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Abstract
Deep Neural Networks (DNN) are currently state-of-the-art in in-
trusion detection literature, where authors typically escalate the
network parameters to pave the way for accuracy improvements.
However, in addition to increasing the inference computational
costs, this can also render them unsuitable for resource-constrained
devices, given their limited memory and processing capabilities.
This paper introduces a new early exit neural network for fast infer-
ence and reliable intrusion detection. Our proposal partitions the
DNN utilized for intrusion detection into branches, with the objec-
tive of classifying the majority of samples on the earlier branches,
thereby reducing inference costs. Challenging samples that reach
the final DNN branch are subsequently classified using a reject
option, improving system reliability. In addition, the branches and
rejection thresholds are selected as a multi-objective optimization
task. Experiments on a new dataset with over 8TB of data and a
year-long real network traffic showed the proposal’s feasibility. Our
scheme reduces the average inference computational costs by up
to 82% while decreasing the average error rates by up to 3.3.
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1 Introduction
The utilization of resource-constrained devices, such as those in the
context of Internet of Things (IoT), has consistently risen in recent
years. These devices typically consist of battery-powered embedded
computing systems with restricted processing capabilities, often
featuring network connectivity. Due to their widespread adoption,
these devices have become prime targets for cyber attackers, with
reports indicating a 40% surge in attack incidents over the past year
alone [1].

To safeguard IoT devices, a common approach involves the use
of Network Intrusion Detection Systems (NIDSs), which monitors
the device’s network traffic for malicious footprints [16]. Over
the past years, several techniques have been proposed to conduct
such a task, wherein proposed schemes can usually be categorized
as misuse-based or behavior-based schemes [3]. On the one hand,
misuse-based approaches identify intrusion attempts by comparing
them to a database of well-known malicious activities, limiting
their ability to detect only previously known attacks. On the other
hand, behavior-based techniques identify irregularities based on
deviations from a previously established system profile, potentially
detecting unseen attack types.

In response to this feature, several works have proposed new
behavior-based techniques for intrusion detection, where approaches
based on Deep Neural Networks (DNNs) frequently achieve the
highest accuracy levels [21]. To accomplish such an objective, re-
searchers, in their vast majority, escalate the parameters of their
designed DNN architecture to pave the way for better accuracies.
Besides increasing the inference computational costs, they also ren-
der them unsuitable for resource-constrained devices, given their
limited memory and processing capabilities [6].

At deployment, DNN-based intrusion detection entails forward-
ing input parameters throughout the entire network architecture
until the output layer is reached. Several spatial non-linear patterns
and features are extracted in this process, later used as indicators
for the classification task conducted at the output layer. Therefore,
regardless of the evaluated event’s complexity, be it complex or
simple, the decision can only be made once all indicators have been
extracted, potentially leading to the inefficient use of computational
resources [12]. Considering this, in recent years, several studies
have explored the introduction of early exits in DNN architectures.
Early exits add multiple termination points that split the network
into branches, enabling the inference task to conclude prematurely
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if the current extracted patterns and features can reliably lead to a
decision [18].

While early exits typically reduce the DNN inference computa-
tional cost with minimal impact on accuracy, they are not readily
applicable to network intrusion detection, particularly on resource-
constrained devices [11]. Unlike other domains, the behavior of
network traffic is notably dynamic and continually evolves. The
prior necessitates advanced DNN model generalization capabilities,
while the latter can usually only be fixed through model updates [5].
Conversely, existing intrusion detection strategies based on early
exits often fail to consider the tradeoffs in model generalization
that arise from prematurely terminating the inference task. In ad-
dition, the classification unreliability resulting from an outdated
DNN model due to changing network traffic behavior is generally
assumed to be rectified through model updates [9]. However, this
procedure frequently involves an extended time frame, often span-
ning days or even weeks, necessitating the deployed model to have
a prolonged lifespan to ensure its reliability.
Contribution. In light of this, this paper presents a new early
exit DNN aiming for fast inference time while keeping intrusion
detection reliability. The proposed model is implemented following
two strategies. First, we address early exits in DNN-based intrusion
detection as a multi-objective optimization task. Our insight is to
reduce model inference time and enhance the system detection
accuracies by optimizing the selection of exit thresholds. Second,
we introduce a classification approach with a reject option at the
final DNN branch, allowing the rejection of potentially unreliable
classifications influenced by new network traffic behavior. As a
result, we ensure classification reliability through the classifica-
tion with a reject option while simultaneously reducing inference
computational costs by employing early exits.

