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Abstract
The dynamic nature of Infrastructure as Code (IaC) provisioned infrastructures pre-
sents substantial challenges for traditional Machine Learning (ML) Network Intru-
sion Detection Systems (NIDSs). In such settings, continuously evolving configura-
tions lead to difficulties in maintaining detection accuracy, as ML models struggle 
to adapt to rapidly changing network behaviors and new attack patterns. This paper 
introduces a novel ML-based NIDS framework tailored to address the non-station-
ary behavior of IaC-provisioned infrastructures. The framework integrates two key 
components: multi-objective feature selection and dynamic classification. The multi-
objective feature selection enhances the model’s generalization capabilities during 
training, enabling it to better handle the evolving behaviors characteristic of IaC 
environments. The dynamic classification component complements this by actively 
selecting the most appropriate subset of classifiers at the inference phase, ensuring 
adaptability to the current infrastructure state. By incorporating these components, 
the proposed scheme achieves real-time adaptability to the dynamic nature of IaC-
provisioned infrastructures, providing reliable intrusion detection. Experimental 
evaluations conducted on a realistic IaC-generated testbed with over 19 configura-
tions demonstrate significant improvements in detection performance. Specifically, 
the proposed model can increase the F1-Score by up to 0.31 when compared to tra-
ditional approaches on newly provisioned IaC infrastructures.
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1  Introduction

Over the past few years, the provisioning of Information Technology (IT) infra-
structures was predominantly performed manually, a costly and time-consuming 
task that often required continuous supervision by operators [1]. As the complex-
ity of the IT infrastructures expanded, the demand for automated resource provi-
sioning techniques became increasingly evident. In this context, Infrastructure as 
Code (IaC) paved the way to automate the infrastructure provision task in which 
the software will be deployed [2]. In practice, IaC enables the automatic configu-
ration of system dependencies and the provisioning of local and remote instances 
to facilitate continuous deployment in accordance with service requirements [3]. 
It accomplishes this by utilizing provisioning scripts (code) that act as configura-
tion templates for service provisioning tasks, enabling IT organizations to reduce 
their deployment time significantly. Due to the advantages brought by automat-
ing infrastructure provisioning, several IaC technologies have emerged in recent 
years, including Chef  [4], Puppet  [5], and Terraform  [6] for private infrastruc-
tures, and AWS CloudFormation [7], and Azure Resource Manager [8] for public 
clouds.

Securing IaC-provisioned infrastructures presents a significant challenge due 
to the dynamic nature of infrastructure configurations  [9]. These configurations 
change based on the provided IaC script, demanding that security solutions can 
effectively adapt to these variations  [2]. Conversely, despite the automation of 
infrastructure provisioning brought by IaC, the configuration of security solutions 
still often requires manual intervention. This includes configuring firewall rules, 
access control policies, Virtual Local Area Network (VLAN), and Network Intru-
sion Detection System (NIDSs), among other measures. As a result, there is a gap 
between the automation of infrastructure provisioning tasks enabled by IaC tech-
niques and the automation of security solution configurations required to secure 
the newly provisioned infrastructure [10]. This gap hinders the ability to address 
security concerns in rapidly changing IaC-provisioned environments effectively.

Unfortunately, automating security configurations based on IaC code presents 
significant challenges, especially for NIDS solutions  [11]. Most of the literature 
focuses on designing behavior-based intrusion detection schemes by typically rely-
ing on constructing a behavioral Machine Learning (ML) model [12]. These models 
assume a static baseline environment configuration, making the adaptation to the 
ever-changing nature of IaC-provisioned infrastructures difficult  [13]. In practice, 
the infrastructure configuration must be known beforehand to properly train and 
evaluate the ML scheme for reliable use. As a consequence, when the infrastructure 
configuration changes due to a new IaC script for instance, the previously designed 
ML-based NIDS becomes unreliable for production deployment. Typically, this 
issue can only be addressed through model updates, a process that often requires 
several days or even weeks to complete. This delay poses a considerable challenge to 
maintaining effective intrusion detection in highly dynamic environments [14].

Developing ML-based NIDSs for dynamic environments is particularly 
challenging, as ML models are typically optimized to maximize detection 
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accuracy within a static, predefined training environment  [15]. This inherent 
design assumption limits their ability to adapt to the continuous changes char-
acteristic of dynamic IaC-deployed infrastructures  [12]. This limitation often 
results in intrusion detection schemes that inadequately generalize from the train-
ing dataset, leading to performance issues in real-world settings. Consequently, 
such schemes struggle to detect new and evolving behaviors effectively, a situ-
ation usually observed in IaC-provisioned infrastructures. In practice, intrusion 
detection models tend to achieve high detection accuracies in environments 
that closely resemble their training datasets. However, their performance often 
degrades significantly when exposed to behavioral changes or unseen variations 
in the operational environment. Conversely, developing a reliable ML-based 
NIDS for IaC-provisioned infrastructures requires that the designed scheme effec-
tively accounts for behaviors that are not observed during the training phase [16].

The development of a generalizable ML-based NIDS has been the focus of 
numerous studies in recent years, yet its application within IaC environments 
remains largely overlooked. In such environments, building a training dataset that 
accurately reflects the behavior of the to-be-deployed infrastructure is not eas-
ily feasible due to the dynamic nature of IT configurations, which changes based 
on the IaC script and result in corresponding shifts in environment behavior  [17]. 
Deploying a new service configuration alters network traffic behavior, impacting 
normal operations and potential attacker activities. In traditional settings, changes 
in network traffic behavior lead to unreliable ML-based NIDSs, necessitating model 
updates for effective remediation  [18]. However, in IaC-deployed infrastructures, 
the environment’s behavior is only revealed after the provisioning task is completed. 
Therefore, for ML-based NIDS to remain reliable in such dynamic settings, pro-
posed approaches must adapt to new environment behaviors in real-time without 
relying on frequent model updates. This is particularly important given the chal-
lenges and delays associated with constructing updated training datasets for con-
stantly evolving IaC environments.

