does our proposed multi-objective optimiza-
tion improves system performance?

• RQ4: Does our proposed model improves classification
reliability?

• RQ5: What are the system tradeoffs when implemented
in an EC architecture?

The subsequent subsections provide further details about the
implementation of our model and its performance.

A. Model Building

We evaluate our proposed model using the same DNN
architectures evaluated previously (see Section IV). To achieve
this goal, we introduce the first set of early exits immediately

after the initial features are extracted, ensuring that the com-
putational costs remain low in the first branch. The second
branch, on the other hand, executes the remaining DNN layers,
extracting additional features for the classification task but
requiring more computational resources. The early exit im-
plementation strategy was made based on related works [17].
More specifically, we introduce a single early exit component
on each chosen DNN, as follows:

• AlexNet. A classifier is introduced between the 1st and
2nd convolutional layers. The classifier flattens the 1st

convolutional layer output by applying a fully connected
layer with 1, 600 input neurons followed by 2 neurons
output;

• MobileNet. A classifier is introduced after the 2nd bot-
tleneck layer. The classifier flattens the preceding layer
output, followed by a 0.2 dropout layer and a fully
connected layer with 1, 280 input followed by 2 neurons
output;

Therefore, each evaluated DNN architecture consists of
two branches encompassing the added layers from the first
branch, while the last branch comprises the traditional DNN
output (Fig. 5, Class. Branch 1 and 2). The modified models
are trained through the joint loss function (see Eq. 1) with
categorical loss for each branch, with a 1.0 branch layer
weight w, with 1, 000 training epochs. The learning rate was
set at 0.001, with a batch size of 1, 000 events. These models
were implemented using PyTorch API version 2.1.0.

B. Energy Consumption Measurement

To measure the system’s energy consumption, we use a
current-voltage power ratio consumption meter connected to
the electrical outlet that powers the Raspberry Pi 3. In practice,
we first measure the idle power consumption and then compute
the difference in energy consumption when performing the
inference task (using the proposed early exit) on the Raspberry
Pi. It is important to note that the inference task energy
consumption also includes the offloading to the cloud when
the second DNN branch is required (see Fig. 5). Therefore,
the measurement replicates a realistic setting where a portion
of events are classified at the End Device using the 1st branch,
while the remaining events are classified using the 2nd branch
executed at the Cloud Infrastructure.

C. DNN-based NIDS with Early Exits

Our first experiment aims to answer RQ3 and investigates
how our proposed multi-objective optimization can improve
the system performance. To achieve this goal, we aim to find
the optimal tradeoff between energy consumption and error
rate (see Eq. 6) according to the used classification thresholds
(tc). In practice, we adjust the classification thresholds for each
selected DNN to account for the application of two early exits.
The multi-objective optimization aims at finding the optimal
classification thresholds for the first branch at the End Device
(tc1a , tc1n ), and the second branch at the Cloud Infrastructure
(tc2a , tc2n ).

To achieve this goal, we implement our scheme as a multi-
objective optimization task using the Non-dominated Sorting
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Fig. 6: Proposed multi-objective optimization performance for
the evaluated architectures. Measurements were made using
our prototype (Fig. 5), with the MAWIFlow Jan. validation
dataset, the results are reported with comparison to the base-
line implementation without the utilization of early exits.

Genetic Algorithm (NSGA-II) [42] implemented on top of
pymoo API. The NSGA-II uses a 100 population size, 100
generations, a crossover of 0.9, and a mutation probability
of 0.1. These parameters were selected based on related
works [43], and no significant differences were observed when
they were varied. Throughout the experiments, the adequacy
of the number of generations was verified by monitoring
the objective improvements across iterations, ensuring that
improvements plateaued before the execution of the final gen-
eration. The multi-objective feature selection aims to decrease
energy consumption (σ) and error rate (ϵ). We compute the
energy consumption through our prototype (Sec. VI), using
our measurement approach described previously (Sec. VII-B).
The selected DNNs are trained using the MAWIFlow January
training dataset, while the objectives were measured through
the January validation dataset. The resulting model’s perfor-
mance is measured through the testing dataset.

