
Vol.:(0123456789)

Journal of Network and Systems Management (2025) 33:75
https://doi.org/10.1007/s10922-025-09940-1

A Dynamic Network Intrusion Detection Model
for Infrastructure as Code Deployed Environments

Adilson G. Filho1 · Eduardo K. Viegas1 · Altair O. Santin1 · Jhonatan Geremias1

Received: 13 January 2025 / Revised: 13 January 2025 / Accepted: 3 June 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
The dynamic nature of Infrastructure as Code (IaC) provisioned infrastructures pre-
sents substantial challenges for traditional Machine Learning (ML) Network Intru-
sion Detection Systems (NIDSs). In such settings, continuously evolving configura-
tions lead to difficulties in maintaining detection accuracy, as ML models struggle
to adapt to rapidly changing network behaviors and new attack patterns. This paper
introduces a novel ML-based NIDS framework tailored to address the non-station-
ary behavior of IaC-provisioned infrastructures. The framework integrates two key
components: multi-objective feature selection and dynamic classification. The multi-
objective feature selection enhances the model’s generalization capabilities during
training, enabling it to better handle the evolving behaviors characteristic of IaC
environments. The dynamic classification component complements this by actively
selecting the most appropriate subset of classifiers at the inference phase, ensuring
adaptability to the current infrastructure state. By incorporating these components,
the proposed scheme achieves real-time adaptability to the dynamic nature of IaC-
provisioned infrastructures, providing reliable intrusion detection. Experimental
evaluations conducted on a realistic IaC-generated testbed with over 19 configura-
tions demonstrate significant improvements in detection performance. Specifically,
the proposed model can increase the F1-Score by up to 0.31 when compared to tra-
ditional approaches on newly provisioned IaC infrastructures.

Keywords  Infrastructure as Code · Network Intrusion Detection · Machine
Learning · Feature Selection

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-025-09940-1&domain=pdf

	 Journal of Network and Systems Management (2025) 33:75 75   Page 2 of 26

1  Introduction

Over the past few years, the provisioning of Information Technology (IT) infra-
structures was predominantly performed manually, a costly and time-consuming
task that often required continuous supervision by operators [1]. As the complex-
ity of the IT infrastructures expanded, the demand for automated resource provi-
sioning techniques became increasingly evident. In this context, Infrastructure as
Code (IaC) paved the way to automate the infrastructure provision task in which
the software will be deployed [2]. In practice, IaC enables the automatic configu-
ration of system dependencies and the provisioning of local and remote instances
to facilitate continuous deployment in accordance with service requirements [3].
It accomplishes this by utilizing provisioning scripts (code) that act as configura-
tion templates for service provisioning tasks, enabling IT organizations to reduce
their deployment time significantly. Due to the advantages brought by automat-
ing infrastructure provisioning, several IaC technologies have emerged in recent
years, including Chef [4], Puppet [5], and Terraform [6] for private infrastruc-
tures, and AWS CloudFormation [7], and Azure Resource Manager [8] for public
clouds.

Securing IaC-provisioned infrastructures presents a significant challenge due
to the dynamic nature of infrastructure configurations [9]. These configurations
change based on the provided IaC script, demanding that security solutions can
effectively adapt to these variations [2]. Conversely, despite the automation of
infrastructure provisioning brought by IaC, the configuration of security solutions
still often requires manual intervention. This includes configuring firewall rules,
access control policies, Virtual Local Area Network (VLAN), and Network Intru-
sion Detection System (NIDSs), among other measures. As a result, there is a gap
between the automation of infrastructure provisioning tasks enabled by IaC tech-
niques and the automation of security solution configurations required to secure
the newly provisioned infrastructure [10]. This gap hinders the ability to address
security concerns in rapidly changing IaC-provisioned environments effectively.

Unfortunately, automating security configurations based on IaC code presents
significant challenges, especially for NIDS solutions [11]. Most of the literature
focuses on designing behavior-based intrusion detection schemes by typically rely-
ing on constructing a behavioral Machine Learning (ML) model [12]. These models
assume a static baseline environment configuration, making the adaptation to the
ever-changing nature of IaC-provisioned infrastructures difficult [13]. In practice,
the infrastructure configuration must be known beforehand to properly train and
evaluate the ML scheme for reliable use. As a consequence, when the infrastructure
configuration changes due to a new IaC script for instance, the previously designed
ML-based NIDS becomes unreliable for production deployment. Typically, this
issue can only be addressed through model updates, a process that often requires
several days or even weeks to complete. This delay poses a considerable challenge to
maintaining effective intrusion detection in highly dynamic environments [14].

Developing ML-based NIDSs for dynamic environments is particularly
challenging, as ML models are typically optimized to maximize detection

Journal of Network and Systems Management (2025) 33:75 	 Page 3 of 26  75

accuracy within a static, predefined training environment [15]. This inherent
design assumption limits their ability to adapt to the continuous changes char-
acteristic of dynamic IaC-deployed infrastructures [12]. This limitation often
results in intrusion detection schemes that inadequately generalize from the train-
ing dataset, leading to performance issues in real-world settings. Consequently,
such schemes struggle to detect new and evolving behaviors effectively, a situ-
ation usually observed in IaC-provisioned infrastructures. In practice, intrusion
detection models tend to achieve high detection accuracies in environments
that closely resemble their training datasets. However, their performance often
degrades significantly when exposed to behavioral changes or unseen variations
in the operational environment. Conversely, developing a reliable ML-based
NIDS for IaC-provisioned infrastructures requires that the designed scheme effec-
tively accounts for behaviors that are not observed during the training phase [16].

The development of a generalizable ML-based NIDS has been the focus of
numerous studies in recent years, yet its application within IaC environments
remains largely overlooked. In such environments, building a training dataset that
accurately reflects the behavior of the to-be-deployed infrastructure is not eas-
ily feasible due to the dynamic nature of IT configurations, which changes based
on the IaC script and result in corresponding shifts in environment behavior [17].
Deploying a new service configuration alters network traffic behavior, impacting
normal operations and potential attacker activities. In traditional settings, changes
in network traffic behavior lead to unreliable ML-based NIDSs, necessitating model
updates for effective remediation [18]. However, in IaC-deployed infrastructures,
the environment’s behavior is only revealed after the provisioning task is completed.
Therefore, for ML-based NIDS to remain reliable in such dynamic settings, pro-
posed approaches must adapt to new environment behaviors in real-time without
relying on frequent model updates. This is particularly important given the chal-
lenges and delays associated with constructing updated training datasets for con-
stantly evolving IaC environments.

Traditional ML-based NIDSs assume that the behavior of the deployed environ-
ment is stationary and does not change over time. In practice, the literature assumes
that the network traffic behavior is known entirely during training and remains
unchanged once the system is deployed in production. Otherwise, the system’s error
rates will increase compared to those observed during the testing phase, leading to
an unreliable system [19]. Unfortunately, developing a ML-based NIDS that can
adapt to potentially unseen network traffic behavior is not readily achievable, par-
ticularly in IaC environments. In contrast, researchers often overlook the generaliza-
tion capabilities of their designed schemes in favor of achieving higher detection
accuracies during testing [20]. This approach frequently results in overfitting, where
models are tailored to a single environment’s behavior and perform poorly when
exposed to environmental changes. Consequently, despite the growing adoption of
IaC-deployed infrastructures in recent years, a research gap persists in the develop-
ment of ML-based NIDSs capable of addressing the shifts in environment behavior
caused by the IaC configuration scripts.

Contribution. In light of this, this paper proposes a novel ML-based NIDS tai-
lored for IaC-deployed infrastructures. The proposed model is implemented twofold,

	 Journal of Network and Systems Management (2025) 33:75 75   Page 4 of 26

simultaneously leveraging a multi-objective feature selection and dynamic classifier
selection. First, the multi-objective feature selection identifies a subset of features
that can simultaneously enhance the system’s accuracy and generalization capabili-
ties. Our key insight is to improve generalization during the model-building phase,
addressing potential behavior changes introduced by the IaC configuration scripts.
Second, the dynamic selection of classifiers actively chooses the most appropriate
subset of classifiers based on the behavior of the currently deployed IaC environ-
ment. This approach ensures that infrastructure behavior changes caused by the
IaC script, which could otherwise degrade accuracy, are mitigated by dynamically
adjusting the classifiers used for the classification at the inference phase. As a result,
our proposed model effectively tackles the challenges of generalization and novelty
detection posed by the non-stationary behavior introduced by IaC scripts.