Traditional ML-based NIDSs assume that the behavior of the deployed environ-
ment is stationary and does not change over time. In practice, the literature assumes 
that the network traffic behavior is known entirely during training and remains 
unchanged once the system is deployed in production. Otherwise, the system’s error 
rates will increase compared to those observed during the testing phase, leading to 
an unreliable system  [19]. Unfortunately, developing a ML-based NIDS that can 
adapt to potentially unseen network traffic behavior is not readily achievable, par-
ticularly in IaC environments. In contrast, researchers often overlook the generaliza-
tion capabilities of their designed schemes in favor of achieving higher detection 
accuracies during testing [20]. This approach frequently results in overfitting, where 
models are tailored to a single environment’s behavior and perform poorly when 
exposed to environmental changes. Consequently, despite the growing adoption of 
IaC-deployed infrastructures in recent years, a research gap persists in the develop-
ment of ML-based NIDSs capable of addressing the shifts in environment behavior 
caused by the IaC configuration scripts.

Contribution. In light of this, this paper proposes a novel ML-based NIDS tai-
lored for IaC-deployed infrastructures. The proposed model is implemented twofold, 
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simultaneously leveraging a multi-objective feature selection and dynamic classifier 
selection. First, the multi-objective feature selection identifies a subset of features 
that can simultaneously enhance the system’s accuracy and generalization capabili-
ties. Our key insight is to improve generalization during the model-building phase, 
addressing potential behavior changes introduced by the IaC configuration scripts. 
Second, the dynamic selection of classifiers actively chooses the most appropriate 
subset of classifiers based on the behavior of the currently deployed IaC environ-
ment. This approach ensures that infrastructure behavior changes caused by the 
IaC script, which could otherwise degrade accuracy, are mitigated by dynamically 
adjusting the classifiers used for the classification at the inference phase. As a result, 
our proposed model effectively tackles the challenges of generalization and novelty 
detection posed by the non-stationary behavior introduced by IaC scripts.

In summary, the main contributions of our work are:

•	 A new ML-based NIDS for IaC-deployed infrastructures. The proposed scheme 
addresses model generalization at the training phase and actively selects the clas-
sifiers during the inference phase for novelty detection. Our proposal improves 
the F1-Score by up to 0.31;

•	 A new publicly available IaC-provisioned intrusion dataset with 19 different con-
figurations, generated with 100 normal clients for 5 services, as well as 14 differ-
ent attacker behaviors;

Roadmap. The remainder of this paper is organized as follows. Section 2 discusses 
the fundamentals of ML-based NIDS and IaC. Section 3 overviews the current lit-
erature on ML-based NIDS for IaC. Section  4 introduces our proposed scheme, 
Sect. 5 describes its implementation, and 6 evaluates its performance. Finally, we 
conclude our work on Sect. 7.

2 � Preliminaries

The utilization of IaC-deployed infrastructures has consistently increased over the 
past few years. This section further describes the fundamentals of IaC-based pro-
visioning techniques, followed by a discussion on the development of ML-based 
NIDSs for IaC-deployed infrastructures.

2.1 � Infrastructure as Code (IaC)

IaC is an approach to manage and provision IT infrastructures through machine-
readable definition files. In practice, rather than relying on physical hardware con-
figurations or manual configuration tools, this approach allows developers and 
operations teams to automate the deployment and management of infrastructure 
resources through code  [2]. This automation ensures consistency, scalability, and 
rapid iteration by treating infrastructure similarly to software development, as IaC 
enables version control, testing, and team collaboration. These capabilities reduce 
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the likelihood of configuration drift and promote more efficient resource utilization. 
Additionally, IaC enables organizations to implement Continuous Integration and 
Continuous Deployment CI/CD practices, enhancing agility and responsiveness to 
evolving business needs [2].

The advantages introduced by IaC have led numerous companies to develop new 
solutions for automating infrastructure deployment. These include private platforms 
such as AWS CloudFormation [7] and Azure Resource Manager [8], alongside pub-
licly available alternatives like Chef  [4], Puppet  [5], and Terraform  [6]. The lat-
ter is an open-source tool that enables users to define and provision infrastructure 
resources using a high-level configuration language called Hashicorp Configura-
tion Language (HCL). Terraform integrates the management of both cloud services 
and on-premises resources through declarative configuration files that specify the 
desired infrastructure state [21]. These capabilities extend to automating the deploy-
ment of resources such as virtual machines, networks, and security groups. Dur-
ing the deployment phase, Terraform supports integration with various public and 
private cloud platforms via a provider-based architecture, enabling the seamless 
provisioning of diverse infrastructure components. It utilizes a resource graph that 
visualizes resource dependencies, ensuring parallel execution during provisioning. 
Its state management feature also tracks the current infrastructure state, facilitating 
automated updates and modifications while maintaining consistency and preventing 
configuration drift.

Deploying an IT infrastructure through IaC facilitates the seamless modification 
of configurations, allowing for straightforward adjustments that can significantly 
alter the behavior of services. This flexibility enables teams to quickly implement 
changes in response to evolving requirements or performance metrics, streamlining 
the process of adapting infrastructure to meet specific needs [22]. However, while 
this ease of configuration change enhances agility, it also necessitates careful con-
sideration of potential impacts, as even minor adjustments can lead to major changes 
in service behavior.

2.2 � Machine Learning for Network Intrusion Detection

The utilization of ML techniques for NIDS has steadily increased over the past few 
years due to the capability of ML to detect new attack behaviors  [12]. To achieve 
this goal, proposed schemes are typically implemented through a four-phase pro-
cess. First, the Data Acquisition module continuously captures network packets from 
a monitored Network Interface Card (NIC). The collected packets serve as input for 
the Feature Extraction module, which aims to extract behavioral features represent-
ing the network traffic behavior between hosts and their services. In general, net-
work traffic behavior is represented through flow-based features, which include met-
rics such as the number of exchanged network packets and bytes between a specific 
service over a defined time frame (e.g., over a 60 seconds interval). Table 1 shows 
the set of network-level features used in our work. In total, we consider 31 features 
that summarize the communication between client and server in a window interval 
of up to 60 seconds. The resulting feature vector is then classified by a Classification 
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module, which performs this task using a previously trained ML model. The 
Alert module then signals events classified as intrusion to a network operator for 
decision-making.

