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ABSTRACT Network Intrusion Detection Systems (NIDS) are widely used to secure modern networks,
but deploying accurate and scalable Machine Learning (ML)-based detection in high-speed environments
remains challenging. Traditional approaches often fail to generalize across different network environments,
leading to significant performance degradation in cross-dataset evaluations. Additionally, ensuring near real-
time inference while ingesting large volumes of network events requires efficient processing pipelines. In
this work, we propose a distributed ensemble-based NIDS designed to improve both accuracy and scalability
in large-scale network environments. Our approach leverages a Big Data framework to decouple event
ingestion from inference, ensuring high-speed processing without sacrificing detection performance. We
implement our system using Apache Spark and Apache Kafka, enabling real-time event ingestion, efficient
model inference, and periodic model updates through distributed storage. The ensemble classification
scheme enhances generalization capabilities by combining multiple classifiers, reducing accuracy loss in
cross-dataset scenarios. Experimental evaluations conducted on three benchmark datasets—UNSW-NB15,
CS-CIC-IDS, and BoT-IoT—demonstrate that our proposed approach consistently outperforms traditional
techniques. Our model achieves an F-Measure improvement of up to 0.46 in cross-dataset evaluations,
addressing the generalization limitations of individual classifiers. Additionally, it achieves near real-time
inference throughput comparable to traditional classifiers, processing up to 1.07M events per second with
three workers, while our distributed training pipeline scales efficiently, reducing model training time by up
to 62% in the same setup.

INDEX TERMS Network intrusion Detection, Machine Learning, Big Data, Generalization.

I. INTRODUCTION

OVER the past few years, network attacks have steadily
risen. For example, a security report indicated that 2024

witnessed the most significant attack ever reported, with a
Distributed Denial-of-Service (DDoS) exceeding 5.6 Terabits
per second [1]. Notably, hyper-volumetric attacks surpassing
one billion packets per second increased by 18× in 2024
alone. In response to the escalating volume of attacks, net-
work operators typically rely on Network Intrusion Detection
Systems (NIDSs), implemented using either misuse-based or
behavior-based approaches [2]. On the one hand, misuse-
based strategies rely on a database of well-known malicious
signatures, signaling misconduct based on previously iden-

tified attack patterns. As a result, they often fall short of
detecting novel or subtle variations of known attacks [3]. On
the other hand, behavior-based strategies detect malicious
activities by analyzing event behavior and identifying attacks
based on deviations from an established normal baseline.
Therefore, they have the potential to detect new attacks,
provided these attacks exhibit behavioral patterns similar to
those previously modeled [4].

In general, behavior-based NIDSs is implemented us-
ing pattern recognition strategies, often leveraging Machine
Learning (ML) techniques [5]. To this end, a behavioral ML
model is trained on a dataset containing millions of network
samples, encompassing both normal and malicious activi-
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ties [6]. The accuracy of the resulting model is then evalu-
ated using a testing dataset, and its measured performance
is expected to be confirmed when the system is deployed
in production. Consequently, current literature assumes that
the behavior in the production environment closely mirrors
that observed during the testing phase [7]. However, network
traffic behavior is highly variable, as evidenced by the intro-
duction of new services or the emergence of new attacks. This
situation often results in highly accurate ML-based NIDSs
that struggle to maintain sufficient accuracy when deployed
in environments different from those encountered during the
training phase [8].

The design of a generalization-capable ML-based NIDS
for high-speed networks, specifically targeting current hyper-
volumetric attacks, is often overlooked in the literature [9].
Current approaches typically address the detection of a
broader range of attack and normal samples by increasing
the complexity of the underlying classifier, often by using
Deep Neural Networks (DNNs) [10]. As a result, while these
systems have the potential to improve generalization, they
are often impractical for high-speed networks due to the high
computational costs associated with the inference phase. In
high-speed networks, the inference task must be performed at
scale with minimal computational costs; in contrast, current
approaches often require substantial memory footprints and
impose impractical computational demands [11].

Achieving a generalizable ML-based NIDS for high-speed
networks necessitates its implementation as a distributed
system capable of operating at scale [12]. This process in-
volves several challenges that must be addressed to ensure
the effective deployment of anML-based NIDS in high-speed
networks. First, storing and provisioning ML models for
inference requires efficient versioning mechanisms and low-
latency access to accommodate frequent updates and model
retraining [13]. Without an optimized storage and retrieval
strategy, the system may experience significant delays in
threat detection. Second, designing a distributed event in-
gestion mechanism for near real-time processing demands
high-throughput data pipelines capable of handling massive
volumes of network trafficwhileminimizing processing over-
head [14]. This ensures that network anomalies and poten-
tial threats are detected with minimal latency. Finally, en-
abling architectural scalability typically requires the system
design as a microservice-based implementation, allowing the
system to distribute workloads dynamically across multiple
nodes [15]. This approach enhances fault tolerance, facilitates
load balancing, and ensures that the system can adapt to fluc-
tuations in network traffic without compromising detection
accuracy or performance.

Unfortunately, existing literature on ML-based NIDSs of-
ten overlooks the challenge of generalization, assuming that
models trained on specific datasets will perform reliably
across diverse network environments [16]. When general-
ization is considered, studies typically focus on improving
model robustness through more complex architectures, such
as DNN, while neglecting the feasibility of deploying these

models at scale [17]. Conversely, approaches that address
scalability often target a single aspect of the system, such
as optimizing inference efficiency, while disregarding the
broader integration challenges. In particular, many scalable
implementations fail to account for essential components
such as model storage, real-time inference, and distributed
event ingestion, treating them as isolated tasks rather than
interconnected systems. As a result, current solutions lack the
necessary infrastructure to operate efficiently in high-speed
network environments for NIDS.
Contribution. In light of this, this paper proposes a novel
scalable Big Data architecture for cross-dataset capable ML-
based NIDS, implemented in two key stages. First, we design
the classification task as an ensemble of shallow classifiers,
leveraging a majority voting mechanism. Our approach se-
lects the most effective classifiers based on cross-dataset
performance, ensuring improved generalization while main-
taining lower computational costs. Second, we implement
the system as a distributed microservice-based architecture
atop a Big Data platform. The proposed architecture inte-
grates model storage and serving, distributed event ingestion,
and scalable inference to handle high-speed network traffic
efficiently. As a result, our system enhances classification
generalization and ensures scalability, making it suitable for
real-world deployment in high-throughput environments.
In summary, the main contributions of this paper are:

• We comprehensively evaluate the generalization capa-
bilities of widely usedML-based NIDSs in the literature.
Our experiments demonstrate that existing approaches
fail to effectively generalize learned behaviors from the
training environment to a different dataset, resulting in a
significant decline in accuracy;

• A new generalization-capable architecture implemented
atop a Big Data platform. Our proposed model enhances
cross-dataset generalization, increasing the F-Measure
by up to 0.46. Additionally, it achieves near real-time in-
ference throughput comparable to traditional classifiers,
processing up to 1.07M events per second with three
workers, while our distributed training pipeline scales
efficiently, reducing model training time by up to 62%
in the same setup;

Roadmap. The remainder of this paper is organized as fol-
lows. Section II further describes the operation of ML-based
NIDSs and Big Data platforms. Section III overviews the
current literature. Section IV describes our proposed model,
Section V introduces its implementation, and Section VI
evaluates its performance. Finally, Section VII concludes our
work.

II. PRELIMINARIES
This section further overviews the typical implementation of
ML-based NIDSs. In addition, we present the operation of
current Big Data architectures in terms of their scalability.
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TABLE 1: Feature descriptions for network flow analysis. Features are extracted from each client-server communication
comprising a 60-second interval.

Feature Description
PROTOCOL IP protocol identifier
L7_PROTO Layer 7 protocol identifier (numeric)
IN_BYTES Total number of incoming bytes
OUT_BYTES Total number of outgoing bytes
IN_PKTS Total number of incoming packets
OUT_PKTS Total number of outgoing packets
FLOW_DURATION_MILLISECONDS Total duration of the flow in milliseconds
TCP_FLAGS Cumulative value of all TCP flags
CLIENT_TCP_FLAGS Cumulative value of TCP flags set by the client
SERVER_TCP_FLAGS Cumulative value of TCP flags set by the server
DURATION_IN Duration of the client-to-server stream (ms)
DURATION_OUT Duration of the server-to-client stream (ms)
LONGEST_FLOW_PKT Size of the largest packet in the flow (bytes)
SHORTEST_FLOW_PKT Size of the smallest packet in the flow (bytes)
MIN_IP_PKT_LEN Length of the smallest IP packet in the flow
MAX_IP_PKT_LEN Length of the largest IP packet in the flow
SRC_TO_DST_SECOND_BYTES Data transfer rate from source to destination (bytes/sec)
DST_TO_SRC_SECOND_BYTES Data transfer rate from destination to source (bytes/sec)
RETRANSMITTED_IN_BYTES Total retransmitted bytes from source to destination
RETRANSMITTED_IN_PKTS Total retransmitted packets from source to destination
RETRANSMITTED_OUT_BYTES Total retransmitted bytes from destination to source
RETRANSMITTED_OUT_PKTS Total retransmitted packets from destination to source
SRC_TO_DST_AVG_THROUGHPUT Average throughput from source to destination (bps)
DST_TO_SRC_AVG_THROUGHPUT Average throughput from destination to source (bps)
NUM_PKTS_UP_TO_128_BYTES Number of packets with an IP size of at most 128 bytes
NUM_PKTS_128_TO_256_BYTES Number of packets with an IP size between 129 and 256 bytes
NUM_PKTS_256_TO_512_BYTES Number of packets with an IP size between 257 and 512 bytes
NUM_PKTS_512_TO_1024_BYTES Number of packets with an IP size between 513 and 1024 bytes
NUM_PKTS_1024_TO_1514_BYTES Number of packets with an IP size between 1025 and 1514 bytes
TCP_WIN_MAX_IN Maximum TCP window size from source to destination
TCP_WIN_MAX_OUT Maximum TCP window size from destination to source
ICMP_TYPE ICMP type and code (ICMP type * 256 + ICMP code)
ICMP_IPV4_TYPE ICMP type
DNS_QUERY_ID Unique identifier for the DNS query transaction
DNS_QUERY_TYPE DNS query type (e.g., 1 = A, 2 = NS, etc.)
FTP_COMMAND_RET_CODE Return code of the FTP client command
SRC_TO_DST_IAT_MIN Minimum inter-packet arrival time from source to destination (ms)
SRC_TO_DST_IAT_MAX Maximum inter-packet arrival time from source to destination (ms)
SRC_TO_DST_IAT_AVG Average inter-packet arrival time from source to destination (ms)
SRC_TO_DST_IAT_STDDEV Standard deviation of inter-packet arrival time from source to destination
DST_TO_SRC_IAT_MIN Minimum inter-packet arrival time from destination to source (ms)
DST_TO_SRC_IAT_MAX Maximum inter-packet arrival time from destination to source (ms)
DST_TO_SRC_IAT_AVG Average inter-packet arrival time from destination to source (ms)
DST_TO_SRC_IAT_STDDEV Standard deviation of inter-packet arrival time from destination to source

A. MACHINE LEARNING FOR NIDS
A typical ML-based NIDSs is implemented in four stages,
comprising Data Acquisition, Feature Extraction, Classifi-
cation, and Alert [18]. In the Data Acquisition stage, raw
network traffic is continuously captured from various sources,
such as packet sniffers from a Network Interface Card (NIC)
or network flow collectors. The Feature Extraction stage
processes this raw data to derive meaningful characteristics
that represent network behavior, typically using statistical
or time-series representations [19]. Table 1 shows the set
of features that can be extracted from the network traffic.
The Classification stage applies an ML model to categorize
network activity as either benign or malicious based on ex-
tracted features, leveraging techniques ranging from shallow
classifiers to deep learning models. Finally, the Alert stage
generates notifications or triggers automated responses when
malicious activity is detected, enabling real-time mitigation
and threat response within the network.

Typically, the classification stage in ML-based NIDSs re-
lies on a model built using a three-phase process: training,
validation, and testing [20]. In the training phase, the model
learns patterns from a labeled dataset by adjusting its parame-
ters to distinguish between normal and malicious network ac-
tivity. The validation phase is then used to fine-tune themodel
by evaluating its performance on a separate dataset, helping
to optimize hyperparameters and prevent overfitting. Finally,
in the testing phase, the model’s generalization capabilities
are assessed using an unseen dataset, estimating how well it
will perform in real-world scenarios.
This traditional approach presents a significant challenge

for the application of NIDS, as network behavior is highly
dynamic, changing due to new services or the emergence of
novel attack patterns [21]. As a result, proposed solutions
must be capable of generalizing the behavioral characteristics
learned during training to different operational environments.
To address this issue, some authors have explored cross-
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dataset training, where models are trained and evaluated us-
ing multiple datasets to enhance their adaptability to diverse
network conditions [16]. However, the predominant strategy
in such approaches relies on deep learning classifiers, which,
while effective in capturing complex patterns, impose sub-
stantial memory requirements and computational costs [22].
This constraint makes their deployment in high-speed net-
works particularly challenging, as real-time inference must
be conducted at scale with minimal resource consumption.