In summary, the main contributions of our work are:

•	 A new ML-based NIDS for IaC-deployed infrastructures. The proposed scheme
addresses model generalization at the training phase and actively selects the clas-
sifiers during the inference phase for novelty detection. Our proposal improves
the F1-Score by up to 0.31;

•	 A new publicly available IaC-provisioned intrusion dataset with 19 different con-
figurations, generated with 100 normal clients for 5 services, as well as 14 differ-
ent attacker behaviors;

Roadmap. The remainder of this paper is organized as follows. Section 2 discusses
the fundamentals of ML-based NIDS and IaC. Section 3 overviews the current lit-
erature on ML-based NIDS for IaC. Section 4 introduces our proposed scheme,
Sect. 5 describes its implementation, and 6 evaluates its performance. Finally, we
conclude our work on Sect. 7.

2 � Preliminaries

The utilization of IaC-deployed infrastructures has consistently increased over the
past few years. This section further describes the fundamentals of IaC-based pro-
visioning techniques, followed by a discussion on the development of ML-based
NIDSs for IaC-deployed infrastructures.

2.1 � Infrastructure as Code (IaC)

IaC is an approach to manage and provision IT infrastructures through machine-
readable definition files. In practice, rather than relying on physical hardware con-
figurations or manual configuration tools, this approach allows developers and
operations teams to automate the deployment and management of infrastructure
resources through code [2]. This automation ensures consistency, scalability, and
rapid iteration by treating infrastructure similarly to software development, as IaC
enables version control, testing, and team collaboration. These capabilities reduce

Journal of Network and Systems Management (2025) 33:75 	 Page 5 of 26  75

the likelihood of configuration drift and promote more efficient resource utilization.
Additionally, IaC enables organizations to implement Continuous Integration and
Continuous Deployment CI/CD practices, enhancing agility and responsiveness to
evolving business needs [2].

The advantages introduced by IaC have led numerous companies to develop new
solutions for automating infrastructure deployment. These include private platforms
such as AWS CloudFormation [7] and Azure Resource Manager [8], alongside pub-
licly available alternatives like Chef [4], Puppet [5], and Terraform [6]. The lat-
ter is an open-source tool that enables users to define and provision infrastructure
resources using a high-level configuration language called Hashicorp Configura-
tion Language (HCL). Terraform integrates the management of both cloud services
and on-premises resources through declarative configuration files that specify the
desired infrastructure state [21]. These capabilities extend to automating the deploy-
ment of resources such as virtual machines, networks, and security groups. Dur-
ing the deployment phase, Terraform supports integration with various public and
private cloud platforms via a provider-based architecture, enabling the seamless
provisioning of diverse infrastructure components. It utilizes a resource graph that
visualizes resource dependencies, ensuring parallel execution during provisioning.
Its state management feature also tracks the current infrastructure state, facilitating
automated updates and modifications while maintaining consistency and preventing
configuration drift.

Deploying an IT infrastructure through IaC facilitates the seamless modification
of configurations, allowing for straightforward adjustments that can significantly
alter the behavior of services. This flexibility enables teams to quickly implement
changes in response to evolving requirements or performance metrics, streamlining
the process of adapting infrastructure to meet specific needs [22]. However, while
this ease of configuration change enhances agility, it also necessitates careful con-
sideration of potential impacts, as even minor adjustments can lead to major changes
in service behavior.

2.2 � Machine Learning for Network Intrusion Detection

The utilization of ML techniques for NIDS has steadily increased over the past few
years due to the capability of ML to detect new attack behaviors [12]. To achieve
this goal, proposed schemes are typically implemented through a four-phase pro-
cess. First, the Data Acquisition module continuously captures network packets from
a monitored Network Interface Card (NIC). The collected packets serve as input for
the Feature Extraction module, which aims to extract behavioral features represent-
ing the network traffic behavior between hosts and their services. In general, net-
work traffic behavior is represented through flow-based features, which include met-
rics such as the number of exchanged network packets and bytes between a specific
service over a defined time frame (e.g., over a 60 seconds interval). Table 1 shows
the set of network-level features used in our work. In total, we consider 31 features
that summarize the communication between client and server in a window interval
of up to 60 seconds. The resulting feature vector is then classified by a Classification

	 Journal of Network and Systems Management (2025) 33:75 75   Page 6 of 26

module, which performs this task using a previously trained ML model. The
Alert module then signals events classified as intrusion to a network operator for
decision-making.

The reliability of a ML-based NIDS depends on an adequately trained ML
model [14]. To achieve this, researchers usually employ a three-phase process,

Table 1   Feature set extracted at the network level in a time window interval of 60s for every client and
server communication

Feature Description

1 Total Fwd Pkts Total number of packets sent from client to server
2 Total Fwd Vol Total volume of data (in bytes) sent from client to server
3 Total Bwd Pkts Total number of packets sent from server to client
4 Total Bwd Vol Total volume of data (in bytes) sent from server to client
5 Fwd Pkt Len Std Standard deviation of the length of packets sent from client to server
6 Bwd Pkt Len Max Maximum length of packets sent from server to client
7 Bwd Pkt Len Std Standard deviation of the length of packets sent from server to client
8 Fwd IAT Mean Mean inter-arrival time of packets sent from client to server (in milliseconds)
9 Fwd IAT Max Maximum inter-arrival time of packets sent from client to server (in millisec-

onds)
10 Fwd IAT Std Standard deviation of inter-arrival time of packets sent from client to server (in

milliseconds)
11 Bwd IAT Max Maximum inter-arrival time of packets sent from server to client (in millisec-

onds)
12 Bwd IAT Std Standard deviation of inter-arrival time of packets sent from server to client (in

milliseconds)
13 Duration Total duration of the network flow (in milliseconds)
14 Active Min Minimum time the flow was active (in milliseconds)
15 Active Mean Mean time the flow was active (in milliseconds)
16 Active Max Maximum time the flow was active (in milliseconds)
17 Active Std Standard deviation of the time the flow was active (in milliseconds)
18 Idle Min Minimum time the flow was idle (in milliseconds)
19 Idle Mean Mean time the flow was idle (in milliseconds)
20 Idle Max Maximum time the flow was idle (in milliseconds)
21 Idle Std Standard deviation of the time the flow was idle (in milliseconds)
22 SFlow Fwd Pkts Sampled number of packets sent from client to server
23 SFlow Fwd Bytes Sampled number of bytes sent from client to server
24 SFlow Bwd Pkts Sampled number of packets sent from server to client
25 SFlow Bwd Bytes Sampled number of bytes sent from server to client
26 FPSH Count Number of PUSH flags in packets sent from client to server
27 BPSH Count Number of PUSH flags in packets sent from server to client
28 FURG Count Number of URGENT flags in packets sent from client to server
29 BURG Count Number of URGENT flags in packets sent from server to client
30 Total FHLen Total header length of packets sent from client to server
31 Total BHLen Total header length of packets sent from server to client

Journal of Network and Systems Management (2025) 33:75 	 Page 7 of 26  75

namely training, validation, and testing. The training phase involves extracting
a behavioral ML model from a training dataset. Consequently, the dataset must
reliably represent the behavior of the environment in which the system will be
deployed. The extracted ML model is then assessed using a validation dataset,
which facilitates feature selection and model fine-tuning. Finally, the accuracy of
the optimized ML model is evaluated on a testing dataset, with the expectation
that this accuracy will be reflected when the system is deployed in a production
environment.

As a result, changes in environment behavior necessitate re-executing the
entire model training process [23]. This process involves not only retraining the
model but also regenerating an updated training dataset that accurately captures
the new environment behavior. Such dataset generation is a time-consuming task,
often requiring several days or even weeks to gather, preprocess, and label suf-
ficient data to reflect the updated conditions accurately. Additionally, the con-
tinuous need for retraining introduces operational delays and increases computa-
tional costs, making it impractical for environments with frequent configuration
changes [24]. This highlights the significant challenges associated with maintain-
ing reliable performance in dynamic IaC-deployed infrastructures.

2.3 � When ML‑based NIDS meets IaC

Applying ML-based NIDS in IaC environments presents several challenges, pri-
marily stemming from the dynamic nature of service configurations. As infra-
structure configuration is frequently modified through automated deployment
scripts, any changes in service configuration can significantly impact network
behavior, leading to alterations in provided services and shifts in the threat land-
scape [2]. These modifications necessitate continuous model retraining to ensure
that the ML-based NIDS can accurately detect anomalies and threats based on the
current operational environment. However, retraining models in a timely and effi-
cient manner can be resource-intensive and complex, requiring access to updated
training data and adequate validation processes [25]. Additionally, integrating
these retrained models into the IaC pipeline must be meticulously managed to
prevent disruptions in service availability and to maintain the effectiveness of
security measures amid ongoing configuration changes.