The reliability of a ML-based NIDS depends on an adequately trained ML 
model  [14]. To achieve this, researchers usually employ a three-phase process, 

Table 1   Feature set extracted at the network level in a time window interval of 60s for every client and 
server communication

# Feature Description

1 Total Fwd Pkts Total number of packets sent from client to server
2 Total Fwd Vol Total volume of data (in bytes) sent from client to server
3 Total Bwd Pkts Total number of packets sent from server to client
4 Total Bwd Vol Total volume of data (in bytes) sent from server to client
5 Fwd Pkt Len Std Standard deviation of the length of packets sent from client to server
6 Bwd Pkt Len Max Maximum length of packets sent from server to client
7 Bwd Pkt Len Std Standard deviation of the length of packets sent from server to client
8 Fwd IAT Mean Mean inter-arrival time of packets sent from client to server (in milliseconds)
9 Fwd IAT Max Maximum inter-arrival time of packets sent from client to server (in millisec-

onds)
10 Fwd IAT Std Standard deviation of inter-arrival time of packets sent from client to server (in 

milliseconds)
11 Bwd IAT Max Maximum inter-arrival time of packets sent from server to client (in millisec-

onds)
12 Bwd IAT Std Standard deviation of inter-arrival time of packets sent from server to client (in 

milliseconds)
13 Duration Total duration of the network flow (in milliseconds)
14 Active Min Minimum time the flow was active (in milliseconds)
15 Active Mean Mean time the flow was active (in milliseconds)
16 Active Max Maximum time the flow was active (in milliseconds)
17 Active Std Standard deviation of the time the flow was active (in milliseconds)
18 Idle Min Minimum time the flow was idle (in milliseconds)
19 Idle Mean Mean time the flow was idle (in milliseconds)
20 Idle Max Maximum time the flow was idle (in milliseconds)
21 Idle Std Standard deviation of the time the flow was idle (in milliseconds)
22 SFlow Fwd Pkts Sampled number of packets sent from client to server
23 SFlow Fwd Bytes Sampled number of bytes sent from client to server
24 SFlow Bwd Pkts Sampled number of packets sent from server to client
25 SFlow Bwd Bytes Sampled number of bytes sent from server to client
26 FPSH Count Number of PUSH flags in packets sent from client to server
27 BPSH Count Number of PUSH flags in packets sent from server to client
28 FURG Count Number of URGENT flags in packets sent from client to server
29 BURG Count Number of URGENT flags in packets sent from server to client
30 Total FHLen Total header length of packets sent from client to server
31 Total BHLen Total header length of packets sent from server to client
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namely training, validation, and testing. The training phase involves extracting 
a behavioral ML model from a training dataset. Consequently, the dataset must 
reliably represent the behavior of the environment in which the system will be 
deployed. The extracted ML model is then assessed using a validation dataset, 
which facilitates feature selection and model fine-tuning. Finally, the accuracy of 
the optimized ML model is evaluated on a testing dataset, with the expectation 
that this accuracy will be reflected when the system is deployed in a production 
environment.

As a result, changes in environment behavior necessitate re-executing the 
entire model training process [23]. This process involves not only retraining the 
model but also regenerating an updated training dataset that accurately captures 
the new environment behavior. Such dataset generation is a time-consuming task, 
often requiring several days or even weeks to gather, preprocess, and label suf-
ficient data to reflect the updated conditions accurately. Additionally, the con-
tinuous need for retraining introduces operational delays and increases computa-
tional costs, making it impractical for environments with frequent configuration 
changes [24]. This highlights the significant challenges associated with maintain-
ing reliable performance in dynamic IaC-deployed infrastructures.

2.3 � When ML‑based NIDS meets IaC

Applying ML-based NIDS in IaC environments presents several challenges, pri-
marily stemming from the dynamic nature of service configurations. As infra-
structure configuration is frequently modified through automated deployment 
scripts, any changes in service configuration can significantly impact network 
behavior, leading to alterations in provided services and shifts in the threat land-
scape [2]. These modifications necessitate continuous model retraining to ensure 
that the ML-based NIDS can accurately detect anomalies and threats based on the 
current operational environment. However, retraining models in a timely and effi-
cient manner can be resource-intensive and complex, requiring access to updated 
training data and adequate validation processes  [25]. Additionally, integrating 
these retrained models into the IaC pipeline must be meticulously managed to 
prevent disruptions in service availability and to maintain the effectiveness of 
security measures amid ongoing configuration changes.

In this context, there remains a significant gap in developing new ML-based 
NIDSs that can effectively navigate the dynamic nature of IaC environments. 
While researchers often assume that challenges arising from frequent configura-
tion changes can be adequately addressed through periodic model retraining, this 
approach is frequently not feasible. This is due to the resource-intensive nature 
of retraining processes and the necessity for extensive, up-to-date training data. 
Consequently, this reliance on retraining overlooks the challenges associated with 
real-time operational adjustments and the rapid evolution of network behaviors in 
IaC, making traditional approaches inapplicable due to the time frame and effort 
required to build an updated ML model.
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3 � Related Works

The development of new ML-based techniques for NIDS has been a widely 
explored topic in the literature over the past few years [12]. In general, proposed 
schemes often pursue higher accuracies, albeit the tradeoffs on model generaliza-
tion, a characteristic that challenges the application on IaC-provisioned architec-
tures. As an example, S. Tariq et al. [26] proposed an intrusion detection scheme 
implemented through a long Short-Term Memory (LSTM) model. The proposed 
approach improves accuracy by training their scheme using a transfer learning 
implementation. Unfortunately, the authors assume that model updates can be 
conducted as required and overlook model generalization challenges. Similarly, 
K. Wolsing et  al.  [27] relies on an ensemble of classifiers to improve detection 
accuracy. Their scheme builds an ensemble through a time-aware and transfer 
learning framework to reduce false positives. The impact of model generaliza-
tion and changes in environmental behavior is overlooked. B. Mbarek et al. [28] 
proposes replicating intrusion detection models to detect network attacks. Their 
scheme improves accuracy but also leaves model generalization unaddressed. 
R. Lazzarini et  al.  [29] proposes using an ensemble stacking approach through 
deep learning classifiers to reduce false-positive rates. Their scheme significantly 
increases accuracy on a single dataset while overlooking the generalization chal-
lenges. R. Zhao et al. [30] proposes a dynamic autoencoder model to address the 
non-stationary behavior of intrusions. Their approach improves detection accu-
racy but assumes that model updates can be conducted as required.