Figure 6a shows the Pareto curve of our proposed multi-
objective optimization approach. The energy consumption is
normalized according to the baseline with the traditional ap-
proach without using our proposed early exit strategy (Fig. 2).
It is possible to observe a direct tradeoff between the proposal
error rate and the resulting energy consumption at the End
Device. In practice, increasing the number of events accepted
at the 1st branch leads to a higher system error rate but also
simultaneously reducing energy consumption. For example,
our multi-objective optimization can achieve a ≈ 7% error
rate while demanding only ≈ 11% of the energy consumption
compared to the traditional approach. In addition, energy
consumption can be reduced to as little as 1% if a 10%
of error rate is tolerated. This shows that using NSGA-
II to optimize our proposal’s objectives effectively balances
both goals simultaneously. Consequently, the network operator
gains the flexibility to select an operation point that aligns with
the system’s specific requirements—prioritizing lower error
rates if higher energy consumption is acceptable, or opting
for reduced energy consumption at the cost of an increased
rate of false alarms.

We further investigate how our proposed multi-objective
optimization can enhance system performance. In this case,
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Fig. 7: Reliability histograms for the 1st MobileNetV2 DNN
branch on MAWIFlow January validation dataset.
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Fig. 8: Accuracy and rejection performance of our model
as time passes on MAWIFlow dataset. DNNs are trained on
MAWIFlow January training dataset. Inference uses our chosen
operation point (Fig. 6a) and the proposed calibration scheme
(Fig. 7).

as the operating point must align with the operator’s require-
ments, we select an average operating point for the remaining
evaluations (Fig. 6a, Operation Point).

Figure 6b compares our scheme’s error and required pro-
cessing resources with the chosen operation point vs. the tra-
ditional approach without applying early exits. It is possible to
observe a significant improvement in the required processing
resources while still achieving a reduction in the error rate. In
practice, our scheme can reduce average required processing
resources (and thus, energy consumption) at the End Device
in 86% and 44% while decreasing the error rate in 2.9% and
2.5% compared to traditional approaches for the AlexNet and
MobileNetV2 DNNs, respectively.

As a result, the application of early exits can pave the way
for energy-efficient EC, as our proposed model significantly
reduces the energy consumption of resource-constrained de-
vices. Moreover, this improvement in energy consumption is
achieved without compromising the resulting model’s error
rate. We further investigate the trade-offs in classification
delay and processing costs at the Cloud Infrastructure for the
offloading task in Section VII-D.

Making use of the selected operation points (Fig. 6a),
and before applying it through the entire MAWIFlow year,
we conduct our proposed model calibration approach (see
Sec. V-C, and Eq. 10). To achieve this objective, we apply a
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Fig. 9: F-Score performance improvement of our proposed
scheme vs. the traditional approach.

simple heuristic-driven search for each DNN branch to find the
temperature T values for each confidence bin that improves the
branch ECE value (Eq. 9). In practice, we consider a 10-sized
bin for each branch (1st, and 2nd), and vary the temperature
T from 0.0 to 1.0 in 0.00001 intervals. We then use the
temperature T value for each bin that improves the resulting
branch ECE.

Figure 7 shows the obtained reliability histogram for the 1st

MobileNetV2 DNN branch on MAWIFlow January validation
dataset, with vs. without our proposed confidence calibration
scheme. It is possible to observe that our proposed calibration
model can approximate the classification confidence values for
each bin to reflect the expected model accuracy. As an exam-
ple, our proposal reduces the ECE on the 1st MobileNetV2
branch by 43% and when compared to its non-calibrated
counterpart. Similarly, when both branches are considered,
our calibration approach reduces the obtained ECE values by
38% and 40% for the AlexNet and MobileNetV2, respectively.
Therefore, by adjusting the model’s classification confidence
values, we can reliably use them for early exits and our
proposed rejection approach (see Section V-A).

To answer RQ5, we apply our proposed model throughout
the entire MAWIFlow year. To achieve this objective, we
use our chosen operation point obtained through our multi-
objective optimization approach (Fig. 6a). In addition, the
resulting model is passed through the confidence calibration
procedure as shown in Figure 7. Similarly, the model is trained
using the MAWIFlow January training dataset and evaluated as
time passes without model updates.