In this context, there remains a significant gap in developing new ML-based
NIDSs that can effectively navigate the dynamic nature of IaC environments.
While researchers often assume that challenges arising from frequent configura-
tion changes can be adequately addressed through periodic model retraining, this
approach is frequently not feasible. This is due to the resource-intensive nature
of retraining processes and the necessity for extensive, up-to-date training data.
Consequently, this reliance on retraining overlooks the challenges associated with
real-time operational adjustments and the rapid evolution of network behaviors in
IaC, making traditional approaches inapplicable due to the time frame and effort
required to build an updated ML model.

	 Journal of Network and Systems Management (2025) 33:75 75   Page 8 of 26

3 � Related Works

The development of new ML-based techniques for NIDS has been a widely
explored topic in the literature over the past few years [12]. In general, proposed
schemes often pursue higher accuracies, albeit the tradeoffs on model generaliza-
tion, a characteristic that challenges the application on IaC-provisioned architec-
tures. As an example, S. Tariq et al. [26] proposed an intrusion detection scheme
implemented through a long Short-Term Memory (LSTM) model. The proposed
approach improves accuracy by training their scheme using a transfer learning
implementation. Unfortunately, the authors assume that model updates can be
conducted as required and overlook model generalization challenges. Similarly,
K. Wolsing et al. [27] relies on an ensemble of classifiers to improve detection
accuracy. Their scheme builds an ensemble through a time-aware and transfer
learning framework to reduce false positives. The impact of model generaliza-
tion and changes in environmental behavior is overlooked. B. Mbarek et al. [28]
proposes replicating intrusion detection models to detect network attacks. Their
scheme improves accuracy but also leaves model generalization unaddressed.
R. Lazzarini et al. [29] proposes using an ensemble stacking approach through
deep learning classifiers to reduce false-positive rates. Their scheme significantly
increases accuracy on a single dataset while overlooking the generalization chal-
lenges. R. Zhao et al. [30] proposes a dynamic autoencoder model to address the
non-stationary behavior of intrusions. Their approach improves detection accu-
racy but assumes that model updates can be conducted as required.

Feature selection is a widely used approach in intrusion detection for accuracy
improvements. M. Rashid et al. [31] relies on a tree-based classifier built using
feature selection to improve intrusion detection accuracy. Their approach reduces
false positives but overlooks the generalization impact on the resulting model.
Z. Ye et al. [32] proposes an evolutionary-based feature selection approach for
combining multiple classifiers. Their approach improves accuracy on widely used
datasets; however, the authors assume a static environment behavior during the
evaluation. Similarly, S. Das et al. [33] evaluates feature selection impact on mul-
tiple intrusion datasets while overlooking the generalization capabilities of the
resulting model. Z. Halim et al. [34] utilizes a genetic search algorithm for feature
selection aiming to reduce the model’s error rate. Their approach improves detec-
tion accuracy in several intrusion datasets but overlooks the impact on model
generalization. Z. Chkirbene et al. [35] relies on a dynamic intrusion detection
scheme coped with a feature selection approach. The proposal reduces the error
rate but overlooks model generalization and assumes a stationary environment
behavior. Y. Zhou et al. [36] proposes a feature selection approach for an ensem-
ble of classifiers to reduce intrusion detection error rates. The authors evaluate
the efficacy of their scheme on several datasets but neglect the impact on model
generalization. C. Khammassi et al. [37] uses a multi-objective feature selection
scheme aiming for higher accuracy and fewer features. Their model improves
intrusion detection with less computational costs, unfortunately, model generali-
zation is neglected.

Journal of Network and Systems Management (2025) 33:75 	 Page 9 of 26  75

In general, to address the non-stationary behavior of intrusion detection environ-
ments, such as those originating from IaC-deployed infrastructures, researchers rely
on dataset generation approaches. M. Laundauer et al. [38] aims at simulating mul-
tiple normal user behavior to address dataset generation challenges. Their approach
could be applied to model updates in dynamic environments. However, the applica-
tion in such a context is not evaluated. V. Kumar et al. [39] utilizes a generative
adversarial network for the generation of synthetic attack samples. Their approach
improves accuracy in a single dataset but fails at evaluating their scheme under non-
stationary behavior. L. Syne et al. [40] address model updates in intrusion detection
through a federated learning scheme. Their model enables model updates to be con-
ducted by multiple parties but neglects the dataset generation challenges associated
with model updates. Similarly, S. S. Woo et al. [41] proposes a reinforcement learn-
ing strategy to update intrusion detection models over time. Their approach enables
model updates to be conducted more easily but overlooks the generalization of the
resulting intrusion detection scheme.

As a consequence, there is still a substantial research gap in the development of
ML-based NIDSs that can function effectively in IaC-deployed environments. This
gap exists primarily because current schemes struggle to handle the non-stationary
behavior of such dynamic settings. As infrastructure configurations change rapidly
and frequently in IaC, the underlying network environment becomes unpredictable,
causing traditional NIDS models to fail in adapting to these shifts. To address this
issue, proposed schemes must generalize the network behavior to adapt to evolving
conditions and detect and respond to unseen or novel network traffic patterns with-
out solely depending on frequent retraining.

3.1 � Discussion

Table 2 overviews the current literature concerning the implementation of ML-based
NIDSs. The existing literature on ML-based NIDSs demonstrates limited attention
to several characteristics essential for securing IaC-provisioned infrastructures. Fea-
ture selection, while explored in several works, often focuses solely on improving
detection accuracy without considering generalization to unseen network behaviors.
Similarly, addressing new network behaviors remains underexplored, with most
approaches relying on static training datasets that fail to capture the dynamic nature
of real-world environments. Moreover, the application of these schemes to IaC
environments is rarely discussed, leaving a significant gap in adapting to the infra-
structure’s variability driven by configuration scripts. Few studies employ realistic
datasets that reflect practical deployment scenarios, further limiting the applicability
of these solutions in production environments. Finally, dynamic inference, crucial
for adapting to runtime changes in network behavior, is largely absent from exist-
ing approaches. In contrast, our proposed framework addresses these shortcomings
by incorporating multi-objective feature selection to enhance generalization, apply-
ing dynamic classification to adapt to new network behaviors, leveraging realistic

	 Journal of Network and Systems Management (2025) 33:75 75   Page 10 of 26

datasets that simulate IaC environments, and enabling dynamic inference to ensure
reliable operation in non-stationary settings.

4 � A Dynamic Classification Model for Network Intrusion Detection
in IaC‑deployed Infrastructures

Algorithm 1   Dynamic Classifier Selection - Inference Phase

Table 2   A summary of related work and the characteristics of their ML-based NIDS implementation

Work Feature
Selection

New Net.
Behavior

IaC Environ-
ment

Realistic
Dataset

Dynamic
Inference

S. Tariq et al. [26] × ✓ × ✓ ×

K. Wolsing et al. [27] × × × ✓ ✓

B. Mbarek et al. [28] × ✓ × × ×

R. Lazzarini et al. [29] × ✓ × × ×

R. Zhao et al. [30] × ✓ × ✓ ×

M. Rashid et al. [31] ✓ × × × ×

Z. Ye et al. [32] ✓ ✓ × ✓ ×

S. Das et al. [33] ✓ ✓ × × ×

Z. Halim et al. [34] ✓ × × ✓ ×

Z. Chkirbene et al. [35] ✓ × × × ✓

Y. Zhou et al. [36] ✓ × × ✓ ×

C. Khammassi et al. [37] ✓ ✓ × × ×

M. Laundauer et al. [38] × × × ✓ ×

V. Kumar et al. [39] × ✓ × ✓ ×

L. Syne et al. [40] × ✓ × ✓ ×

S. S. Woo et al. [41] × ✓ × ✓ ×

Ours ✓ ✓ ✓ ✓ ✓

Journal of Network and Systems Management (2025) 33:75 	 Page 11 of 26  75

To address the generalization challenges caused by the dynamic behavior of IaC-
deployed infrastructures in ML-based NIDS, we propose a dynamic classifica-
tion model implemented through a feature selection scheme. The operation of our
scheme is illustrated in Fig. 1, and is implemented in two phases, namely Multi-
objective Feature Selection, and Dynamic Classification.

The Multi-objective Feature Selection aims at finding a feature space that
optimizes classifier accuracy and generalization capabilities. To achieve this, we
frame feature selection as a multi-objective optimization task, where the classi-
fier is expected to improve accuracy on the anticipated IaC environment behavior
while also enhancing generalization capabilities on unseen network traffic behav-
ior. In practice, we measure generalization by evaluating the detection accuracy
of unseen network events during the training phase, which is a common challenge
in IaC-deployed infrastructures. Our main insight is to improve both classification
accuracy and generalization during the training phase as a multi-objective feature
selection task. This leads to a classifier capable of addressing the non-stationary
behavior inherent to IaC-deployed infrastructures.