Feature selection is a widely used approach in intrusion detection for accuracy 
improvements. M. Rashid et  al.  [31] relies on a tree-based classifier built using 
feature selection to improve intrusion detection accuracy. Their approach reduces 
false positives but overlooks the generalization impact on the resulting model. 
Z. Ye et  al.  [32] proposes an evolutionary-based feature selection approach for 
combining multiple classifiers. Their approach improves accuracy on widely used 
datasets; however, the authors assume a static environment behavior during the 
evaluation. Similarly, S. Das et al. [33] evaluates feature selection impact on mul-
tiple intrusion datasets while overlooking the generalization capabilities of the 
resulting model. Z. Halim et al. [34] utilizes a genetic search algorithm for feature 
selection aiming to reduce the model’s error rate. Their approach improves detec-
tion accuracy in several intrusion datasets but overlooks the impact on model 
generalization. Z. Chkirbene et  al.  [35] relies on a dynamic intrusion detection 
scheme coped with a feature selection approach. The proposal reduces the error 
rate but overlooks model generalization and assumes a stationary environment 
behavior. Y. Zhou et al. [36] proposes a feature selection approach for an ensem-
ble of classifiers to reduce intrusion detection error rates. The authors evaluate 
the efficacy of their scheme on several datasets but neglect the impact on model 
generalization. C. Khammassi et al. [37] uses a multi-objective feature selection 
scheme aiming for higher accuracy and fewer features. Their model improves 
intrusion detection with less computational costs, unfortunately, model generali-
zation is neglected.
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In general, to address the non-stationary behavior of intrusion detection environ-
ments, such as those originating from IaC-deployed infrastructures, researchers rely 
on dataset generation approaches. M. Laundauer et al. [38] aims at simulating mul-
tiple normal user behavior to address dataset generation challenges. Their approach 
could be applied to model updates in dynamic environments. However, the applica-
tion in such a context is not evaluated. V. Kumar et  al.  [39] utilizes a generative 
adversarial network for the generation of synthetic attack samples. Their approach 
improves accuracy in a single dataset but fails at evaluating their scheme under non-
stationary behavior. L. Syne et al. [40] address model updates in intrusion detection 
through a federated learning scheme. Their model enables model updates to be con-
ducted by multiple parties but neglects the dataset generation challenges associated 
with model updates. Similarly, S. S. Woo et al. [41] proposes a reinforcement learn-
ing strategy to update intrusion detection models over time. Their approach enables 
model updates to be conducted more easily but overlooks the generalization of the 
resulting intrusion detection scheme.

As a consequence, there is still a substantial research gap in the development of 
ML-based NIDSs that can function effectively in IaC-deployed environments. This 
gap exists primarily because current schemes struggle to handle the non-stationary 
behavior of such dynamic settings. As infrastructure configurations change rapidly 
and frequently in IaC, the underlying network environment becomes unpredictable, 
causing traditional NIDS models to fail in adapting to these shifts. To address this 
issue, proposed schemes must generalize the network behavior to adapt to evolving 
conditions and detect and respond to unseen or novel network traffic patterns with-
out solely depending on frequent retraining.

3.1 � Discussion

Table 2 overviews the current literature concerning the implementation of ML-based 
NIDSs. The existing literature on ML-based NIDSs demonstrates limited attention 
to several characteristics essential for securing IaC-provisioned infrastructures. Fea-
ture selection, while explored in several works, often focuses solely on improving 
detection accuracy without considering generalization to unseen network behaviors. 
Similarly, addressing new network behaviors remains underexplored, with most 
approaches relying on static training datasets that fail to capture the dynamic nature 
of real-world environments. Moreover, the application of these schemes to IaC 
environments is rarely discussed, leaving a significant gap in adapting to the infra-
structure’s variability driven by configuration scripts. Few studies employ realistic 
datasets that reflect practical deployment scenarios, further limiting the applicability 
of these solutions in production environments. Finally, dynamic inference, crucial 
for adapting to runtime changes in network behavior, is largely absent from exist-
ing approaches. In contrast, our proposed framework addresses these shortcomings 
by incorporating multi-objective feature selection to enhance generalization, apply-
ing dynamic classification to adapt to new network behaviors, leveraging realistic 
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datasets that simulate IaC environments, and enabling dynamic inference to ensure 
reliable operation in non-stationary settings.

4 � A Dynamic Classification Model for Network Intrusion Detection 
in IaC‑deployed Infrastructures

Algorithm 1   Dynamic Classifier Selection - Inference Phase

Table 2   A summary of related work and the characteristics of their ML-based NIDS implementation

Work Feature 
Selection

New Net. 
Behavior

IaC Environ-
ment

Realistic 
Dataset

Dynamic 
Inference

S. Tariq et al. [26] × ✓ × ✓ ×

K. Wolsing et al. [27] × × × ✓ ✓

B. Mbarek et al. [28] × ✓ × × ×

R. Lazzarini et al. [29] × ✓ × × ×

R. Zhao et al. [30] × ✓ × ✓ ×

M. Rashid et al. [31] ✓ × × × ×

Z. Ye et al. [32] ✓ ✓ × ✓ ×

S. Das et al. [33] ✓ ✓ × × ×

Z. Halim et al. [34] ✓ × × ✓ ×

Z. Chkirbene et al. [35] ✓ × × × ✓

Y. Zhou et al. [36] ✓ × × ✓ ×

C. Khammassi et al. [37] ✓ ✓ × × ×

M. Laundauer et al. [38] × × × ✓ ×

V. Kumar et al. [39] × ✓ × ✓ ×

L. Syne et al. [40] × ✓ × ✓ ×

S. S. Woo et al. [41] × ✓ × ✓ ×

Ours ✓ ✓ ✓ ✓ ✓
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To address the generalization challenges caused by the dynamic behavior of IaC-
deployed infrastructures in ML-based NIDS, we propose a dynamic classifica-
tion model implemented through a feature selection scheme. The operation of our 
scheme is illustrated in Fig. 1, and is implemented in two phases, namely Multi-
objective Feature Selection, and Dynamic Classification.

The Multi-objective Feature Selection aims at finding a feature space that 
optimizes classifier accuracy and generalization capabilities. To achieve this, we 
frame feature selection as a multi-objective optimization task, where the classi-
fier is expected to improve accuracy on the anticipated IaC environment behavior 
while also enhancing generalization capabilities on unseen network traffic behav-
ior. In practice, we measure generalization by evaluating the detection accuracy 
of unseen network events during the training phase, which is a common challenge 
in IaC-deployed infrastructures. Our main insight is to improve both classification 
accuracy and generalization during the training phase as a multi-objective feature 
selection task. This leads to a classifier capable of addressing the non-stationary 
behavior inherent to IaC-deployed infrastructures.