B. BIG DATA PROCESSING
Big Data is commonly characterized by three fundamental
properties, known as the three Vs: Volume, Velocity, and
Variety [23]. Volume refers to the vast amount of data gener-
ated continuously, requiring scalable storage and processing
solutions. Velocity represents the high speed at which data is
produced and must be processed in real-time or near real-
time to extract timely insights. Variety encompasses the di-
verse formats and structures of data, ranging from structured
logs to unstructured network packets. As an example, in
the context of NIDS, these characteristics are particularly
relevant [24]. Network traffic monitoring generates massive
Volume as data flows through high-speed networks, requiring
efficient storage and processing architectures. The Velocity
aspect is critical since intrusion detection must be performed
in near real-time to promptly identify and mitigate potential
threats. Lastly, the Variety of network data, including raw
packets, flow-based records, and protocol-specific logs, de-
mands adaptable feature extraction and classification tech-
niques to ensure accurate detection across different network
environments.

These characteristics necessitate the development of new
architectures capable of effectively managing the complexi-
ties of Big Data characteristics in NIDS domain [25]. Tradi-
tional architectures often struggle to scale efficiently, mak-
ing it imperative to design solutions that can accommodate
the ever-growing volume, velocity, and variety of network
traffic data. One key challenge lies in storage, as the vast
amount of data generated by high-speed networks demands
distributed and scalable storage systems that balance effi-
ciency and retrieval speed. Event ingestion poses another
challenge, as network data must be collected, processed, and
forwarded in near real-time to ensure timely threat detection
while minimizing bottlenecks. Finally, processing is a critical
hurdle, as ML-based NIDS require adequate computational
resources to analyze massive datasets and execute inference
at scale. Addressing these challenges requires architectures
that integrate distributed computing, efficient data pipelines,
and optimized MLmodels to ensure both scalability and real-
time performance.

Traditional storage solutions often rely on the Hadoop
Distributed File System (HDFS), a scalable and fault-tolerant
storage system designed to handle large volumes of data
efficiently [26]. HDFS follows a master-slave architecture,
where a central NameNode manages metadata and directory
structures, while multiple DataNodes store the actual data

blocks across a distributed cluster. To ensure fault tolerance,
it replicates data across multiple nodes, typically using a
default replication factor of three. This design allows for high
availability and resilience against hardware failures.
For data processing, designed architectures usually resort

to Apache Spark, a widely used framework for fast and scal-
able solutions for handling large-scale datasets [27]. Unlike
traditional batch-processing frameworks, Spark provides in-
memory computation, enabling significantly faster data pro-
cessing for ML, stream processing, and iterative workloads.
Similarly, its architecture follows a master-worker model,
where a central Driver program manages the execution and
distributes tasks across multiple Worker nodes. Each worker
runs one or more Executors, responsible for executing tasks
in parallel and storing intermediate data in memory when
possible. Spark employs a Directed Acyclic Graph (DAG)
scheduler to optimize task execution and minimize data shuf-
fling. Additionally, it supports multiple programming inter-
faces, including Spark SQL for structured data,MLlib for ma-
chine learning, and Spark Streaming for real-time processing,
making it a versatile choice for Big Data applications such as
NIDS.
In this setting, Apache Kafka is a widely adopted event

ingestion mechanism for Big Data environments, designed
to handle high-throughput, low-latency data streams in a
distributed and fault-tolerant manner [28]. Kafka follows
a publish-subscribe architecture where data producers send
events to topics, which subscribers then consume. Each topic
is divided into multiple partitions, enabling parallel process-
ing and scalability. Kafka brokers manage message storage
and distribution, ensuring durability by persisting data to
disk and replicating it across multiple nodes. A Zookeeper
service coordinates broker metadata, manages leader election
for partitions, and maintains cluster state. Consumers can
process events in real-time or batch mode, making Kafka an
essential component for streaming analytics, log aggregation,
and intrusion detection systems. In the context of NIDS,
Kafka efficiently ingests network events at scale, ensuring
reliable and sequential data processing for real-time threat
analysis.
As a result, the integration of HDFS, Apache Spark, and

Apache Kafka have the potential to enable the development
of a Big Data processing architecture for NIDS, leveraging
distributed storage, real-time event ingestion, and scalable
processing [23]. In this setup, Kafka ingests high-volume net-
work traffic data, distributing it across partitions for efficient
consumption. Spark processes this data in real-time or batch
mode, applying ML models to detect intrusions while lever-
aging HDFS as a persistent storage layer for historical data
and model training. However, this integration poses several
challenges, including ensuring low-latency processing while
handling massive data streams, efficiently managing resource
allocation across Spark and Kafka clusters, and maintaining
data consistency between real-time analysis and stored his-
torical datasets. Additionally, achieving fault tolerance and
scalability requires careful coordination of data replication,
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load balancing, and system monitoring to prevent bottlenecks
in high-speed network environments.

III. RELATED WORKS
Over the past years, several works have proposed highly
accurate ML-based NIDSs. In general, proposed schemes
aim for higher detection accuracies while overlooking the
generalization and processing costs of their scheme. As an
example, Z. Ye et al. [29] proposes an ensemble of ML
classifiers built through a feature selection strategy. Their
proposed model increases accuracy on a single dataset while
neglecting the resulting generalization capabilities and pro-
cessing costs. Similarly, C. Hazman et al. [30] proposes a
AdaBoost framework built through a feature selection strat-
egy. Their scheme can improve accuracy while also reducing
inference computational costs, however, the impact on model
generalization is not addressed. M. Mohy-Eddine et al. [31]
makes use of an ensemble of classifiers built through a fea-
ture reduction strategy. Their proposed approach improves
accuracy on a single dataset while disregarding the challenges
associated with model generalization. M. Ali Khan et al. [32]
build an ensemble of classifiers through an AutoML strategy.
The proposed model improves accuracy when compared to
traditional approaches but neglect processing and general-
ization costs. A. M. Alsaffar et al. [33] combine a wrapper
and filter feature selection strategy to build an ensemble of
stacked classifiers. Their approach improves classification
performance but neglects inference computational costs and
model generalization capabilities.