In summary, the main paper contributions are:
• An evaluation of the classification reliability of a widely used
DNN architecture for the intrusion detection task. Experi-
ments on a dataset spanning a year of real network traffic
revealed that current approaches demand impractical com-
putational processing and suffer a reduction in accuracy in
the months following the training.

• A new early exit DNN for reliable intrusion detection imple-
mented through multi-objective optimization coped with a
classification with a reject option. Our proposal can reduce
the average error rate by as much as 3.3 while lowering
inference computational costs by up to 82%.

Roadmap. The remainder of this paper is organized as follows.
Section 2 further describes the intrusion detection application with
DNNs. Section 3 describes the related works. Section 4 presents
our proposal, while Section 5 evaluates its performance. Section 6
concludes our work.

2 Background
2.1 Network-based Intrusion Detection for IoT
Behavior-based NIDSs have been extensively used by network op-
erators for monitoring the device’s communication and detecting
malicious activities [10, 16]. In general, these tools implement DNN-
based intrusion detection following a four sequential module im-
plementation, encompassing Data Acquisition, Feature Extraction,

Classification, and Alert. The first module is responsible for the
real-time collection of network packets from a specified Network
Interface Card (NIC). The behavior of the collected data is extracted
by the Feature Extractionmodule, which typically compiles a feature
vector summarizing the communication between network entities
within a specified time window. The resulting behavioral vector
serves as input to the Classification module, which employs a previ-
ously trained DNN to classify events as either normal or intrusion.
Lastly, the Alert module signals events classified as intrusion.

The application of DNNs for network traffic classification on
resource-constrained devices requires the prior execution of the
training task [19]. The behavior of a training dataset is extracted
during the training phase. Thus, it should ideally consist of millions
of labeled network samples representative of what is expected in a
production environment. The resultingmodel’s accuracy is assessed
during the testing phase, and the measured accuracy rates are
expected to indicate its performance in a production deployment.

2.2 Early Exits
Over the past years, the accuracy of proposed DNN-based intru-
sion detection techniques has consistently improved [8]. To pave
the way for more accurate detection, researchers usually escalate
the number of the DNN parameters. Consequently, implemented
solutions frequently demand impractical inference computational
costs, hindering their deployment on resource-constrained devices.
Early exits are designed to tackle this challenge by introducing side
branches that enable the premature termination of network infer-
ence [18]. Each side branch typically consists of fully connected
layers that classify the input at the current layer. If an input sample
has high confidence at a branch, it can exit from that branch with-
out traversing the entire network, effectively reducing the depth of
the network that a portion of the samples needs to traverse.

To conduct the DNN training procedure with early exits, re-
searchers often resort to a joint training rationale [20]. Let 𝑁 be the
number of exit branches, and 𝑦𝑖 be the classification output of each
branch 𝑖 on a given event with label 𝑦. We can compute the joint
loss function as a weighted sum of losses of each branch through
the following equation:

L 𝑗𝑜𝑖𝑛𝑡 (𝑦𝑖 , 𝑦𝑖 ) =
𝑁∑︁
𝑖=1

𝑤𝑖L(𝑦𝑖 , 𝑦𝑖 ) (1)

where L 𝑗𝑜𝑖𝑛𝑡 is the joint loss function, L the loss function, and𝑤𝑖

the branch 𝑖 weight. Here,𝑤𝑖 can be used to fine-tune the accuracies
at each branch, such as allowing for a preference towards more
accurate earlier branches, resulting in a lower overall computational
cost.

At the test phase, the network inference task traverses the input
event until it reaches the first branch, prematurely stopping the
inference based on whether the classification threshold surpasses a
given confidence threshold 𝑡 . Typically, the acceptance threshold
is established based on the operator’s judgment, considering the
desired trade-off between accuracy and average inference time. This
step is repeated for each branch in the model, and if no early exit
reaches the required confidence level, the final branch is reached
and the event’s class is determined based on the decision made at
the final branch.
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Early exits provide a compelling mechanism to manage the trade-
off between inference speed and accuracy in deep neural networks.
By introducing intermediate classification branches, they allow for
faster processing of simpler inputs [7]. These earlier exits capitalize
on the observation that not all inputs require the full complexity of
a deep network to achieve accurate classification. Since they involve
traversing a smaller portion of the network, they naturally lead to
faster inference and reduced energy consumption, making them
particularly attractive for resource-constrained environments.