The goal of Dynamic Classification is to handle the classification of new envi-
ronment behaviors during the inference phase in IaC-deployed infrastructures.
To achieve this, we propose a dynamic classifier selection approach, where the
subset of classifiers used for inference is actively chosen based on the current
environment behavior. This enables the model to detect new behaviors generated
by the dynamic nature of IaC scripts when deployed in production. As a result,
our approach not only enhances generalization capabilities, driven by the feature
selection process but also improves the detection of new network traffic behav-
iors. This paves the way for the implementation of ML-based NIDSs in IaC-
deployed infrastructures in production environments.

The following subsections further describe the implementation of our pro-
posal, including the modules that implement it.

Fig. 1   Overview of our proposed dynamic classifier selection scheme for IaC-deployed infrastructures.
The multi-objective feature selection aims to increase the resulting classifiers’ generalization capabilities.
The dynamic classification actively selects the subset of classifiers to address novelty detection at the
IaC-deployment phase

	 Journal of Network and Systems Management (2025) 33:75 75   Page 12 of 26

4.1 � Dynamic Classification

Implementing a reliable ML-based NIDS in IaC-deployed infrastructures is challeng-
ing due to the dynamic nature of the resulting environment. This presents difficulties
for traditional ML-based NIDSs, which are not well-suited to handle the non-station-
ary behavior of network traffic (see Section 2.3). To address this, our proposed scheme
frames the inference task as a dynamic classification task. The aim is to actively
select the subset of classifiers that are most suited to classify the current environment
behavior.

The classification overview is illustrated in Figure 1, and follows a traditional ML-
based NIDS operation. It starts with the collection of network packets by the Data
Acquisition module. The behavior of the collected network packets are then extracted
by a Feature Extraction module, generating a network flow vector. The network flow
is classified by a Dynamic Selection module, and signaled accordingly by the Alert
module.

To conduct the classification, we frame it as a dynamic classifier selection task. Let
x ∈ ℝ

D denote a D-dimensional feature vector input and y ∈ {n, a} , where n denotes a
normal event, and a denotes attack labeled events. Our model aims to learn a dynamic
classifier ensemble, each of which models the probabilistic predictive distribution p(y|x)
over ground truth labels. To achieve such a goal, we build a N-sized classifier ensemble
(Fig. 1, Ci ). The dynamic classifier then finds a subset of classifiers from the ensemble
that best fits the classification task based on the provided network event x.

Algorithm 2   Genetic Algorithm for solving Eq. 4.

This is achieved by building a region of competence D from a given labeled test
set. The region of competence comprises the set of events � from the test set that were
correctly classified by each single classifier from the ensemble. In practice, D denotes
correctly classified events from each classifier. At the inference phase, the dynamic
classifier goal is to find a subset of classifiers K, such that the events from the region of
competence D are similar to the to-be-classified event x. Therefore, we find the subset
of classifiers based on the following equation:

(1)min k
� ∈D

√

√

√

√

n
∑

i=1

(�i − xi)
2

Journal of Network and Systems Management (2025) 33:75 	 Page 13 of 26  75

where k denotes the number of classifiers to be selected, � the event from the region
of competence D , x the current environment event, and n the number of features. As
a result, k classifiers are found based on the minimum Euclidean distance from the
current evaluated event. Recalling that the region of competence D contains cor-
rectly classified events. Thus, we actively select classifiers based on a similarity
measure with these past correct classifications.

Algorithm 1 overviews the implementation of our proposed dynamic classifier
selection at the inference phase. The dynamic classifier selection algorithm oper-
ates by identifying a subset of classifiers from an ensemble that are most suitable
for classifying a given event, represented as a feature vector x. This process begins
by computing the distance between x and each event in the region of competence D ,
which comprises previously correctly classified events. The distances are stored in a
list S . Next, the classifiers in the ensemble {C1,C2,… ,CN} are ranked based on the
minimum distances computed from their respective regions of competence. Finally,
the algorithm selects the top-k classifiers with the smallest distances to x, returning
them as the most relevant classifiers for the task. This dynamic selection mechanism
ensures that the classification task is performed using classifiers that have demon-
strated competence in similar scenarios.

4.2 � Multi‑objective Feature Selection

ML-based NIDSs designed for IaC-provisioned infrastructures must generalize the
behavior of the training environment. This requirement stems from the variability
in IaC-deployed infrastructures, which change according to the provided configu-
ration script. This variability presents a major challenge for effectively deploying
such schemes in these dynamic settings. To tackle this challenge, we approach the
Dynamic Classification training phase (sec. 4.1) as a multi-objective feature selec-
tion task, as illustrated in Figure 1. In practice, our goal is to optimize classification
accuracy in the training environment and also account for a subset of attack and nor-
mal activities not encountered during the training phase.

To achieve such a goal, our multi-objective feature selection task aims at find-
ing a feature space such that it minimizes the error rate in the training environment
through the following equation:

where error denotes a function that measures the error rate of the classification sys-
tem h, using a feature space xi , on a given test set Dtest . Here, the test set Dtest holds
a set of samples with a behavior similar to the initially expected from the to-be-
deployed IaC infrastructure. Therefore, it contains the set of normal and attack sam-
ples expected to be generated from the initial IaC configuration script.

To measure the generalization capabilities of the designed model, we make use of
the following equation:

(2)�test(h, xi,Dtest) = error(h(xi,Dtest))

(3)�gen(h, xi,Dgen) = error(h(xi,Dgen))

	 Journal of Network and Systems Management (2025) 33:75 75   Page 14 of 26

where error also denotes a function that measures the error rate of the classifica-
tion system h, using a feature space xi , on a given test set Dgen . Conversely, Dgen
holds a set of normal and attack samples generated using new services and attack
variants. As a result, it contains samples that are not expected to be generated from
the current IaC script version. As a result, our multi-objective feature selection
approach aims to solve the following equation:

where {x0,… , xn} denotes all feature spaces variations, h the dynamic classification
scheme (see Sec. 4.1), �test the testing error objective (Eq. 2), and �gen the generaliza-
tion error objective (Eq. 3). As a result, we aim to find a feature space that simulta-
neously reduces the resulting dynamic classifier error rate on previously seen events
( �test ) and new events ( �gen).

Given that searching over the complete feature space is not feasible, we solve
Eq. 4 through a genetic search implementation. Algorithm 2 overviews the genetic
search implementation on our scheme. It starts by initiating a population set P with
random feature spaces, and computing their fitness using Eqs. 2 and 3. It then pro-
ceeds to select the most fitted individuals based on their associated fitness to crosso-
ver and mutate them to generate a new population. The less fitted individuals are
replaced with the new offspring, and the procedure is repeated for N generations.
Finally, the resulting set of individuals can be selected by the network operator
based on the desired error rate trade-offs. For instance, in scenarios where the IaC
configuration script remains relatively stable over time, the operator may prioritize
a lower error rate on the test set while tolerating higher error rates for new events.
Conversely, in environments where the IaC configuration changes frequently, the
operator might favor a lower error rate on the generalization set to better handle the
dynamic nature of the infrastructure.

4.3 � Discussion

Addressing the dynamic behavior of IaC-deployed environments is a challenging
task for current ML-based NIDSs. In light of this, our proposed model frames intru-
sion detection as a dynamic classifier selection (Section 4.1) built through a fea-
ture selection operation (Section 4.2). The first aims at actively selecting the subset
of classifiers that should be used for the classification task. The goal is to adjust
the behavior of the classification module at inference phase based on the current
IaC-deployed environment behavior. The latter aims to select the subset of features
that simultaneously minimize the dynamic classifier error rate on the test set and the
generalization set (Eq. 4). Hence, it improves our scheme generalization capabilities
caused by variations on the used IaC script. As a result, our proposed model paves
the way for reliable ML-based NIDS implementation on IaC infrastructures.