The goal of Dynamic Classification is to handle the classification of new envi-
ronment behaviors during the inference phase in IaC-deployed infrastructures. 
To achieve this, we propose a dynamic classifier selection approach, where the 
subset of classifiers used for inference is actively chosen based on the current 
environment behavior. This enables the model to detect new behaviors generated 
by the dynamic nature of IaC scripts when deployed in production. As a result, 
our approach not only enhances generalization capabilities, driven by the feature 
selection process but also improves the detection of new network traffic behav-
iors. This paves the way for the implementation of ML-based NIDSs in IaC-
deployed infrastructures in production environments.

The following subsections further describe the implementation of our pro-
posal, including the modules that implement it.

Fig. 1   Overview of our proposed dynamic classifier selection scheme for IaC-deployed infrastructures. 
The multi-objective feature selection aims to increase the resulting classifiers’ generalization capabilities. 
The dynamic classification actively selects the subset of classifiers to address novelty detection at the 
IaC-deployment phase
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4.1 � Dynamic Classification

Implementing a reliable ML-based NIDS in IaC-deployed infrastructures is challeng-
ing due to the dynamic nature of the resulting environment. This presents difficulties 
for traditional ML-based NIDSs, which are not well-suited to handle the non-station-
ary behavior of network traffic (see Section 2.3). To address this, our proposed scheme 
frames the inference task as a dynamic classification task. The aim is to actively 
select the subset of classifiers that are most suited to classify the current environment 
behavior.

The classification overview is illustrated in Figure 1, and follows a traditional ML-
based NIDS operation. It starts with the collection of network packets by the Data 
Acquisition module. The behavior of the collected network packets are then extracted 
by a Feature Extraction module, generating a network flow vector. The network flow 
is classified by a Dynamic Selection module, and signaled accordingly by the Alert 
module.

To conduct the classification, we frame it as a dynamic classifier selection task. Let 
x ∈ ℝ

D denote a D-dimensional feature vector input and y ∈ {n, a} , where n denotes a 
normal event, and a denotes attack labeled events. Our model aims to learn a dynamic 
classifier ensemble, each of which models the probabilistic predictive distribution p(y|x) 
over ground truth labels. To achieve such a goal, we build a N-sized classifier ensemble 
(Fig. 1, Ci ). The dynamic classifier then finds a subset of classifiers from the ensemble 
that best fits the classification task based on the provided network event x.

Algorithm 2   Genetic Algorithm for solving Eq. 4.

This is achieved by building a region of competence D from a given labeled test 
set. The region of competence comprises the set of events � from the test set that were 
correctly classified by each single classifier from the ensemble. In practice, D denotes 
correctly classified events from each classifier. At the inference phase, the dynamic 
classifier goal is to find a subset of classifiers K, such that the events from the region of 
competence D are similar to the to-be-classified event x. Therefore, we find the subset 
of classifiers based on the following equation:

(1)min k
� ∈D

√

√

√

√

n
∑

i=1

(�i − xi)
2
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where k denotes the number of classifiers to be selected, � the event from the region 
of competence D , x the current environment event, and n the number of features. As 
a result, k classifiers are found based on the minimum Euclidean distance from the 
current evaluated event. Recalling that the region of competence D contains cor-
rectly classified events. Thus, we actively select classifiers based on a similarity 
measure with these past correct classifications.

Algorithm  1 overviews the implementation of our proposed dynamic classifier 
selection at the inference phase. The dynamic classifier selection algorithm oper-
ates by identifying a subset of classifiers from an ensemble that are most suitable 
for classifying a given event, represented as a feature vector x. This process begins 
by computing the distance between x and each event in the region of competence D , 
which comprises previously correctly classified events. The distances are stored in a 
list S . Next, the classifiers in the ensemble {C1,C2,… ,CN} are ranked based on the 
minimum distances computed from their respective regions of competence. Finally, 
the algorithm selects the top-k classifiers with the smallest distances to x, returning 
them as the most relevant classifiers for the task. This dynamic selection mechanism 
ensures that the classification task is performed using classifiers that have demon-
strated competence in similar scenarios.

4.2 � Multi‑objective Feature Selection

ML-based NIDSs designed for IaC-provisioned infrastructures must generalize the 
behavior of the training environment. This requirement stems from the variability 
in IaC-deployed infrastructures, which change according to the provided configu-
ration script. This variability presents a major challenge for effectively deploying 
such schemes in these dynamic settings. To tackle this challenge, we approach the 
Dynamic Classification training phase (sec. 4.1) as a multi-objective feature selec-
tion task, as illustrated in Figure 1. In practice, our goal is to optimize classification 
accuracy in the training environment and also account for a subset of attack and nor-
mal activities not encountered during the training phase.

To achieve such a goal, our multi-objective feature selection task aims at find-
ing a feature space such that it minimizes the error rate in the training environment 
through the following equation:

where error denotes a function that measures the error rate of the classification sys-
tem h, using a feature space xi , on a given test set Dtest . Here, the test set Dtest holds 
a set of samples with a behavior similar to the initially expected from the to-be-
deployed IaC infrastructure. Therefore, it contains the set of normal and attack sam-
ples expected to be generated from the initial IaC configuration script.

To measure the generalization capabilities of the designed model, we make use of 
the following equation:

(2)�test(h, xi,Dtest) = error(h(xi,Dtest))

(3)�gen(h, xi,Dgen) = error(h(xi,Dgen))
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where error also denotes a function that measures the error rate of the classifica-
tion system h, using a feature space xi , on a given test set Dgen . Conversely, Dgen 
holds a set of normal and attack samples generated using new services and attack 
variants. As a result, it contains samples that are not expected to be generated from 
the current IaC script version. As a result, our multi-objective feature selection 
approach aims to solve the following equation:

where {x0,… , xn} denotes all feature spaces variations, h the dynamic classification 
scheme (see Sec. 4.1), �test the testing error objective (Eq. 2), and �gen the generaliza-
tion error objective (Eq. 3). As a result, we aim to find a feature space that simulta-
neously reduces the resulting dynamic classifier error rate on previously seen events 
( �test ) and new events ( �gen).