Figure 8 shows our model’s accuracy and rejection per-
formance on the MAWIFlow dataset. Notably, the accuracy
also degrades but not as significantly as observed with the
traditional approaches (Fig. 8 vs. 2). It is important to note that
our proposal achieves the accuracy benefit in two ways. First,
through the application of our proposed early exit technique,
which offloads to the Cloud Infrastructure a subset of events
that require additional processing capabilities. Second, through
the classification with a reject option at the 2nd DNN branch,
which identifies and suppresses potential misclassifications at
the cloud, thereby preventing false alerts. This characteristic
can be observed as time passes with the resulting model’s
rejection rate (Fig. 8, Rejection Rate). On average, throughout
the entire MAWIFlow year, our proposal rejected 8% and 6% of
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Fig. 10: Average inference computational time and energy
consumption per event at the End Device with our proposed
model. Traditional denotes the execution of the entire DNN
at the End Device without using the early exit approach. Ours
(No offload) denotes using the proposed approach with both
exits processed at the End Device. Ours (Offload) denotes
using the proposed approach, offloading the 2nd DNN branch
to the Cloud Infrastructure.

events for AlexNet and MobileNetV2, respectively. Recalling
that the operating point must be chosen according to the
operator’s needs. In this case, we could have further decreased
the rejection rate, if required by the operator, by selecting an
operating point with a higher error rate (Fig. 6a).

We further investigate the accuracy performance of our
model when compared to the traditional approaches. Figure 9
shows the monthly F1-Score improvement of the selected
DNN architectures with vs. without our proposal. Our pro-
posed scheme improves the F1-Score by an average of 0.02 for
both selected architectures. As a result, our proposed scheme
significantly reduces energy consumption for the inference task
on the End Device while keeping or even improving classifi-
cation accuracy. This improvement is achieved by applying
early exits as implemented by our proposed model, which can
lead to trade-offs due to the communication overhead with the
cloud environment.

D. A Energy-efficient Edge Computing NIDS

To answer RQ5 we analyze the performance of our proposal
prototype (Fig. 5) in a distributed cloud environment. To
achieve this objective, the End Device is deployed in the
state of Paraná, in the southern region of Brazil, while the
Cloud Infrastructure is deployed in two different IBM Cloud
Services zones, namely Brazil South and Central US. The
first deployment assesses the performance of our scheme with
fewer network hops to the cloud, while the second evaluates
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it with a higher number of network hops, which can lead to
increased classification offloading latency.

Our first experiment investigates the computational pro-
cessing benefits to the End Device achieved by offloading
the inference task to the cloud. To achieve this objective,
we implement our proposed prototype using the previously
selected operation points (see Fig. 5) and offload the subset
of events to the Cloud Infrastructure based on the specified
acceptance thresholds. For this evaluation, we measure the
average event processing time at the End Device, which
includes both the execution of the 1st branch and the cloud
offloading when required.

Figures 10a, and 10c show the average processing time per
event with our proposed model vs. the at the device traditional
approach. In this case, the Traditional denotes the execution of
the device’s traditional DNN architecture without early exits.
It is possible to note that our proposed model substantially
reduces the processing time at the End Device when compared
to the traditional approaches. In practice, our scheme reduces
processing costs to only 11% and 37% for the AlexNet and
MobileNetV2, respectively, when both exits are executed at
the End Device (Ours (No Offload)). In addition, if the 2nd

DNN branch is offloaded to the cloud, the average event
processing time is decreased to as little as 1% for AlexNet
and to 32% for the MobileNetV2. This substantial difference
between the selected DNN architectures is caused by the
location where the 1st branch is introduced. While the 1st

AlexNet branch is introduced after the first set of convolutional
layers, the 1st MobileNet branch is introduced only after the
2nd bottleneck layer, thereby requiring additional processing
before inference can terminate prematurely. Notwithstanding,
given that approximately 90% of events are classified at the
1st DNN branch, which requires less processing, offloading
a subset of events to the Cloud Infrastructure can reduce
processing time compared to the traditional approach.

We further investigate the benefits achieved at the End
Device with our proposed scheme by measuring the average
energy consumption per event, using our measurement tech-
nique (see Section VII-B). Figures 10b, and 10d show the
average energy consumption of our proposed model vs. the
traditional on-device approach. Similarly, the energy consump-
tion is substantially decreased compared to the execution of
the entire inference process at the End Device. In this case, the
energy consumption is decreased to only 12% and 47% if no
offloading is used for the AlexNet and MobileNet, respectively.
Conversely, if a cloud offloading strategy is used, energy
consumption is reduced to 1% and 41% for AlexNet and
MobileNet, respectively. Consequently, our proposed model
significantly reduces processing costs and energy consumption
at the End Device.