(4)

argmin
x0,...,xn

�test(h, xi,Dtest)

and

argmin
x0,...,xn

�gen(h, xi,Dgen)

Journal of Network and Systems Management (2025) 33:75 	 Page 15 of 26  75

5 � Prototype and Testbed

We implemented a proposal prototype on a IaC-provisioned infrastructure executed
in a private environment. Fig. 2 overviews the implementation of our proposed
scheme. We considered a IaC environment implemented through Terraform [6] that
deploys generated scripts through a Kubernetes [42] cluster v.1.31. The Kubernetes
deploy the associated IaC scripts as Pods making use of Docker [43] v.24.0. We
considered 5 different normal services, as follows:

•	 DNS. A Domain Name Service (DNS) server implemented through BIND
v.9.11. The normal network traffic is generated through name resolution queries
executed towards the server;

•	 HTTP. A web server implemented through Apache Tomcat v.11.0 hosting the
top 500 websites from Alexa listing. The normal network traffic is generated
through workload that randomly queries hosted websites;

•	 SMTP. A mail server implemented through Postfix v3.9. The normal network
traffic is generated by sending random-sized e-mails from 100 to 1, 000 bytes;

•	 SNMP. A Simple Network Management Protocol (SNMP) server hosted on
Ubuntu. The normal network traffic is generated by randomly querying the MIB
tree;

•	 SSH. A Secure Shell (SSH) server implemented through openssh-server v.9.3 on
an Ubuntu 22.04 container. The normal network traffic is generated by randomly
executing a command from a 100-sized list in random intervals;

To generate realistic normal network traffic, we deploy 100 containers executing
workload according to the deployed service in random intervals from 0 to 4 second
periodicity. We also generate 14 categories of attack behaviors through Kali OS. For
the attack generation, we vary the attack frequency and throughput.

We implemented our proposed ML-based NIDS (see Fig. 1) as an isolated ser-
vice that continuously assesses the generated network traffic in our testbed. In this
case, the generated network traffic is continuously acquired by a Data Acquisition
module implemented using Scapy API v.2.6. The behavior of the collected network

Fig. 2   Overview of our proposed prototype implementation on a private infrastructure

	 Journal of Network and Systems Management (2025) 33:75 75   Page 16 of 26

packets is extracted using numpy API v.1.26. Table 1 lists our prototype’s extracted
network flow features. We extract a total of 31 features considering the IP and ser-
vices grouping in a 60 second interval. The extracted network flow features are input
for our dynamic classifier selection scheme (see Section 4.1) implemented using
DesLib API v.0.4. The used parameters and the implementation of our proposed fea-
ture selection scheme (see Alg. 2) are later discussed in Section 6.1.

Table 3 presents the statistics of our generated testbed. We executed 10 different
service configurations, each for 30 minutes, to simulate a realistic IaC configuration
scenario. In practice, the behavior of the environment, considering both attack and
normal variants, varies with each deployment, leading to a realistic representation
of IaC-deployed environment dynamics. As a result, our generated testbed creates a
realistic IaC situation that can vary the environment behavior based on the utilized
script configuration.

6 � Evaluation

Our conducted experiments aim at answering the following Research Question
(RQs):

•	 RQ1. What is the accuracy impact of IaC behavior changes on traditional ML-
based NIDS?

Table 3   Statistics of our
generated testbed concerning
the network flows and packets

Env. Behavior Net. Flows Net. Packets

Dtest ACK Scan 13.2M 26.4M
DDoS 734.8k 66.7M
ICMP Echo Discover 13.2M 26.4M
UDP Scan 51.8k 98.1k
HTTP (Normal) 516.5k 5760
SNMP (Normal) 2.7k 5760

Dgen MySQL Brute Force 70.2k 39.5M
Nikto 1.6M 111.3M
Scan Vuln 13.7M 53.5M
SSH Brute Force 12.2k 472.5k
Stealth Scan 13.2M 26.4M
SYN Scan 13.1M 26.4M
Brute Force DIRB 481.5k 32.9M
Wapiti 1.4k 83.9k
CMS Scan 1.1M 48.8M
Full Connect Scan 13.2M 26.4M
DNS (Normal) 49.1k 5760
SMTP (Normal) 286.8k 5760
SSH (Normal) 18.2k 5760

Journal of Network and Systems Management (2025) 33:75 	 Page 17 of 26  75

•	 RQ2. Does our proposed feature selection technique improve the generalization
capabilities of our scheme?

•	 RQ3. What is the accuracy performance of our model under IaC-deployed envi-
ronments?

The following subsections further describe the performance of our scheme including
the model-building aspects and its performance on our new dataset.

6.1 � Model Building

We evaluate our proposed Dynamic Classifier Selection (Alg. 1) implemented with
a dynamic selection of classifiers, namely k-Nearest Oracle-Eliminate (KNORA-
E). We use 5 neighbors to estimate the competence region and k-Nearest Neighbor
(kNN) for distance computation (Eq. 1). The parameters were empirically set, and
no significant influence on the results was observed when varying them. The classi-
fiers were implemented on DESLib API v.0.4.

We also compare the performance of our proposed model vs. widely used tra-
ditional ensemble-based ML classifiers. The ensemble classifiers, namely Random
Forest (RF), and Bagging (Bag), were implemented with 100 decision trees as their
base learners, where each one of them also uses gini as the node split quality metric.
The Decision Tree (DT) classifier relies on a gini node split quality metric without a
maximum depth of the tree. Finally, the Multilayer Perceptron (MLP) classifier was
implemented with 256 hidden neurons, with a Relu activation function and adam
optimizer. The traditional ensemble classifiers were implemented through scikit-
learn API v0.24.

We split the original dataset (Table 3) into training, testing, and validation
datasets, each composed by 40%, 30%, and 30% respectively of each behavior. In
addition, we generated two distinct datasets (see Table 3) based on these splits as
follows:

•	 Dtest . Dataset used for training purposes. It contains DNS, HTTP, and SMTP
normal network traffic, and ACKScan, Bruteforce DIRB, CMSScan, DDoS, and
FullConnectScan attack network traffic;

•	 Dgen . Dataset used for evaluating the generalization capabilities (see Section 4.2).
It contains SNMP and SSH normal network traffic and the remaining attack net-
work traffic. These services and attacks are not used for training;

Therefore, all selected classifiers are trained using the Dtest training split dataset,
evaluated using the testing split, whereas evaluated also using the Dgen testing split.
The goal is to enable the generalization evaluation of our scheme to generate a simi-
lar behavior that would be evidenced in IaC-deployed infrastructures. In this case,
the ML-based NIDS is subject to a specific training environment and should be able
to generalize the behavior without retraining, as caused by variations on the used
IaC script.

	 Journal of Network and Systems Management (2025) 33:75 75   Page 18 of 26

We evaluate the selected classifiers using the following classification perfor-
mance metrics:

•	 True Positive (TP): number of attack samples correctly classified as an attack.
•	 True Negative (TN): number of normal samples correctly classified as normal.
•	 False Positive (FP): number of normal samples incorrectly classified as an

attack.
•	 False Negative (FN): number of attack samples incorrectly classified as normal.

The F-Measure was computed according to the harmonic mean of precision and
recall values while considering attack samples as positive and normal samples as
negative, as shown in Eq. 7.

6.2 � ML‑Based NIDS in IaC‑deployed Infrastructures

Our first experiment aims at answering RQ1 and investigates the accuracy perfor-
mance of traditional ML-based NIDSs on IaC-deployed infrastructures. To achieve
such a goal, we train the traditional ML classifiers using the Dtest subset, and evalu-
ate their performance on the entire dataset.

Table 4 shows the classification performance of the selected classifiers when sub-
jected to variations in IaC environments. It is evident that while all selected schemes
maintain significantly high detection accuracies when evaluated on environments
similar to those used during training ( Dtest ), their performance drops markedly when
assessed on unseen environments with new services and attack patterns ( Dgen ). This
demonstrates the limited ability of traditional ML-based NIDSs to generalize to
dynamic, real-world settings. For instance, the RF classifier achieved perfect per-
formance on the Dtest environment, with average TN and TP rates of 1.0 and 1.0,
respectively. However, under the Dgen environment–representing new conditions
generated by variations in IaC scripts–the same classifier experienced a notable
decline in performance. Specifically, it achieved average TN and TP rates of only
0.77 and 0.56, corresponding to degradations of 0.23 and 0.44, respectively. This
significant difference highlights the inability of the classifier to adapt to the evolv-
ing network behavior introduced by the dynamic nature of IaC deployments. As a
consequence, it is possible to note the critical limitations of traditional ML-based
NIDSs in dynamic and non-stationary environments, where IaC scripts introduce

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F-Measure =2 ∗
Precision ∗ Recall

Precision + Recall

Journal of Network and Systems Management (2025) 33:75 	 Page 19 of 26  75

continuous variations to infrastructure behavior. These findings emphasize the
importance of developing new approaches to address these challenges and ensure
consistent performance even under dynamic environmental conditions.