Given that searching over the complete feature space is not feasible, we solve 
Eq. 4 through a genetic search implementation. Algorithm 2 overviews the genetic 
search implementation on our scheme. It starts by initiating a population set P with 
random feature spaces, and computing their fitness using Eqs. 2 and 3. It then pro-
ceeds to select the most fitted individuals based on their associated fitness to crosso-
ver and mutate them to generate a new population. The less fitted individuals are 
replaced with the new offspring, and the procedure is repeated for N generations. 
Finally, the resulting set of individuals can be selected by the network operator 
based on the desired error rate trade-offs. For instance, in scenarios where the IaC 
configuration script remains relatively stable over time, the operator may prioritize 
a lower error rate on the test set while tolerating higher error rates for new events. 
Conversely, in environments where the IaC configuration changes frequently, the 
operator might favor a lower error rate on the generalization set to better handle the 
dynamic nature of the infrastructure.

4.3 � Discussion

Addressing the dynamic behavior of IaC-deployed environments is a challenging 
task for current ML-based NIDSs. In light of this, our proposed model frames intru-
sion detection as a dynamic classifier selection (Section  4.1) built through a fea-
ture selection operation (Section 4.2). The first aims at actively selecting the subset 
of classifiers that should be used for the classification task. The goal is to adjust 
the behavior of the classification module at inference phase based on the current 
IaC-deployed environment behavior. The latter aims to select the subset of features 
that simultaneously minimize the dynamic classifier error rate on the test set and the 
generalization set (Eq. 4). Hence, it improves our scheme generalization capabilities 
caused by variations on the used IaC script. As a result, our proposed model paves 
the way for reliable ML-based NIDS implementation on IaC infrastructures.

(4)

argmin
x0,...,xn

�test(h, xi,Dtest)

and

argmin
x0,...,xn

�gen(h, xi,Dgen)
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5 � Prototype and Testbed

We implemented a proposal prototype on a IaC-provisioned infrastructure executed 
in a private environment. Fig.  2 overviews the implementation of our proposed 
scheme. We considered a IaC environment implemented through Terraform [6] that 
deploys generated scripts through a Kubernetes [42] cluster v.1.31. The Kubernetes 
deploy the associated IaC scripts as Pods making use of Docker  [43] v.24.0. We 
considered 5 different normal services, as follows:

•	 DNS. A Domain Name Service (DNS) server implemented through BIND 
v.9.11. The normal network traffic is generated through name resolution queries 
executed towards the server;

•	 HTTP. A web server implemented through Apache Tomcat v.11.0 hosting the 
top 500 websites from Alexa listing. The normal network traffic is generated 
through workload that randomly queries hosted websites;

•	 SMTP. A mail server implemented through Postfix v3.9. The normal network 
traffic is generated by sending random-sized e-mails from 100 to 1, 000 bytes;

•	 SNMP. A Simple Network Management Protocol (SNMP) server hosted on 
Ubuntu. The normal network traffic is generated by randomly querying the MIB 
tree;

•	 SSH. A Secure Shell (SSH) server implemented through openssh-server v.9.3 on 
an Ubuntu 22.04 container. The normal network traffic is generated by randomly 
executing a command from a 100-sized list in random intervals;

To generate realistic normal network traffic, we deploy 100 containers executing 
workload according to the deployed service in random intervals from 0 to 4 second 
periodicity. We also generate 14 categories of attack behaviors through Kali OS. For 
the attack generation, we vary the attack frequency and throughput.

We implemented our proposed ML-based NIDS (see Fig. 1) as an isolated ser-
vice that continuously assesses the generated network traffic in our testbed. In this 
case, the generated network traffic is continuously acquired by a Data Acquisition 
module implemented using Scapy API v.2.6. The behavior of the collected network 

Fig. 2   Overview of our proposed prototype implementation on a private infrastructure
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packets is extracted using numpy API v.1.26. Table 1 lists our prototype’s extracted 
network flow features. We extract a total of 31 features considering the IP and ser-
vices grouping in a 60 second interval. The extracted network flow features are input 
for our dynamic classifier selection scheme (see Section  4.1) implemented using 
DesLib API v.0.4. The used parameters and the implementation of our proposed fea-
ture selection scheme (see Alg. 2) are later discussed in Section 6.1.

Table 3 presents the statistics of our generated testbed. We executed 10 different 
service configurations, each for 30 minutes, to simulate a realistic IaC configuration 
scenario. In practice, the behavior of the environment, considering both attack and 
normal variants, varies with each deployment, leading to a realistic representation 
of IaC-deployed environment dynamics. As a result, our generated testbed creates a 
realistic IaC situation that can vary the environment behavior based on the utilized 
script configuration.

6 � Evaluation

Our conducted experiments aim at answering the following Research Question 
(RQs):

•	 RQ1. What is the accuracy impact of IaC behavior changes on traditional ML-
based NIDS?

Table 3   Statistics of our 
generated testbed concerning 
the network flows and packets

Env. Behavior Net. Flows Net. Packets

Dtest ACK Scan 13.2M 26.4M
DDoS 734.8k 66.7M
ICMP Echo Discover 13.2M 26.4M
UDP Scan 51.8k 98.1k
HTTP (Normal) 516.5k 5760
SNMP (Normal) 2.7k 5760

Dgen MySQL Brute Force 70.2k 39.5M
Nikto 1.6M 111.3M
Scan Vuln 13.7M 53.5M
SSH Brute Force 12.2k 472.5k
Stealth Scan 13.2M 26.4M
SYN Scan 13.1M 26.4M
Brute Force DIRB 481.5k 32.9M
Wapiti 1.4k 83.9k
CMS Scan 1.1M 48.8M
Full Connect Scan 13.2M 26.4M
DNS (Normal) 49.1k 5760
SMTP (Normal) 286.8k 5760
SSH (Normal) 18.2k 5760
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•	 RQ2. Does our proposed feature selection technique improve the generalization 
capabilities of our scheme?

•	 RQ3. What is the accuracy performance of our model under IaC-deployed envi-
ronments?

The following subsections further describe the performance of our scheme including 
the model-building aspects and its performance on our new dataset.