Model generalization in NIDS is rarely considered in the
literature, where authors usually assume that the accuracy
measured on the testing dataset will reflect in real-world
settings [4]. M. Cantone et al. [16] assessed the accuracy
of widely used ML classifiers for NIDS in a cross-dataset
setting. Their evaluation showed that current schemes sig-
nificantly degrade their accuracy when evaluated in a differ-
ent dataset than that used during training phase. To address
this issue, M. Wang et al. [34] combines the datasets in a
cross-dataset sampling strategy for DNN training task. Their
approach improves accuracy when a cross-dataset setting is
considered, however, the processing costs associated with
the DNN is neglected. S. Wali et al. [35] attempt to address
generalization by extracting a multimodal dataset integrating
flow, payload and contextual features. Their extracted fea-
tures improve accuracy in a cross-dataset validation, however,
it overlooks the computational costs associated with the fea-
ture extraction costs. Z. Fan et al. [36] attempt to address
generalization by relying on a cross-validation approach in a
single dataset. Their scheme improves accuracy with parame-
ter tuning but neglects the cross-dataset setting. N. Niknami et
al. [37] relies on a Few-Shot Learning strategy through DNN
to improve detection accuracy. Their model, when assessed in
a cross-dataset setting improves accuracy when compared to
traditional approaches, however, their scheme is not designed
to achieve such a goal. G. Duan et al. [38] aim to increase
model generalization by assessingmassive datasets in a cross-

TABLE 2: A summary of related work and the characteristics
of their NIDS implementations.
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Z. Ye et al. [29] × × × × × ✓
C. Hazman et al. [30] × × × × × ✓

M. Mohy-Eddine et al. [31] × × × × × ✓
M. Ali Khan et al. [32] × ✓ × × × ✓

A. M. Alsaffar et al. [33] × × × × × ✓
M. Cantone et al. [16] × × × ✓ × ✓

M. Wang et al. [34] × × × ✓ × ✓
S. Wali et al. [35] × × × ✓ × ✓
Z. Fan et al. [36] × × × ✓ × ✓

N. Niknami et al. [37] × × × ✓ × ✓
G. Duan et al. [38] × × × ✓ × ✓
A. Abid et al. [39] ✓ × × × ✓ ✓
F. Jemili et al. [40] ✓ ✓ × × ✓ ✓

B. L. Pandey et al. [41] ✓ × ✓ × ✓ ×
F. Ullah et al. [17] ✓ × × × ✓ ✓

A. Kourid et al. [42] ✓ × × × ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

dataset setting. Their approach based on DNN improves ac-
curacy but neglects the inference computational costs.
Addressing the high-speed network traffic for ML-based

NIDS is also not easily achieved in the literature. A. Abid et
al. [39] leverages Cloud Computing and Big Data to conduct
data fusion for intrusion detection at high-speed networks.
Their approach improves accuracy but overlooks model gen-
eralization. F. Jemili et al. [40] proposes a ensemble of ML
classifiers in a Big Data environment. Their approach im-
proves accuracy and address high-speed networks, however
they overlook how model generalization can be addressed.
B. L. Pandey et al. [41] implements an intrusion detection
scheme in a Big Data setting with feature selection and
data augmentation. Their approach improves accuracy but
neglects the computational costs and model generalization
aspects. F. Ullah et al. [17] implements a Big Data oriented
architecture for NIDS with Apache Spark and DNN. The
proposed architecture provides significantly high detection
accuracies but overlooks model generalization. A. Kourid et
al. [42] implement their NIDS on top of Apache Spark to
address the high variability of network traffic behavior. Their
approach provides low error rates but also neglects model
generalization aspects.

A. DISCUSSION
Table 2 overviews the current literature on ML-based NIDS
for high-speed networks. The current literature predomi-
nantly focuses on improving classification accuracy, often
employing complex DNN models to enhance detection per-
formance. However, a significant limitation of these ap-
proaches is their inability to generalize effectively across
different network environments. Manymodels are trained and
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FIGURE 1: Overview of our proposed architecture for enabling ML-based NIDS in high-speed networks. Event Ingestion
Pipeline receives at near real-time events from multiple data sources for inference. Inference Pipeline conducts the inference
task at scale with multiple endpoints. Distributed Storage stores the training dataset and the ML model in a distributed manner.
The Model Update Pipeline conducts the ML model training and periodic updates when requested.

tested within a single dataset, leading to high accuracy within
controlled conditions but poor performance when deployed in
real-world settings with different network behaviors. While
some studies attempt to address model generalization by
incorporating cross-dataset evaluation, these approaches typi-
cally introduce additional computational complexity, making
them impractical for deployment in high-speed networks.
The reliance on resource-intensive models further increase
this issue, as real-time intrusion detection demands efficient
processing capabilities to handle large-scale traffic without
introducing latency.

Furthermore, existing solutions often neglect key aspects
of scalable implementation, particularly the integration of Big
Data architectures, event ingestion mechanisms, and efficient
model updates. High-speed networks generate vast amounts
of traffic that require real-time analysis, yet most studies do
not incorporate distributed event ingestion frameworks such
as Apache Kafka, limiting their ability to process large-scale
data streams effectively. Similarly, the lack of BigData infras-
tructure, such as Apache Spark and HDFS, hinders scalability
and long-term storage for model retraining and adaptation.
As a result, even when model updates are considered, they
are typically performed offline, requiring significant man-
ual intervention. This fragmented approach prevents existing
ML-based NIDSs from achieving both high accuracy and
efficient real-time deployment, highlighting the need for a
more comprehensive architecture that integrates scalability,
low-latency processing, and automated model adaptation.