Our second experiment investigates the trade-offs when
offloading events to the Cloud Infrastructure. To this end,
we assess the average inference time per event according to
the deployed Cloud Infrastructure zone. Table IV shows the
average event inference time of our proposed scheme vs. the
traditional on-device approach. In practice, our approach con-
ducts event inference by an average of 28 and 223 milliseconds
when deployed in Brazil (closer to the End Device), while

TABLE IV: Average event inference time of our proposed
model according to the deployed Cloud Infrastructure zone.

DNN Approach Deploy Avg Event Inf. Time (ms)
Zone Branch 1 Branch 2 Total

Alex
Net Ours Brazil 18.08 10.28 28.36

US 18.08 46.18 64.26
Local Device 20.24 1365.70 1385.94

MobileNet Ours Brazil 217.13 5.97 223.09
US 217.13 32.6 249.73

Local Device 236.89 432.56 669.45
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Fig. 11: Evaluation of the trade-offs incurred by offloading
from End Device to Cloud Infrastructure the event classifica-
tion (for each event reaching 2nd DNN branch). End Device
is deployed in Brazil south region.

the traditional approach demands an average of 1385 and 669
milliseconds, a substantial reduction of 97% and 66% for the
AlexNet and MobileNetV2.

The deployment zone of the Cloud Infrastructure can impact
the average event inference time when operating under real-
time conditions. This observation holds true when comparing
different deployment zones throughout the evaluation over
the entire MAWIFlow dataset (Table IV, Deploy Zone). In
this case, the deployment zone can increase the average
inference time by 35 and 26 milliseconds for the AlexNet
and MobileNetV2, respectively. This variation is primarily at-
tributed to the differing RTT values of each deployment zone,
showing that network conditions can significantly influence the
resulting system processing time. During the experiments, the
Brazil deployment zone (closer to the End Device) exhibited
an average RTT of 23.51 ms, while the US deployment
zone recorded an average RTT of 157.48 ms. This impact
shows that the deployment zone, measured by Brazil vs. US
deployment, incurs a difference of event inference time of
11% for MobileNet, reaching 56% for AlexNet. As a result,
as fewer events are offloaded to the cloud, and the 1st DNN
branch demands fewer processing costs, the overall resulting
average event inference time is also decreased (Table IV). This
characteristic suggests that the network operator should take
into consideration the physical location of the End Devices
when choosing to deploy the Cloud Infrastructure, as it can
impact the execution time of the inference, and this is also
architecture-dependent.

Our third experiment assess the network trade-offs caused
by offloading the outputs of the 1st DNN branch to the Cloud
Infrastructure. Recalling that for every event offloaded to the
cloud our prototype demands the publishing of the 1st DNN
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Fig. 12: Evaluation of the scaling capabilities of our prototype
with AlexNet on handling an increasing number of End
Devices, from 1 to 30. Tests were executed using batches of
size 10 while offloading all events to the Cloud Infrastructure.

branch output to a RabbitMQ topic (see Fig. 5). Fig 11a shows
the network usage for each classification event offloaded to
the cloud. In practice, our prototype requires ≈ 7.2 KB, and
≈ 14.5 KB for offloading each event from End Device to
the Cloud Infrastructure for the AlexNet and MobileNetv2
DNNs respectively. It is important to note that this trade-off
occurs only for that subset of events reaching the 2nd DNN
branch. In this case, the chosen operation point (highlighted in
Fig. 6a) offloads only ≈ 10% and ≈ 8% of events on the entire
dataset for the AlexNet and MobileNet DNNs respectively. In
addition, each network flow (event) comprises ≈ 11.6 network
packets in MAWIFlow dataset (see Table II). Consequently,
our proposal substantially decreases the network overhead
compared to the traditional offloading strategy, wherein all
network packets must be offloaded to the cloud.

We also evaluate how our proposal’s average event process-
ing time in the cloud can be further decreased when events
are offloaded. To this end, we consider a scenario wherein
events are offloaded following a batch-oriented rationale. In
essence, we offload computation when a batch of N events
are available, reducing the average network communication
time for publishing the RabbitMQ messages and conducting
batch-based inference through Pytorch API at the Cloud
Infrastructure.

Figure 11b shows the impact on the average event process-
ing time when a batch-oriented approach is used. In this case,
our prototype significantly reduces the processing time by up
to 70% and 72% for the AlexNet and MobileNetv2 DNNs,
respectively. This improvement is achieved by increasing the
batch size, which can also be used in a high network packet
latency scenario by reducing the number of packets sent to
the cloud and simultaneously enhancing processing time. As
a result, despite the trade-offs in network usage and process-
ing delays caused by offloading, our approach significantly
reduces the average event energy consumption and processing
time. In addition, the network operator may use this strategy to
address network conditions that are not reliable, such as high
latency or intermittent packet loss, by adjusting the batch size
to optimize the trade-off between network usage frequency
and processing time.