6.1 � Model Building

We evaluate our proposed Dynamic Classifier Selection (Alg. 1) implemented with 
a dynamic selection of classifiers, namely k-Nearest Oracle-Eliminate (KNORA-
E). We use 5 neighbors to estimate the competence region and k-Nearest Neighbor 
(kNN) for distance computation (Eq. 1). The parameters were empirically set, and 
no significant influence on the results was observed when varying them. The classi-
fiers were implemented on DESLib API v.0.4.

We also compare the performance of our proposed model vs. widely used tra-
ditional ensemble-based ML classifiers. The ensemble classifiers, namely Random 
Forest (RF), and Bagging (Bag), were implemented with 100 decision trees as their 
base learners, where each one of them also uses gini as the node split quality metric. 
The Decision Tree (DT) classifier relies on a gini node split quality metric without a 
maximum depth of the tree. Finally, the Multilayer Perceptron (MLP) classifier was 
implemented with 256 hidden neurons, with a Relu activation function and adam 
optimizer. The traditional ensemble classifiers were implemented through scikit-
learn API v0.24.

We split the original dataset (Table  3) into training, testing, and validation 
datasets, each composed by 40%, 30%, and 30% respectively of each behavior. In 
addition, we generated two distinct datasets (see Table 3) based on these splits as 
follows:

•	 Dtest . Dataset used for training purposes. It contains DNS, HTTP, and SMTP 
normal network traffic, and ACKScan, Bruteforce DIRB, CMSScan, DDoS, and 
FullConnectScan attack network traffic;

•	 Dgen . Dataset used for evaluating the generalization capabilities (see Section 4.2). 
It contains SNMP and SSH normal network traffic and the remaining attack net-
work traffic. These services and attacks are not used for training;

Therefore, all selected classifiers are trained using the Dtest training split dataset, 
evaluated using the testing split, whereas evaluated also using the Dgen testing split. 
The goal is to enable the generalization evaluation of our scheme to generate a simi-
lar behavior that would be evidenced in IaC-deployed infrastructures. In this case, 
the ML-based NIDS is subject to a specific training environment and should be able 
to generalize the behavior without retraining, as caused by variations on the used 
IaC script.
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We evaluate the selected classifiers using the following classification perfor-
mance metrics:

•	 True Positive (TP): number of attack samples correctly classified as an attack.
•	 True Negative (TN): number of normal samples correctly classified as normal.
•	 False Positive (FP): number of normal samples incorrectly classified as an 

attack.
•	 False Negative (FN): number of attack samples incorrectly classified as normal.

The F-Measure was computed according to the harmonic mean of precision and 
recall values while considering attack samples as positive and normal samples as 
negative, as shown in Eq. 7.

6.2 � ML‑Based NIDS in IaC‑deployed Infrastructures

Our first experiment aims at answering RQ1 and investigates the accuracy perfor-
mance of traditional ML-based NIDSs on IaC-deployed infrastructures. To achieve 
such a goal, we train the traditional ML classifiers using the Dtest subset, and evalu-
ate their performance on the entire dataset.

Table 4 shows the classification performance of the selected classifiers when sub-
jected to variations in IaC environments. It is evident that while all selected schemes 
maintain significantly high detection accuracies when evaluated on environments 
similar to those used during training ( Dtest ), their performance drops markedly when 
assessed on unseen environments with new services and attack patterns ( Dgen ). This 
demonstrates the limited ability of traditional ML-based NIDSs to generalize to 
dynamic, real-world settings. For instance, the RF classifier achieved perfect per-
formance on the Dtest environment, with average TN and TP rates of 1.0 and 1.0, 
respectively. However, under the Dgen environment–representing new conditions 
generated by variations in IaC scripts–the same classifier experienced a notable 
decline in performance. Specifically, it achieved average TN and TP rates of only 
0.77 and 0.56, corresponding to degradations of 0.23 and 0.44, respectively. This 
significant difference highlights the inability of the classifier to adapt to the evolv-
ing network behavior introduced by the dynamic nature of IaC deployments. As a 
consequence, it is possible to note the critical limitations of traditional ML-based 
NIDSs in dynamic and non-stationary environments, where IaC scripts introduce 

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F-Measure =2 ∗
Precision ∗ Recall

Precision + Recall
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continuous variations to infrastructure behavior. These findings emphasize the 
importance of developing new approaches to address these challenges and ensure 
consistent performance even under dynamic environmental conditions.

Our second experiment aims at answering RQ2, and investigates how our pro-
posed feature selection scheme can be used to improve the system generalization 
capabilities. To achieve such a goal, we implement our scheme as a wrapper-based 
feature selection using the Non-dominated Sorting Genetic Algorithm (NSGA-
II) [44] on top of pymoo API (see Alg. 2). In such a case, the NSGA-II uses a 100 
population size, 100 generations, a crossover of 0.3, and a mutation probability of 
0.1. The multi-objective feature selection aims at decreasing the �test (Eq.  2) and 
�gen (Eq. 3), by implementing Alg. 2. Using our dynamic classification scheme, we 
measure the resulting objectives for every evaluated individual. In this case, we 
evaluate our proposed Dynamic Selection implemented with a dynamic selection of 
classifiers (KNORA-E) using a bagging pool of 100 estimators with replacement 
event selection and 5 neighbors (Alg. 1).

Figure 3 presents the Pareto curve of our wrapper-based feature selection model, 
highlighting the tradeoff between testing accuracy ( Dtest ) and generalization 

Table 4   Classification accuracy of selected classifiers on our IaC dataset. Detection accuracy is reported 
in the TP rate for attack events and TN rates for normal events

 Env. Behavior Detection Accuracy

Random Forest Decision Tree Bagging Multilayer 
Perceptron

Ours

Dtest ACK Scan 1.000 1.000 1.000 0.325 1.000
DDoS 1.000 1.000 1.000 0.415 1.000
ICMP Echo Discover 1.000 1.000 1.000 0.325 1.000
UDP Scan 1.000 1.000 0.999 0.999 1.000
HTTP (Normal) 1.000 1.000 0.999 1.000 1.000
SNMP (Normal) 1.000 0.996 0.996 0.995 0.999