IV. A BIG DATA ARCHITECTURE FOR CROSS-DATASET
CAPABLE ML-BASED NIDS
Our proposed architecture is implemented as a Big Data pro-
cessing framework to address the aforementioned challenges
of near real-time ML-based NIDS in high-speed networks. In
practice, it aims to address three key challenges associated
with high-speed networks:

• Model Generalization We design an ensemble of shal-
low classifiers optimized for cross-dataset performance.
Instead of relying on a single model that may overfit a
specific dataset, we construct an ensemble that selects
the best-performing classifiers across different datasets.
This enhances the system’s ability to detect novel threats
while maintaining computational efficiency, ensuring
high detection accuracy across varying network environ-
ments;

• Near Real-time Inference at Scale Our architecture en-
ables the processing of high-speed network traffic with
minimal latency while maintaining high throughput. By
distributing the workload across multiple computing
nodes, we ensure efficient inference that is capable of
handling hyper-volumetric attacks in near real-time;

• DistributedModel Training andUpdateWe incorporate
a scalable model storage and provisioning mechanism
that enables continuous retraining with updated network
traffic. This ensures the system adapts to evolving attack
patterns without requiring manual intervention, improv-
ing long-term reliability and maintaining detection ac-
curacy over time;

Figure 1 illustrates the implementation of our proposed ar-
chitecture. It includes the Event Ingestion Pipeline, Inference
Pipeline, Distributed Storage, and Model Update Pipeline.
The Event Ingestion Pipeline leverages a message broker to
efficiently collect and process network events from multiple
data sources in near real-time. It is designed for scalability
and ensures that high-speed network traffic is continuously
ingested and made available for analysis without delays. The
Inference Pipeline is implemented as a distributed service in
a Big Data framework that processes incoming events by ap-
plying an ensemble of shallow classifiers through a majority
voting procedure. This ensemble is built by selecting classi-
fiers that demonstrate strong performance in a cross-dataset
evaluation, ensuring improved generalization across different
network environments. By relying on multiple lightweight
models instead of a single complex counterpart, this approach
maintains computational efficiency, making it suitable for
high-speed networks while reducing the risk of model over-
fitting. The Distributed Storage component is responsible for
storing both the training datasets and also different versions
of the ML models. Maintaining historical datasets and model
snapshots enables efficient retrieval and management of data
for continuous model training and evaluation. Finally, the
Model Update Pipeline fetches training datasets from the dis-
tributed storage to periodically retrain the ML model. When
a new model version is available, it is released and deployed
to the inference pipeline, ensuring the system remains up-
dated with evolving network behaviors and emerging attack
patterns.
The following subsections further describe our proposed

architecture, including the modules that implement it.
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A. CLASSIFICATION AND MODEL TRAINING
Achieving effective ML-based NIDS classification that en-
sures generalization while operating in high-speed networks
and near real-time presents significant challenges. Network
traffic is inherently dynamic, with new services and at-
tack patterns continuously emerging, requiring models that
can generalize across diverse environments. However, ensur-
ing this generalization often demands complex ML models,
which can be computationally expensive and unsuitable for
real-time processing in high-speed networks. Additionally,
integrating scalable event ingestion and distributed inference
mechanisms is crucial to handling large volumes of traffic
efficiently while maintaining low-latency detection.

Our proposedmodel addresses this challenge by leveraging
an ensemble of shallow classifiers, ensuring both efficiency
and generalization in high-speed networks. The ensemble
is constructed by selecting the best-performing models in a
cross-dataset manner, allowing it to adapt to varying network
behaviors while maintaining low computational costs. This
approach enhances detection accuracy across different envi-
ronments while enabling near real-time inference, making it
suitable for deployment in large-scale, high-speed network
scenarios.

Let x be a to-be-classified event feature vector compris-
ing N features, and E an M -sized ensemble of h shallow
classifiers, where each classifier implements a function as
hm → {0, 1}, with m ∈ {1, . . . ,M}, hence, mapping the
feature space to a binary decision space, indicating whether
the input corresponds to an attack 1 or normal traffic 0. The
final classification decision H(x) is obtained through a ma-
jority voting scheme, formally defined through the following
equation:

H(x) = I

(
(

M∑
m=1

hm(x)) >
M
2

)
(1)

where I(·) is the indicator function that returns 1 if the
condition holds and 0 otherwise. The ensemble E consists
of M shallow classifiers, each denoted as hm(x), where
m ∈ {1, 2, . . . ,M}, and each classifier produces a binary
output: hm(x) = 1 if the instance is classified as an attack
and hm(x) = 0 otherwise. Therefore, the final ensemble E
classification decision is obtained through a majority voting
rule, where the instance is classified as an attack if more
than half of the classifiers predict it as such. As a result, our
classification scheme can be implemented in a lightweight
manner to address near real-time high-speed network traffic
classification.

To construct the ensemble E and ensure generalization
capabilities, we first train multiple classifiers on multiple
datasets, ensuring diverse learning representations from dif-
ferent network environments. Each classifier is independently
trained and evaluated on various datasets to assess its gener-
alization performance. We then select the subset of classifiers
that achieve the highest accuracy in a cross-dataset evaluation.
This selection process ensures that the ensemble is composed

of models capable of detecting intrusions across different
network conditions, improving overall detection reliability
while maintaining computational efficiency for high-speed
network environments.
Let D = {D1, . . . ,DN} be a set of training datasets with

N datasets, where each Dn contains labeled instances for
both normal and malicious network traffic. For each dataset
Dn, we train a set of classifiers {hn1(x), . . . , hnK (x)}, where
each hnk : RN → {0, 1} is a classifier that outputs either
0 (normal) or 1 (malicious) for a given feature vector x,
and K represents the number of classifiers trained for each
dataset. After training, each classifier is evaluated on the
same datasetDn used for training. The classifier that provides
the best accuracy on the testing dataset of Dn is selected to
form the ensemble. This process is repeated for all datasets
in D, and the ensemble E is constructed by selecting the
best-performing classifier from each training dataset, ensur-
ing that the ensemble incorporates classifiers that perform
optimally for their respective datasets. The resulting ensemble
then classifies network events, improving generalization and
adaptability across different network environments.

B. INFERENCE PIPELINE
Implementing inference in high-speed networks presents a
significant challenge because it requires not only performing
classification on incoming network traffic but also ingesting
events at high speed. In such environments, the volume and
velocity of network data make it essential to process and
classify events in near real-time without introducing delays.
This requirement of high-speed event ingestion and fast in-
ference poses difficulties, as the system must be capable of
handling large amounts of data continuously while applying
ML models for accurate and timely classification. Balanc-
ing both tasks efficiently in high-speed networks demands
scalable architectures that can handle the throughput without
compromising inference performance.