However, this efficiency gain often comes at the cost of accu-
racy. Earlier exits have access to fewer features and less refined
representations compared to the deeper layers of the network. This
limitation can hinder their ability to discern subtle patterns or
handle complex inputs, potentially leading to lower classification
accuracy. Therefore, careful design and optimization of early exits
are crucial to strike an effective balance between achieving faster
inference and maintaining satisfactory accuracy levels. This often
involves sophisticated training strategies and adaptive confidence
thresholds to ensure that early exits are triggered only when a
sufficient level of certainty is reached.

2.3 Multi-Objective Optimization
An optimization problem is a mathematical or computational prob-
lem where the goal is to find the best solution from a set of feasible
solutions. The best solution is determined based on certain criteria,
which are defined by an objective function. The objective function
quantifies the performance or quality of a solution, and the opti-
mization process aims to either maximize or minimize this function.
Formally, an optimization problem can be defined as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 𝑓 (𝑥)
𝑥 ∈ 𝑋

(2)

where f(x) represents the objective function that needs to be op-
timized, x the decision variables, and X the set of possible values
for x. The optimization problem may be subject to some constraint,
which would limit the set X.

In traditional optimization problems, there is usually a single
objective to be maximized or minimized, however, in many real-
world scenarios, there are multiple criteria or goals that need to be
considered, and these objectives may conflict with each other [2].

In the set of solutions, some of them are said to be dominated
by another one, when another solution is equal to or better than
the current one in all objectives. If the solution is not dominated by
another one it is called Pareto optimal, and it means that it cannot
be improved in any objective without compromising another one.
The final step in the multi-objective optimization task is to find a
Pareto optimal set, composed only of Pareto optimal options. In
the Pareto optimal set, no solution can be said to be better than the
other, without considering external factors. So, it depends on the
system’s operator to identify which solution to adopt from the set.

3 Related Work
Network-based intrusion detection throughDNN-based approaches
has been a popular research topic in the literature over the past

years [16]. In general, the proposed schemes often prioritize im-
proved detection accuracies while overlooking their practical appli-
cability. For instance, Li Ma et al. [13] suggest the use of DNN for
IoT intrusion detection via feature fusion. Although their approach
enhances classification accuracy on an outdated dataset, it tends to
overlook the associated inference costs and classification reliabil-
ity issues. Another accuracy-focused approach was proposed by J.
Zhang et al. [23], which resorts to a DNN ensemble for the detec-
tion task. Albeit the accuracy benefits, the utilization of multiple
DNNs hampers their deployment on resource-constrained devices.
M. Ge et al. [6] proposed the application of DNN to detect intrusions
while considering the associated computational costs. Their pro-
posal surpassed traditional shallow-based methods but overlooked
the classification reliability. Some papers propose specific domain
studies. M. Kang et al. [15] propose a DNN based intrusion detec-
tion system specifically designed for securing in-vehicle networks
by analyzing network packets and identifying malicious activity in
real-time. However, the inference computational cost is overlooked.

In recent years, recognizing the impracticality of applying these
methods on resource-constrained devices, some research has shifted
focus from accuracy to improving inference computational costs [3].
Y. Wang et al. [22] proposes the application of MobileNet, a light-
weight DNN implementation, for intrusion detection. The authors
showed that high accuracies can be reached while providing high
detection throughput with minimal memory requirements. Unfor-
tunately, the authors overlooked the evolving behavior of network
traffic. While the application of early exits has been extensively re-
searched in various domains [11], its adoption in intrusion detection
is still in its early stages. En Li et al. [12] proposes the application of
early exits on intrusion detection to improve detection throughput.
Their approach notably enhances inference time, yet it tends to
neglect the influence of network traffic behavior changes on the
reliability of their solution. A similar approach was proposed by W.
Seifeddine et al. [18] which creates inference branches to split the
DNN on multiple devices. Although the authors can decrease infer-
ence computational costs, they overlook how the non-stationary
behavior of network traffic can affect their scheme. As a result, there
is a research gap in the literature for intrusion detection that consid-
ers the evolving behavior of network traffic while also addressing
the computational inference costs.