Dgen MySQL Brute Force 0.493 0.495 0.491 0.466 0.944
Nikto 0.004 0.000 0.006 0.103 0.066
Scan Vuln 0.962 0.962 0.962 0.332 0.964
SSH Brute Force 0.999 0.999 0.999 0.984 0.997
Stealth Scan 1.000 1.000 1.000 0.407 1.000
SYN Scan 1.000 1.000 1.000 0.311 1.000
Brute Force DIRB 0.000 0.000 0.006 0.113 0.067
Wapiti 0.192 0.290 1.000 0.290 0.033
CMS Scan 0.000 0.000 1.000 0.042 0.012
Full Connect Scan 1.000 1.000 0.032 0.140 1.000
DNS (Normal) 0.364 0.000 0.000 0.969 1.000
SMTP (Normal) 1.000 1.000 0.998 0.998 1.000
SSH (Normal) 0.964 0.990 0.990 0.995 1.000

Average 0.736 0.723 0.725 0.524 0.794
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capabilities ( Dgen ). The curve consists of optimal solutions from the final gen-
eration of the optimization process. The results demonstrate that improving gen-
eralization to handle IaC-deployed infrastructure variations often requires toler-
ating slightly higher error rates in the training environment. Despite this tradeoff, 
our approach significantly enhances generalization with minimal impact on train-
ing accuracy. For instance, the model achieves a generalization error rate as low as 
0.01%, while maintaining a training error rate of just 0.1%. This balance ensures 
adequate performance in dynamic environments caused by frequent changes in IaC 
scripts. In addition, the flexibility of the Pareto curve allows network operators to 
choose models that align with their specific needs, prioritizing either testing accu-
racy or generalization capabilities. This adaptability makes the proposed model a 
reliable solution for deploying ML-based NIDSs in real-world IaC infrastructures, 
reducing retraining requirements and improving operational efficiency.

Finally, to answer RQ3 we investigate how the feature-selected dynamic classifi-
cation can improve the resulting model’s accuracy. To achieve such a goal, we select 
an average operation point that provides the best average values concerning both 
proposal’s objectives (Fig. 3, Operation Point). It is important to note that the opera-
tion point used should be defined at the operator’s discretion. As an example, one 
can favor higher generalization capabilities to address a more dynamic IaC-deployed 
infrastructures albeit the impact on the resulting model’s accuracy. Therefore, we 
select the average operation point to provide a comparison baseline for our model 
efficacy.

Table 4 presents the detection accuracy achieved by our scheme at the selected 
operational point (Ours). The results demonstrate that our proposed model pro-
vides substantial improvements in detection accuracy across both the training and 
generalization environments. Specifically, the model achieves an average detection 
accuracy of 0.794, which surpasses the performance of traditional methods. Com-
pared to random forest, decision tree, naive Bayes, and multilayer perceptron, our 

Fig. 3   Pareto curve of our 
proposed multi-objective feature 
selection mechanism
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approach achieves improvements of 0.058, 0.071, 0.056, and 0.270, respectively. 
This improvement highlights the effectiveness of our model in addressing the chal-
lenges posed by the dynamic nature of IaC-provisioned infrastructures. By lever-
aging the multi-objective feature selection and dynamic classification approach, the 
model enhances its ability to adapt to varying network behaviors while maintaining 
strong detection capabilities. These results show the reliability improvement of our 
proposed scheme for deployment in real-world IaC-deployed infrastructures.

We further analyze how our proposed model enhances classification accuracy for 
each of the evaluated attacks in our testbed. Figure 4 presents the Cumulative Dis-
tribution Function (CDF) of the selected classifiers across all 14 attacks generated 
in the IaC environment. The results clearly indicate that our model achieves sig-
nificant improvements in detection accuracy for all evaluated attacks. For instance, 
our approach attains a TP rate of 90% for 11 out of the 14 attacks, outperforming 
traditional methods. By comparison, random forest, decision tree, naive Bayes, 
and multilayer perceptron achieve a TP rate of 90% for only 9, 9, 9, and 5 attacks, 
respectively. This improvement can be attributed to the synergy between our pro-
posed multi-objective feature selection process (Alg.2) and the dynamic classifier 
selection mechanism (Alg.1) employed during the inference phase. The enhanced 
accuracy across a broader range of attack scenarios demonstrates the robustness and 
adaptability of our model to the dynamic nature of IaC-provisioned infrastructures. 
These results underline the importance of tailored feature selection and adaptive 
classification techniques in achieving reliable intrusion detection in such complex 
and variable environments.

Figure  5 presents a comparison of the average F1-Scores across the evaluated 
schemes. The results show that our proposed model substantially enhances generali-
zation capabilities compared to traditional approaches (Fig.5b), while also achieving 
slight improvements in training environment accuracies (Fig.5a). Notably, our model 
achieves an increase in the resulting F1-Score by up to 0.31 on the generalization 

Fig. 4   Cumulative Distribu-
tion Function (CDF) of the 
true-positive accuracies of the 
selected classifiers on our built 
IaC dataset
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set, highlighting its ability to effectively detect both known and novel behaviors in 
dynamic IaC-provisioned environments. This improvement stems from the synergy 
between our dynamic classifier selection mechanism and the multi-objective feature 
selection strategy, which collectively optimize the model’s adaptability to diverse 
infrastructure scenarios. These findings emphasize the potential of our approach to 
enable reliable deployment of ML-based NIDS in IaC-provisioned infrastructures, 
addressing the challenges posed by their dynamic and non-stationary nature.

7 � Conclusion

Securing IaC-provisioned infrastructures presents significant challenges due to the 
dynamic nature of these environments. The infrastructure undergoes continuous 
changes driven by the provided configuration scripts, leading to constantly shifting 
environment behaviors. This inherent dynamism makes maintaining consistent secu-
rity difficult and renders traditional ML-based NIDSs unreliable in such settings. To 
address these challenges, this paper proposes a novel ML-based NIDS framework 
specifically designed for IaC-deployed infrastructures. The approach incorporates 
two key components: multi-objective feature selection and dynamic classifier selec-
tion. The multi-objective feature selection focuses on identifying a subset of features 
that enhance the model’s generalization capabilities, while the dynamic classifier 
selection proactively chooses the subset of classifiers best suited to adapt to the cur-
rent environment behavior. Experiments conducted on a newly developed IaC intru-
sion testbed demonstrate the feasibility and effectiveness of the proposed approach. 
The results show significant improvements in detection accuracy over traditional 
methods, paving the way for more reliable ML-based NIDSs in dynamic and non-
stationary IaC environments.

Fig. 5   F1-Score of the selected classifiers on the training and generalization datasets
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As future work, we aim to extend the model to include unsupervised model 
updates after the IaC provisioning phase.
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