We consider an architecture that ingests network events for
inference from multiple sources (Data Sources, Fig. 1). The
events are collected by a Message Broker, which is imple-
mented in a distributed manner to handle large volumes of
data in near real-time. The collected events are then provided
as input to the inference Endpoint, which applies the ensemble
of classifiers (see Section IV-A) in a distributed manner to
conduct this task at scale. Additionally, the inference endpoint
periodically queries a distributed storage system for the latest
ML model version, ensuring that the most up-to-date model
is always used for classification.

We decouple the inference and event ingestion processes
to ensure that each task can be scaled and optimized indepen-
dently, avoiding bottlenecks and enhancing system efficiency.
Separating the two tasks allows for more flexible resource
allocation, enabling the ingestion pipeline to focus on han-
dling incoming events at high speed without being hindered
by the computational demands of the inference process. This
design also facilitates load balancing and the ability to scale
either process based on the specific needs of the network en-
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vironment, ensuring smooth operation even under high traffic
conditions. Additionally, we utilize a Distributed Storage to
store the ML model, which further enhances the efficiency
of our proposed inference pipeline by allowing for fast and
scalable retrieval of the latest model version for inference.

C. MODEL UPDATE PIPELINE
We implement the model training pipeline in a distributed
manner to efficiently handle massive amounts of training
data. The training dataset, stored in a distributed storage sys-
tem, is fetched and processed in parallel acrossmultiple nodes
to accelerate the training process. The model training is con-
ducted distributedly, utilizing the computational power of the
system to handle large-scale datasets. Additionally, we can
conduct periodic model updates to ensure that the classifier
adapts to evolving network behaviors and new attack patterns.
When a new model is trained, it is released and stored in the
distributed storage system, making it available for querying
by the inference endpoint and ensuring that the most up-to-
date version of the model is always used for classification
tasks. This approach enables continuous improvement and
scalability of the system without compromising performance.

D. DISCUSSION
Our model offers several key insights that address the chal-
lenges of traditional ML-based NIDSs in high-speed net-
works. First, it enablesmodel generalization by selecting clas-
sifiers based on their performance across multiple datasets,
ensuring that the system can effectively handle diverse net-
work environments and adapt to new attack patterns. Second,
it supports near real-time inference at scale, leveraging a dis-
tributed architecture to quickly process and classify network
events from multiple sources, even in high-speed networks.
This is achieved by decoupling event ingestion from infer-
ence, allowing each task to be handled independently at scale.
Finally, our model incorporates distributed model training
and updates, enabling the continuous adaptation of the system
by periodically updating the model with the latest training
data. This ensures the system stays current with evolving
network behavior, allowing for sustained detection accuracy
and robustness in dynamic environments.

V. PROTOTYPE
We implemented a proposal prototype in a distributed en-
vironment as illustrated in Figure 2. It considers the imple-
mentation of a distributed Big Data processing architecture
executing our proposed scheme (see Section IV). To achieve
this, the hardware and software components of the proto-
type are designed to create a commonly available Big Data
processing architecture that ingests network events at scale
for inference purposes. Each architecture node is executed
through an Ubuntu v.24.04 equipped with an Intel i7 with 4
CPU cores and 16GB of memory. The infrastructure elements
are deployed as an isolated container through Docker v24.0.
The Distributed Storage (Fig. 1) is implemented through

a HDFS cluster composed of three DataNodes and a single
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FIGURE 2: Prototype overview of our proposed model. Dis-
tributed Storage is implemented through HDFS, Message
Broker makes use of Apache Kafka, and Inference Pipeline
and Model Update Pipeline is implemented through Apache
Spark.

NameNode. The deployed DataNodes stores the Training
Dataset when required for model training and update pur-
poses and the ML model that will be used for model infer-
ence. We implement the Event Ingestion Pipeline through an
Apache Kafka message broker v.3.7.0. The events used for
model inference are published as a Kafka topic and later read
by the inference pipeline in near real-time.
The Inference Pipeline is executed on top of Apache Spark

v.3.5.4. The pipeline is executed as an Apache Spark job
with up to 3 Apache Workers simultaneously, continuously
ingesting events for inference through the Apache Kafka
broker (Topic Subscribe, Fig. 2) The ingested events are used
for inference by applying the previously trained ML model
implemented with the Apache Spark Machine Learning Li-
brary (MLlib). To achieve such a goal, at the job deployment
phase, the model available at the Distributed Storage module
is read and used for model inference (Model Read, Fig. 2).

The Model Update Pipeline is also implemented on top
of Apache Spark as a job with up to 3 workers. At model
updates, it reads a previously stored dataset from the HDFS
and builds a new ML model through Apache Spark MLlib
API. The resultingmodel is then stored back onHDFS (Model
Write, Fig. 2).
Our prototype enables the implementation of our scheme

in a fully distributed manner by leveraging a Big Data frame-
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work that ensures scalability, fault tolerance, and efficient
processing of network events. The architecture integrates
Apache Kafka for high-speed event ingestion, Apache Spark
for distributed inference and model updates, and HDFS for
scalable storage, creating a seamless pipeline for handling
large-scale network traffic. The prototype ensures near real-
time inference by distributing computation across multiple
worker nodes, efficiently processing high-throughput net-
work events whilemaintaining high availability. Furthermore,
the distributed model training and update mechanisms al-
low the system to periodically refine the ML model without
disrupting ongoing inference tasks, ensuring adaptability to
evolving network threats. This architecture enables efficient
parallel processing and enhances the robustness and gen-
eralization capabilities of our proposed scheme, making it
suitable for real-world, high-speed network environments.

VI. EVALUATION
Our conducted experiments aim to answer the following Re-
search Questions (RQs):

• RQ1: What are the generalization capabilities of tradi-
tional ML-based NIDSs?

• RQ2:Does our proposed classification scheme improves
generalization?

• RQ3: What are the scaling capabilities of our scheme?
The next subsections describe the performance of our

scheme, including the model-building aspects.

A. MODEL BUILDING
We assessed our proposed scheme on top of our previously
described prototype (see Section V). To achieve such a goal,
we evaluated four classifiers, namely Decision Tree (DT),
Gradient Boosting (GBT), Multilayer Perceptron (MLP), and
Random Forest (RF). The DT classifier utilizes the Gini
impurity criterion for node splitting. The GBT classifier is
configured with a learning rate of 0.1, employs the deviance
loss function, and consists of an ensemble of 10 decision
trees as its base learners. The MLP classifier is trained for
100 iterations with a batch size of 128 and consists of four
hidden layers, each containing 128 neurons, using the logistic
sigmoid activation function. The RF classifier is constructed
with an ensemble of 10 decision trees as its base learners, with
predictions aggregated through majority voting. The selected
classifiers were implemented using Apache Spark MLlib to
enable efficient distributed training and inference. By lever-
aging Apache Spark MLlib, we ensure that these classifiers
are efficiently trained and applied in a distributed manner,
enhancing scalability for high-speed network environments.