Finally, we also evaluated the scalability of our prototype

(a) AlexNet (b) MobileNet

Fig. 13: Trade-off on process time vs offload rate to Cloud
Infrastructure. The offload rate must be defined based on the
operator’s needs and can be adjusted accordingly.

in handling an increasing number of End Devices. Figure 12
illustrates the system’s average event processing time as the
number of End Devices increases with our proposal imple-
menting the AlexNet DNN model. Notably, the deployment
zone significantly impacts the average event processing time
due to variations in RTT values. The results indicate that our
proposed model can efficiently handle increasing client device
loads, supporting up to 8 devices in the Brazil deployment
zone and 10 devices in the USA deployment zone without
impact on average event processing time. It is important to
highlight that this evaluation assumes all events are forwarded
to the Cloud Infrastructure, differing from the operation setting
where only approximately 10% of events are transmitted
(see Fig. 6a). Moreover, additional factors such as offload
rate, traffic levels, and RTT to the Cloud Infrastructure can
further impact the response time. Notwithstanding, our model
prototype supports dynamic cloud infrastructure scaling, en-
abling it to adapt to fluctuating network conditions and load
demands over time. For instance, the network operator can
deploy additional VMs within the Cloud Infrastructure to
accommodate a higher number of End Devices as needed. This
scalability ensures that the proposed model is well-suited for
deployment in real edge computing environments, typically
involving a large and growing number of End Devices.

E. Discussion

To pave the way for an energy-efficient EC environment,
participant entities must cooperate to reduce the overall pro-
cessing requirements. Our proposal aimed at simultaneously
improving the energy efficiency and processing costs of DNN-
based NIDSs through an early-exit implementation rationale
for edge computing. This was achieved by processing a
subset of events at the End Device, thus relieving the Cloud
Infrastructure when no additional processing capabilities are
required. For the subset of events where classification cannot
be reliably conducted, the End Device requests assistance
from the Cloud Infrastructure, leading to a reduction in the
processing footprint on both entities.

Thanks to our early exit strategy, this cooperation between
the End Device and the Cloud Infrastructure can be adjusted
based on the operator’s needs. For example, the End Device
can execute both branches locally when sufficient processing
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capabilities and energy are available. Conversely, it can offload
all computation to the Cloud Infrastructure when necessary,
thereby relieving the End Device of processing demands.
Figure 13 shows the process time trade-off according to the
adopted offload rate to the Cloud Infrastructure. Our scheme
enables the dynamic adjustment of offload rate according to
the current End Device capabilities. In addition, these benefits
are achieved with minimal network communication overheads
(Fig. 11a). Consequently, we demonstrate that a strategy inte-
grating the End Device, which locally conducts inference for a
subset of events, with the Cloud Environment, which provides
additional processing capabilities, can effectively reduce the
processing footprint of the overall system.

VIII. CONCLUSION

In this paper, we presented a new DNN-based NIDS through
early exits that operate following an energy-efficient EC ar-
chitecture. Our proposed framework aims to simultaneously
alleviate the processing demands of edge resource-constrained
devices and cloud infrastructures by splitting the DNN infer-
ence task. Easier-to-be-classified events are processed at the
edge with lower processing demands using an intermediate
DNN branch, whereas the inference task can be offloaded to
the cloud when additional processing capabilities are required.
We compared our approach against conventional on-device
strategies, showing the benefits of cooperating with edge
resource-constrained devices and the cloud to simultaneously
reduce processing demands and energy consumption. The
proposed model substantially reduces the edge device energy
consumption and processing time while maintaining intrusion
detection accuracy. Notwithstanding, by processing a subset of
events at the edge, cloud computing resources are alleviated,
reducing the overall system processing footprint.

Finally, as future work, we plan to optimize the location of
introduced DNN early exits to reduce network usage further. In
addition, we aim to leverage rejected events to incrementally
adjust deployed DNN branches, thereby addressing the non-
stationary behavior of network traffic.

The dataset and source code used throughout
the paper’s experiments are publicly available at
https://github.com/jasimioni/ids-ee-offload and the full
dataset used in https://github.com/jasimioni/ids-ee-
offload/tree/main/dataset/full.
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