Our second experiment aims at answering RQ2, and investigates how our pro-
posed feature selection scheme can be used to improve the system generalization
capabilities. To achieve such a goal, we implement our scheme as a wrapper-based
feature selection using the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [44] on top of pymoo API (see Alg. 2). In such a case, the NSGA-II uses a 100
population size, 100 generations, a crossover of 0.3, and a mutation probability of
0.1. The multi-objective feature selection aims at decreasing the �test (Eq. 2) and
�gen (Eq. 3), by implementing Alg. 2. Using our dynamic classification scheme, we
measure the resulting objectives for every evaluated individual. In this case, we
evaluate our proposed Dynamic Selection implemented with a dynamic selection of
classifiers (KNORA-E) using a bagging pool of 100 estimators with replacement
event selection and 5 neighbors (Alg. 1).

Figure 3 presents the Pareto curve of our wrapper-based feature selection model,
highlighting the tradeoff between testing accuracy ( Dtest ) and generalization

Table 4   Classification accuracy of selected classifiers on our IaC dataset. Detection accuracy is reported
in the TP rate for attack events and TN rates for normal events

 Env. Behavior Detection Accuracy

Random Forest Decision Tree Bagging Multilayer
Perceptron

Ours

Dtest ACK Scan 1.000 1.000 1.000 0.325 1.000
DDoS 1.000 1.000 1.000 0.415 1.000
ICMP Echo Discover 1.000 1.000 1.000 0.325 1.000
UDP Scan 1.000 1.000 0.999 0.999 1.000
HTTP (Normal) 1.000 1.000 0.999 1.000 1.000
SNMP (Normal) 1.000 0.996 0.996 0.995 0.999

Dgen MySQL Brute Force 0.493 0.495 0.491 0.466 0.944
Nikto 0.004 0.000 0.006 0.103 0.066
Scan Vuln 0.962 0.962 0.962 0.332 0.964
SSH Brute Force 0.999 0.999 0.999 0.984 0.997
Stealth Scan 1.000 1.000 1.000 0.407 1.000
SYN Scan 1.000 1.000 1.000 0.311 1.000
Brute Force DIRB 0.000 0.000 0.006 0.113 0.067
Wapiti 0.192 0.290 1.000 0.290 0.033
CMS Scan 0.000 0.000 1.000 0.042 0.012
Full Connect Scan 1.000 1.000 0.032 0.140 1.000
DNS (Normal) 0.364 0.000 0.000 0.969 1.000
SMTP (Normal) 1.000 1.000 0.998 0.998 1.000
SSH (Normal) 0.964 0.990 0.990 0.995 1.000

Average 0.736 0.723 0.725 0.524 0.794

	 Journal of Network and Systems Management (2025) 33:75 75   Page 20 of 26

capabilities ( Dgen ). The curve consists of optimal solutions from the final gen-
eration of the optimization process. The results demonstrate that improving gen-
eralization to handle IaC-deployed infrastructure variations often requires toler-
ating slightly higher error rates in the training environment. Despite this tradeoff,
our approach significantly enhances generalization with minimal impact on train-
ing accuracy. For instance, the model achieves a generalization error rate as low as
0.01%, while maintaining a training error rate of just 0.1%. This balance ensures
adequate performance in dynamic environments caused by frequent changes in IaC
scripts. In addition, the flexibility of the Pareto curve allows network operators to
choose models that align with their specific needs, prioritizing either testing accu-
racy or generalization capabilities. This adaptability makes the proposed model a
reliable solution for deploying ML-based NIDSs in real-world IaC infrastructures,
reducing retraining requirements and improving operational efficiency.

Finally, to answer RQ3 we investigate how the feature-selected dynamic classifi-
cation can improve the resulting model’s accuracy. To achieve such a goal, we select
an average operation point that provides the best average values concerning both
proposal’s objectives (Fig. 3, Operation Point). It is important to note that the opera-
tion point used should be defined at the operator’s discretion. As an example, one
can favor higher generalization capabilities to address a more dynamic IaC-deployed
infrastructures albeit the impact on the resulting model’s accuracy. Therefore, we
select the average operation point to provide a comparison baseline for our model
efficacy.

Table 4 presents the detection accuracy achieved by our scheme at the selected
operational point (Ours). The results demonstrate that our proposed model pro-
vides substantial improvements in detection accuracy across both the training and
generalization environments. Specifically, the model achieves an average detection
accuracy of 0.794, which surpasses the performance of traditional methods. Com-
pared to random forest, decision tree, naive Bayes, and multilayer perceptron, our

Fig. 3   Pareto curve of our
proposed multi-objective feature
selection mechanism

Journal of Network and Systems Management (2025) 33:75 	 Page 21 of 26  75

approach achieves improvements of 0.058, 0.071, 0.056, and 0.270, respectively.
This improvement highlights the effectiveness of our model in addressing the chal-
lenges posed by the dynamic nature of IaC-provisioned infrastructures. By lever-
aging the multi-objective feature selection and dynamic classification approach, the
model enhances its ability to adapt to varying network behaviors while maintaining
strong detection capabilities. These results show the reliability improvement of our
proposed scheme for deployment in real-world IaC-deployed infrastructures.

We further analyze how our proposed model enhances classification accuracy for
each of the evaluated attacks in our testbed. Figure 4 presents the Cumulative Dis-
tribution Function (CDF) of the selected classifiers across all 14 attacks generated
in the IaC environment. The results clearly indicate that our model achieves sig-
nificant improvements in detection accuracy for all evaluated attacks. For instance,
our approach attains a TP rate of 90% for 11 out of the 14 attacks, outperforming
traditional methods. By comparison, random forest, decision tree, naive Bayes,
and multilayer perceptron achieve a TP rate of 90% for only 9, 9, 9, and 5 attacks,
respectively. This improvement can be attributed to the synergy between our pro-
posed multi-objective feature selection process (Alg.2) and the dynamic classifier
selection mechanism (Alg.1) employed during the inference phase. The enhanced
accuracy across a broader range of attack scenarios demonstrates the robustness and
adaptability of our model to the dynamic nature of IaC-provisioned infrastructures.
These results underline the importance of tailored feature selection and adaptive
classification techniques in achieving reliable intrusion detection in such complex
and variable environments.

Figure 5 presents a comparison of the average F1-Scores across the evaluated
schemes. The results show that our proposed model substantially enhances generali-
zation capabilities compared to traditional approaches (Fig.5b), while also achieving
slight improvements in training environment accuracies (Fig.5a). Notably, our model
achieves an increase in the resulting F1-Score by up to 0.31 on the generalization

Fig. 4   Cumulative Distribu-
tion Function (CDF) of the
true-positive accuracies of the
selected classifiers on our built
IaC dataset

	 Journal of Network and Systems Management (2025) 33:75 75   Page 22 of 26

set, highlighting its ability to effectively detect both known and novel behaviors in
dynamic IaC-provisioned environments. This improvement stems from the synergy
between our dynamic classifier selection mechanism and the multi-objective feature
selection strategy, which collectively optimize the model’s adaptability to diverse
infrastructure scenarios. These findings emphasize the potential of our approach to
enable reliable deployment of ML-based NIDS in IaC-provisioned infrastructures,
addressing the challenges posed by their dynamic and non-stationary nature.

7 � Conclusion

Securing IaC-provisioned infrastructures presents significant challenges due to the
dynamic nature of these environments. The infrastructure undergoes continuous
changes driven by the provided configuration scripts, leading to constantly shifting
environment behaviors. This inherent dynamism makes maintaining consistent secu-
rity difficult and renders traditional ML-based NIDSs unreliable in such settings. To
address these challenges, this paper proposes a novel ML-based NIDS framework
specifically designed for IaC-deployed infrastructures. The approach incorporates
two key components: multi-objective feature selection and dynamic classifier selec-
tion. The multi-objective feature selection focuses on identifying a subset of features
that enhance the model’s generalization capabilities, while the dynamic classifier
selection proactively chooses the subset of classifiers best suited to adapt to the cur-
rent environment behavior. Experiments conducted on a newly developed IaC intru-
sion testbed demonstrate the feasibility and effectiveness of the proposed approach.
The results show significant improvements in detection accuracy over traditional
methods, paving the way for more reliable ML-based NIDSs in dynamic and non-
stationary IaC environments.

Fig. 5   F1-Score of the selected classifiers on the training and generalization datasets

Journal of Network and Systems Management (2025) 33:75 	 Page 23 of 26  75

As future work, we aim to extend the model to include unsupervised model
updates after the IaC provisioning phase.

Acknowledgements  This work was partially sponsored by the Brazilian National Council for Scientific
and Technological Development (CNPq), grants no 304990/2021-3, 407879/2023-4, 302937/2023-4, and
442262/2024-8.