We evaluated the performance of the selected algorithms
using three benchmark datasets: UNSW-NB15, CS-CIC-IDS,
and BoT-IoT. These datasets provide diverse network traffic
characteristics, enabling a comprehensive assessment of our
model’s generalization capabilities across different environ-
ments as follows:

• UNSW-NB15 [43]. This dataset contains a mix of nor-
mal and malicious network traffic generated using a

cyber range testbed. It includes a variety of modern
attack types, such as DoS, backdoors, and exploits;

• CS-CIC-IDS [44]. Developed by the Canadian Institute
for Cybersecurity, this dataset captures realistic attack
scenarios and normal traffic patterns. It features up-to-
date cyber threats, including botnets, brute force attacks,
and web-based intrusions;

• BoT-IoT [45]. Specifically designed to represent IoT-
based attacks, this dataset includes extensive IoT traffic
alongside various attack types, such as DDoS, data ex-
filtration, and reconnaissance;

We utilized three datasets to enable a comprehensive cross-
validation evaluation of our approach. By leveraging mul-
tiple datasets, we assess the generalization capabilities of
our model across different network environments and attack
scenarios. This cross-validation strategy ensures that our en-
semble selection process identifies classifiers that perform
consistently well in diverse settings, enhancing the robustness
and reliability of our scheme (see Section IV-A). Each dataset
is randomly divided without replacement into training, vali-
dation, and testing datasets, each composed of 40%, 30%, and
30% of samples, respectively. The training dataset is used
for model training purposes. The validation dataset is used
for model fine-tuning. Finally, the testing dataset is used to
measure the resulting model accuracy. The reported accuracy
performance in the paper is measured on the testing dataset.
The behavior of the selected datasets is represented by their
flow-based features as shown in Table 1.
We evaluate the selected classifiers using the following

classification performance metrics:
• True Positive (TP): number of attack samples correctly

classified as an attack.
• True Negative (TN): number of normal samples correctly

classified as normal.
• False Positive (FP): number of normal samples incor-

rectly classified as an attack.
• False Negative (FN): number of attack samples incor-

rectly classified as normal.
Further, we measure the F-Measure according to the har-

monic mean of precision and recall values while considering
attack samples as positive and normal samples as negative, as
shown in Eq. 4.

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

F-Measure = 2× Precision · Recall
Precision+ Recall

(4)

B. THE GENERALIZATION CHALLENGE
Our first experiment aims at answering RQ1 and investi-
gates the generalization capabilities of traditional ML-based
NIDSs. To achieve such a goal, we evaluate the classification
performance of the selected classifiers on multiple datasets
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TABLE 3: Classification performance of the selected classi-
fiers in a cross-dataset setting as measured by the obtained
F-Measure on the testing dataset.

Training Env. Class. Testing Environment
UNSW-NB15 CS-CIC-IDS BoT-IoT

UNSW-NB15

DT 0.97 0.02 0.68
GBT 0.96 0.04 0.65
MLP 0.92 0.66 0.10
RF 0.96 0.10 0.16

CS-CIC-IDS

DT 0.32 0.98 0.08
GBT 0.03 0.97 0.65
MLP 0.03 0.92 0.06
RF 0.02 0.97 0.08

BoT-IoT

DT 0.07 0.23 1.00
GBT 0.03 0.30 1.00
MLP 0.08 0.21 0.99
RF 0.25 0.54 1.00

Ours 0.77 0.56 1.00

(see Section VI-A). Specifically, we assess whether the ac-
curacy of the selected techniques can be maintained when
applied to a different dataset in a cross-dataset evaluation
setting. For example, we build a classifier using the UNSW-
NB15 dataset and evaluate the resulting model accuracy on
the BoT-IoT dataset. This approach allows us to determine
how well a model trained on one network environment per-
forms when exposed to a different dataset. It reflects real-
world deployment scenarios where an intrusion detection
system must adapt to diverse network conditions, hence mea-
suring its generalization capabilities.

Table 3 shows the classification performance as measured
by the F-Measure of the selected classifiers in a cross-dataset
setting. It is possible to observe that all selected classifiers
achieve significantly high detection accuracies when evalu-
ated in the same environment in which they were trained.
For example, the classifiers reached an average F-Measure
of 0.95, 0.96, and 1.00 on the UNSW-NB15, CS-CIC-IDS,
and BoT-IoT datasets, respectively. However, when these
models are evaluated in a different environment, their perfor-
mance deteriorates significantly, highlighting the challenge
of generalization in ML-based NIDSs. This phenomenon is
particularly evident in the case of the RF classifier. As an
example, when trained on the UNSW-NB15 dataset, the RF
classifier achieves strong classification performance within
the same dataset, but when evaluated on the CS-CIC-IDS and
BoT-IoT datasets, its F-Measure drops to only 0.10 and 0.16
respectively. This result indicates that features learned from
one dataset may not generalize well to another, as different
datasets capture distinct network traffic characteristics, at-
tack patterns, and underlying distributions. This significant
performance gap in cross-dataset evaluations suggests that
traditional ML models struggle to adapt to unseen network
environments, reinforcing the need for approaches that en-
hance model generalization.

Our second experiment aims to answer RQ2 and investi-
gates how our proposed classification scheme can improve
the generalization capabilities ofML-based NIDS. To achieve
such a goal, we implement our proposed ensemble-based

classification scheme (see Section IV-A) on top of our pro-
posed prototype. Given that we use three datasets, we build
our ensemble E composed of three classifiers. In this case,
the ensemble is composed of the DT, RF, andMLP classifiers
built from the UNSW-NB15, CSE-CIC-IDS, and BoT-IoT
datasets, respectively. The classifiers were chosen according
to our ensemble-building strategy based on their accuracy on
each dataset. The classification combination of the resulting
ensemble is conducted through amajority voting strategy (see
Eq. 1).
Table 3 presents the classification performance of our pro-

posed model across different testing datasets. It is evident
that our approach substantially enhances the F-Measure in a
cross-dataset setting, demonstrating improved generalization
capabilities compared to traditional ML-based NIDSs. While
the F-Measure of our model remains slightly lower than that
of classifiers trained and tested within the same dataset, it
consistently outperforms models that are evaluated in a dif-
ferent environment from the one they were trained on. As an
example, a direct comparison with the RF classifier further
highlights the advantages of our approach. As previously
discussed, the RF classifier exhibits a drastic decline in F-
Measure when applied to datasets other than the one it was
trained on, reaching only 0.10 when trained on CS-CIC-
IDS and evaluated on BoT-IoT. In contrast, our proposed
model maintains a significantly higher F-Measure under the
same conditions, with an F-Measure of 0.56, reinforcing its
ability to generalize effectively across diverse network en-
vironments. This result shows the limitations of traditional
classifiers in handling real-world variability and further val-
idates the effectiveness of our ensemble-based approach in
improving the generalization in NIDSs.
Figure 3 directly compares the F-Measure of our proposal

vs. the selected classifiers. It is possible to observe that our
approach consistently improves the F-Measure in most cases,
indicating that the model effectively learns generalizable pat-
terns rather than overfitting specific dataset characteristics.
This improvement translates into better detection capabilities
in real-world scenarios, where variations in network traffic
and attack patterns are common. The ability to sustain a
higher F-Measure across multiple datasets further confirms
the robustness of our model, making it a more reliable solu-
tion for intrusion detection in dynamic and evolving network
environments.

C. SCALING ML-BASED NIDS DETECTION
Finally, we answer RQ3 and investigate the scaling capabili-
ties of our proposed model when operating with our proposed
ensemble-based classification model. To achieve such a goal,
we investigate how our proposed ensemble can scale infer-
ence andmodel training as implemented through our proposal
prototype (see Section V). In this case, we assess the scaling
performance of our scheme vs. the traditional approach when
varying the number of deployed Apache Spark workers (see
Fig. 2). The goal is further investigate the scaling capabilities
of our scheme and also if our proposed ensemble approach
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FIGURE 3: F-Measure comparison of our proposed scheme vs. traditional single classifier on the selected datasets. The caption
denotes the classifier used and the training environment. Positive (+) values denote the F-Measure improvement of our proposal,
while negative (–) values denote the decrease in F-Measure.

significantly degrade inference scaling.
Figure 4 illustrates the inference scaling of our proposed

model as the number of deployed workers increases. The re-
sults demonstrate that our approach can be effectively scaled
in a distributed environment, allowing for efficient processing
of network events while maintaining high classification per-
formance. This scalability ensures that the model can handle
increasing traffic loads without a significant drop in inference
throughput, making it well-suited for real-time intrusion de-
tection in high-speed networks.

Additionally, our proposed ensemble-based classification
scheme achieves comparable inference throughput to tradi-
tional ML techniques. Despite incorporating multiple clas-
sifiers, the ensemble does not introduce excessive compu-
tational overhead, enabling near real-time classification at
scale. This is particularly evident when comparing our model
to the RF classifier. For instance, when deployed with three
workers, the RF classifier achieves an inference through-
put of ≈ 1.27M events per second, whereas our proposed
model reaches ≈ 1.07M, demonstrating that our approach
can deliver similar throughput with significantly better gen-
eralization capabilities. Overall, these results highlight the
effectiveness of our distributed implementation. By leverag-
ing a scalable architecture and an efficient ensemble classi-
fication scheme, our approach ensures both high detection
accuracy and real-time inference capabilities, addressing the
key challenges of deploying ML-based NIDSs in large-scale
and dynamic network environments.

The second evaluation aims to investigate our proposed
model performance during the training phase. To achieve such
a goal, we assess the model training time of our scheme
according to the number of workers and the time required by
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FIGURE 4: Scaling of inference task of our proposed model
vs. traditional single classifiers approach.

each classifier forming the ensemble. The goal is to assess
how the training process of our proposed ensemble can be
effectively scaled as the number of ApacheWorkers increase.
Figure 5 shows the model training time of our proposed

ensemble according to the number of deployedApacheWork-
ers. The results demonstrate that our proposed model training
procedure can be effectively scaled, allowing it to handle large
volumes of training data in a distributed manner. Further-
more, the proposed ensemble approach scales according to
the underlying classifiers used in the ensemble. Since each
classifier in the ensemble can be trained in parallel, the overall
training process benefits from the distributed nature of the
implementation. This enables efficient utilization of compu-
tational resources, ensuring that even complex models can be
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FIGURE 5: Scaling of model training task of our proposed
model.

trained within a reasonable time frame. As the number of de-
ployed ApacheWorkers increases, the training time decreases
accordingly. Specifically, our results indicate that an increase
in the number of workers results in an decrease in training
time, for instance from 162 seconds with one worker to only
62 seconds with three workers. This reduction highlights
the efficiency of our distributed training pipeline, allowing
faster model updates while maintaining high classification
performance.

VII. CONCLUSION
Network intrusion detection in high-speed environments
presents significant challenges due to the need for real-time
event ingestion and accurate inference at scale. Traditional
ML-based NIDS struggle with generalization across different
network environments, leading to a significant drop in detec-
tion accuracy when applied to unseen datasets. Additionally,
high computational demands for model training and inference
hinder their deployment in large-scale distributed settings.
Addressing these challenges requires a scalable and efficient
approach that ensures both high accuracy and adaptability to
evolving network conditions.

To tackle these issues, we proposed a distributed ensemble-
based NIDS that leverages a scalable Big Data framework
for efficient model training, inference, and updating. Our
architecture decouples event ingestion and inference, ensur-
ing high-speed processing while maintaining accurate clas-
sification performance. The proposed system dynamically
retrieves the latest model versions from a distributed storage,
enabling continuous updates to adapt to emerging threats.
Furthermore, by implementing inference and model updates
on Apache Spark, our approach ensures that both tasks scale
efficiently with the number of deployed computational re-
sources. Experimental results demonstrated that our approach
significantly improves generalization capabilities compared
to traditional classifiers, reducing performance degradation
in cross-dataset evaluations. Our proposed ensemble-based
method achieves competitive inference throughput, main-

taining efficiency while improving classification accuracy
across multiple datasets. Additionally, the distributed training
pipeline scales effectively, reducing model update times as
more workers are added and ensuring timely and reliable
model deployment in large-scale network environments.
Future works include addressing near real-time model up-

dates in an incremental manner and the integration of DNN-
based classification.
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