Author Contributions  All authors contributed to the study conception and design. Material prepara-
tion, data collection, and analysis were performed by Adilson G. Filho. Paper writing and reviewing was
performed by Eduardo K. Viegas. Paper reviewing and supervision was performed by Altair O. Santin.
Experiments reviewing and paper reviewing was performed by Jhonatan Geremias.

Data Availability  No datasets were generated or analysed during the current study.

Declarations 

Conflict of interest  The authors declare no Conflict of interest.

References

	 1.	 Rahman, A., Mahdavi-Hezaveh, R., Williams, L.: A systematic mapping study of infrastructure as
code research. Inf. Softw. Technol. 108, 65–77 (2019). https://​doi.​org/​10.​1016/j.​infsof.​2018.​12.​004

	 2.	 Opdebeeck, R., Zerouali, A., De Roover, C.: “Control and data flow in security smell detection for
infrastructure as code: Is it worth the effort?” In: 2023 IEEE/ACM 20th International Conference on
Mining Software Repositories (MSR). IEEE, (May 2023). https://​doi.​org/​10.​1109/​MSR59​073.​2023.​
00079

	 3.	 Konjaang, J.K., Xu, L.: Meta-heuristic approaches for effective scheduling in infrastructure
as a service cloud: A systematic review. J. Netw. Syst. Manag (2021). https://​doi.​org/​10.​1007/​
s10922-​020-​09577-2

	 4.	 ProgressChef, Chef - Extend DevOps Value, October 2024, https://​www.​chef.​io/
	 5.	 Perforce, Puppet Infrastructure and IT Automation at Scale, October 2024, https://​www.​puppet.​

com/
	 6.	 Hashicorp, Terraform Deliver Infrastrcture as Code, October 2024, https://​www.​terra​form.​io/
	 7.	 Services, A.W.: AWS CloudFormation Speed up Cloud Provisioning with Infrastructure as Code,

October 2024, https://​aws.​amazon.​com/​cloud​forma​tion/
	 8.	 Microsoft, Azure Resouce Manager, October 2024, https://​azure.​micro​soft.​com/​get-​start​ed/​azure-​

portal/​resou​rce-​manag​er
	 9.	 Thakkar, P., Patel, A.S., Shukla, G., Kherani, A.A., Lall, B.: Dynamic microservice provisioning

in 5g networks using edge-cloud continuum. J. Netw. Syst. Manag. (2024). https://​doi.​org/​10.​1007/​
s10922-​024-​09859-z

	10.	 Saavedra, N., Ferreira, J.F.: Glitch: Automated polyglot security smell detection in infrastructure as
code. Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engi-
neering, ser. ASE ’22. ACM, Oct. 2022. https://​doi.​org/​10.​1145/​35513​49.​35569​45

	11.	 Cherfi, S., Lemouari, A., Boulaiche, A.: Mlp-based intrusion detection for securing iot networks. J.
Netw. Syst. Manag. (2024). https://​doi.​org/​10.​1007/​s10922-​024-​09889-7

	12.	 Molina-Coronado, B., Mori, U., Mendiburu, A., Miguel-Alonso, J.: Survey of network intrusion
detection methods from the perspective of the knowledge discovery in databases process. IEEE
Trans. on Netw. Service Manag. 17(4), 2451–2479 (2020). https://​doi.​org/​10.​1109/​TNSM.​2020.​
30162​46

	13.	 Rahman, A., Parnin, C.: Detecting and characterizing propagation of security weaknesses in puppet-
based infrastructure management. IEEE Trans. Softw. Eng. p. 1–18 (2023). https://​doi.​org/​10.​1109/​
TSE.​2023.​32659​62

	14.	 Catillo, M., Pecchia, A., Villano, U.: Machine learning on public intrusion datasets: Academic
hype or concrete advances in nids? In: 2023 53rd Annual IEEE/IFIP International Conference on

https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1109/MSR59073.2023.00079
https://doi.org/10.1007/s10922-020-09577-2
https://doi.org/10.1007/s10922-020-09577-2
https://www.chef.io/
https://www.puppet.com/
https://www.puppet.com/
https://www.terraform.io/
https://aws.amazon.com/cloudformation/
https://azure.microsoft.com/get-started/azure-portal/resource-manager
https://azure.microsoft.com/get-started/azure-portal/resource-manager
https://doi.org/10.1007/s10922-024-09859-z
https://doi.org/10.1007/s10922-024-09859-z
https://doi.org/10.1145/3551349.3556945
https://doi.org/10.1007/s10922-024-09889-7
https://doi.org/10.1109/TNSM.2020.3016246
https://doi.org/10.1109/TNSM.2020.3016246
https://doi.org/10.1109/TSE.2023.3265962
https://doi.org/10.1109/TSE.2023.3265962

	 Journal of Network and Systems Management (2025) 33:75 75   Page 24 of 26

Dependable Systems and Networks - Supplemental Volume (DSN-S). IEEE (2023). https://​doi.​org/​
10.​1109/​DSN-​S58398.​2023.​00038

	15.	 Santos, K.C., Miani, R.S., de Oliveira Silva, F.: “Evaluating the impact of data preprocessing tech-
niques on the performance of intrusion detection systems. J. Netw. Syst. Manag. (2024). https://​doi.​
org/​10.​1007/​s10922-​024-​09813-z

	16.	 Rong, C., Geng, J., Hacker, T.J., Bryhni, H., Jaatun, M.G.: Openiac: open infrastructure as code -
the network is my computer. J. Cloud Comput. (2022). https://​doi.​org/​10.​1186/​s13677-​022-​00285-7

	17.	 Andresini, G., Pendlebury, F., Pierazzi, F., Loglisci, C., Appice, A., Cavallaro, L.: Insomnia:
Towards concept-drift robustness in network intrusion detection. In: Proceedings of the 14th ACM
Workshop on Artificial Intelligence and Security, ser. CCS ’21. ACM, (Nov. 2021). https://​doi.​org/​
10.​1145/​34743​69.​34868​64

	18.	 Viegas, E., Santin, A.O., Abreu, V., Jr.: Machine learning intrusion detection in big data era: A
multi-objective approach for longer model lifespans. IEEE Trans. Netw. Sci. Eng. 8(1), 366–376
(2021). https://​doi.​org/​10.​1109/​TNSE.​2020.​30386​18

	19.	 Olímpio, G., Camargos, L., Miani, R.S., Faria, E.R.: Model update for intrusion detection: Analyz-
ing the performance of delayed labeling and active learning strategies. Comput. Secur. 134, 103451
(2023). https://​doi.​org/​10.​1016/j.​cose.​2023.​103451

	20.	 Wang, Z., Liu, Y., He, D., Chan, S.: Intrusion detection methods based on integrated deep learning
model. Comput. Secur. 103, 102177 (2021). https://​doi.​org/​10.​1016/j.​cose.​2021.​102177

	21.	 de Carvalho, L.R., Patricia Favacho de Araujo, A.: Performance comparison of terraform and cloud-
ify as multicloud orchestrators. In: 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID). IEEE, (May 2020), p. 380–389. https://​doi.​org/​10.​1109/​
CCGri​d49817.​2020.​00-​55

	22.	 Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Devops: Introducing infra-
structure-as-code. In: 2017 IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), vol. 21. IEEE, (May 2017), p. 497–498. https://​doi.​org/​10.​1109/​ICSE-C.​
2017.​162

	23.	 Horchulhack, P., Viegas, E.K., Santin, A.O.: Toward feasible machine learning model updates in
network-based intrusion detection. Comput. Netw. 202, 108618 (2022). https://​doi.​org/​10.​1016/j.​
comnet.​2021.​108618

	24.	 Sarhan, M., Layeghy, S., Moustafa, N., Portmann, M.: Cyber threat intelligence sharing scheme
based on federated learning for network intrusion detection. J. Netw. Syst. Manag. (2022). https://​
doi.​org/​10.​1007/​s10922-​022-​09691-3

	25.	 Braun, T., Pekaric, I., Apruzzese, G.: Understanding the process of data labeling in cybersecu-
rity. In: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing, ser. SAC ’24,
vol. 35. ACM, Apr. 2024, p. 1596–1605. https://​doi.​org/​10.​1145/​36050​98.​36360​46

	26.	 Tariq, S., Lee, S., Woo, S.S.: Cantransfer: transfer learning based intrusion detection on a controller
area network using convolutional lstm network. In: Proceedings of the 35th Annual ACM Sym-
posium on Applied Computing, ser. SAC ’20. ACM, Mar. 2020. https://​doi.​org/​10.​1145/​33411​05.​
33738​68

	27.	 Wolsing, K., Kus, D., Wagner, E., Pennekamp, J., Wehrle, K., Henze, M.: One IDS Is Not Enough!
Exploring Ensemble Learning for Industrial Intrusion Detection. Springer Nature Switzerland, p.
102–122 (2024). https://​doi.​org/​10.​1007/​978-3-​031-​51476-0_6

	28.	 Mbarek, B., Ge, M., Pitner, T.: Enhanced network intrusion detection system protocol for internet of
things. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, ser. SAC ’20,
vol. 28. ACM, (2020), p. 1156–1163.https://​doi.​org/​10.​1145/​33411​05.​33738​67

	29.	 Lazzarini, R., Tianfield, H., Charissis, V.: A stacking ensemble of deep learning models for iot
intrusion detection. Knowl.-Based Syst. 279, 110941 (2023). https://​doi.​org/​10.​1016/j.​knosys.​2023.​
110941

	30.	 Zhao, R., Yin, J., Xue, Z., Gui, G., Adebisi, B., Ohtsuki, T., Gacanin, H., Sari, H.: An efficient intru-
sion detection method based on dynamic autoencoder. IEEE Wirel. Commun. Lett. 10(8), 1707–
1711 (2021). https://​doi.​org/​10.​1109/​LWC.​2021.​30779​46

	31.	 Rashid, M., Kamruzzaman, J., Imam, T., Wibowo, S., Gordon, S.: A tree-based stacking ensem-
ble technique with feature selection for network intrusion detection. Appl. Intell. 52(9), 9768–9781
(2022). https://​doi.​org/​10.​1007/​s10489-​021-​02968-1

	32.	 Ye, Z., Luo, J., Zhou, W., Wang, M., He, Q.: An ensemble framework with improved hybrid breed-
ing optimization-based feature selection for intrusion detection. Future Generation Comput. Syst.
151, 124–136 (2024). https://​doi.​org/​10.​1016/j.​future.​2023.​09.​035

https://doi.org/10.1109/DSN-S58398.2023.00038
https://doi.org/10.1109/DSN-S58398.2023.00038
https://doi.org/10.1007/s10922-024-09813-z
https://doi.org/10.1007/s10922-024-09813-z
https://doi.org/10.1186/s13677-022-00285-7
https://doi.org/10.1145/3474369.3486864
https://doi.org/10.1145/3474369.3486864
https://doi.org/10.1109/TNSE.2020.3038618
https://doi.org/10.1016/j.cose.2023.103451
https://doi.org/10.1016/j.cose.2021.102177
https://doi.org/10.1109/CCGrid49817.2020.00-55
https://doi.org/10.1109/CCGrid49817.2020.00-55
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1109/ICSE-C.2017.162
https://doi.org/10.1016/j.comnet.2021.108618
https://doi.org/10.1016/j.comnet.2021.108618
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1007/s10922-022-09691-3
https://doi.org/10.1145/3605098.3636046
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1145/3341105.3373868
https://doi.org/10.1007/978-3-031-51476-0_6
https://doi.org/10.1145/3341105.3373867
https://doi.org/10.1016/j.knosys.2023.110941
https://doi.org/10.1016/j.knosys.2023.110941
https://doi.org/10.1109/LWC.2021.3077946
https://doi.org/10.1007/s10489-021-02968-1
https://doi.org/10.1016/j.future.2023.09.035

Journal of Network and Systems Management (2025) 33:75 	 Page 25 of 26  75

	33.	 Das, S., Saha, S., Priyoti, A.T., Roy, E.K., Sheldon, F.T., Haque, A., Shiva, S.: Network intrusion
detection and comparative analysis using ensemble machine learning and feature selection. IEEE
Trans. Netw. Serv. Manag. 19(4), 4821–4833 (2022). https://​doi.​org/​10.​1109/​TNSM.​2021.​31384​57

	34.	 Halim, Z., Yousaf, M.N., Waqas, M., Sulaiman, M., Abbas, G., Hussain, M., Ahmad, I., Hanif, M.:
An effective genetic algorithm-based feature selection method for intrusion detection systems. Com-
put. Secur. 110, 102448 (2021). https://​doi.​org/​10.​1016/j.​cose.​2021.​102448

	35.	 Chkirbene, Z., Erbad, A., Hamila, R., Mohamed, A., Guizani, M., Hamdi, M.: Tidcs: A dynamic
intrusion detection and classification system based feature selection. IEEE Access 8, 95864–95877
(2020). https://​doi.​org/​10.​1109/​ACCESS.​2020.​29949​31

	36.	 Zhou, Y., Cheng, G., Jiang, S., Dai, M.: Building an efficient intrusion detection system based on
feature selection and ensemble classifier. Comput. Netw. 174, 107247 (2020). https://​doi.​org/​10.​
1016/j.​comnet.​2020.​107247

	37.	 Khammassi, C., Krichen, S.: A nsga2-lr wrapper approach for feature selection in network intrusion
detection. Comput. Netw. 172, 107183 (2020). https://​doi.​org/​10.​1016/j.​comnet.​2020.​107183

	38.	 Landauer, M., Skopik, F., Frank, M., Hotwagner, W., Wurzenberger, M., Rauber, A.: Maintainable
log datasets for evaluation of intrusion detection systems. IEEE Trans. Depend. Secure Comput.
20(4), 3466–3482 (2023). https://​doi.​org/​10.​1109/​TDSC.​2022.​32015​82

	39.	 Kumar, V., Sinha, D.: Synthetic attack data generation model applying generative adversarial net-
work for intrusion detection. Comput. Secur. 125, 103054 (2023). https://​doi.​org/​10.​1016/j.​cose.​
2022.​103054

	40.	 Syne, L., Caballero-Gil, P., Hernandez-Goya, C.: “Improving privacy in federated learning-based
intrusion detection for iot networks. In: Proceedings of the 39th ACM/SIGAPP Symposium on
Applied Computing, ser. SAC ’24, vol. 23. ACM, Apr. 2024, p. 580–583. https://​doi.​org/​10.​1145/​
36050​98.​36361​83

	41.	 Woo, S.S., Yoon, D., Gim, Y., Park, E.: Raad: Reinforced adversarial anomaly detector. In: Proceed-
ings of the 39th ACM/SIGAPP Symposium on Applied Computing, ser. SAC ’24, vol. 393. ACM,
Apr. 2024, p. 883–891. https://​doi.​org/​10.​1145/​36050​98.​36359​20

	42.	 Kubernetes, Kubernetes Open-source, October 2024, https://​kuber​netes.​io/
	43.	 Docker, Docker develop faster, October 2024, https://​www.​docker.​com/
	44.	 Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Adilson G. Filho1 · Eduardo K. Viegas1 · Altair O. Santin1 · Jhonatan Geremias1

 *	 Eduardo K. Viegas
	 eduardo.viegas@ppgia.pucpr.br

	 Adilson G. Filho
	 galiano@ppgia.pucpr.br

	 Altair O. Santin
	 santin@ppgia.pucpr.br

	 Jhonatan Geremias
	 jgeremias@ppgia.pucpr.br

https://doi.org/10.1109/TNSM.2021.3138457
https://doi.org/10.1016/j.cose.2021.102448
https://doi.org/10.1109/ACCESS.2020.2994931
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1016/j.comnet.2020.107247
https://doi.org/10.1016/j.comnet.2020.107183
https://doi.org/10.1109/TDSC.2022.3201582
https://doi.org/10.1016/j.cose.2022.103054
https://doi.org/10.1016/j.cose.2022.103054
https://doi.org/10.1145/3605098.3636183
https://doi.org/10.1145/3605098.3636183
https://doi.org/10.1145/3605098.3635920
https://kubernetes.io/
https://www.docker.com/

	 Journal of Network and Systems Management (2025) 33:75 75   Page 26 of 26

1	 Graduate Program in Computer Science, Pontifical Catholic University of Parana (PUCPR),
Curitiba, Brazil

	A Dynamic Network Intrusion Detection Model for Infrastructure as Code Deployed Environments
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Infrastructure as Code (IaC)
	2.2 Machine Learning for Network Intrusion Detection
	2.3 When ML-based NIDS meets IaC

	3 Related Works
	3.1 Discussion

	4 A Dynamic Classification Model for Network Intrusion Detection in IaC-deployed Infrastructures
	4.1 Dynamic Classification
	4.2 Multi-objective Feature Selection
	4.3 Discussion

	5 Prototype and Testbed
	6 Evaluation
	6.1 Model Building
	6.2 ML-Based NIDS in IaC-deployed Infrastructures

	7 Conclusion
	Acknowledgements
	References