4 Early Exit DNN for Fast Inference and
Reliable Intrusion Detection

To tackle the evolving behavior of network traffic while minimizing
processing demands, we introduce an intrusion detection model
realized through early exits and classification with a reject option.
The overview of the proposed model is shown in Figure 1 and is
implemented following two main strategies, namely Rejector, and
Multi-objective optimization.

The goal of the Rejector’s module is to identify unreliable clas-
sifications at the DNN final branch, even if outdated. Unreliable
classifications are attributed to new network traffic behaviors that
can cause an increase in misclassification rates. As a result, in light
of the extended timeframe required for obtaining an updated model,
we utilize the classification with a reject option to further extend
the model’s lifespan. We assume that classification confidence can
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Figure 1: Overview of the proposed reliable intrusion detection model based on early exits for fast inference.

serve as a measure of classification quality, and thus, the rejection
of low-confident classifications can aid in efficiently enhancing the
system’s reliability.

The goal of the Multi-objective Optimization is to proactively de-
termine both the acceptance threshold for the DNN branches and
the rejection threshold for the final branch (see Figure 1, denoted
as 𝑡𝑏 and 𝑡𝑟𝑒 𝑗 thresholds). Our main insight is to optimize the early
exit thresholds based on the network traffic behavior while simul-
taneously enhancing system reliability through classification with
a reject option. As a result, our model can reduce the associated
inference computational costs while ensuring system reliability.

To measure the exit confidence, be it for choosing the early exit
or to decide to reject that sample, we used the softmax function
on those outputs, which turns the model’s raw output into proba-
bilities. These probabilities tell us how sure the model is about its
classification at that stage.

The following subsections provide a detailed description of our
proposed model.

4.1 Classification with Reject Option
The network traffic behavior is highly variable and also evolves
as time passes. Considering the non-stationary nature of network
traffic behavior, DNN-based NIDSs must undergo regular updates,
a procedure that frequently takes several weeks or even months to
complete. In the meantime, the model deployed in the production
environment, although outdated, must maintain its classification
reliability.

To tackle such a challenge, we implement the classification pro-
cedure through a classification with a reject option to increase the
model’s lifespan. The proposed model adheres to the conventional
DNN-based NIDS pipeline implemented through early exits (Fig. 1).
Given a DNN model with 𝑁 branches, where the final branch pro-
duces a classification confidence value 𝛼 = {𝛼𝑛𝑜𝑟𝑚𝑎𝑙 , 𝛼𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛}
for each input event 𝑥 . Here, 𝛼𝑛𝑜𝑟𝑚𝑎𝑙 denotes the event confidence
to for a normal class, and 𝛼𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 the event confidence for attack,
such that 𝛼 ∈ R[0, 1]. The Rejector module accepts or rejects the
classification based on its associated confidence values 𝛼 𝑣𝑠. a pre-
viously defined rejection threshold 𝑡𝑟𝑒 𝑗 (see Fig. 1). To achieve such
a goal, the module’s implementation is coped with the rejection
function, as determined by the following equation:

𝑅𝑒 𝑗𝑒𝑐𝑡𝑜𝑟 (𝛼, 𝑡𝑟𝑒 𝑗 )
{
∅ if 𝛼 ≤ 𝑡𝑟𝑒 𝑗

𝛼 otherwise
(3)

where ∅ denotes events likely to be incorrect decisions the DNN
model final branch performs. As a result, the Rejector module sup-
presses unreliable classification as measured by their associated
classification confidence values at the final DNN branch. It is impor-
tant to note that the rejection threshold should be determined based
on the network operator’s judgment. A higher rejection threshold
will enhance system reliability but result in a higher proportion
of rejected events. Conversely, a lower threshold will accept more
events but also expose the system to potentially unreliable classifi-
cations.

4.2 Multi-objective Optimization
Network intrusion detection for resource-constrained devices should
be performed with minimal processing requirements while main-
taining classification accuracy and reliability. To address such a
challenge, we conduct the model building as a multi-objective opti-
mization task.

We consider a DNN model ℎ implemented with 𝑁 branches,
coped with a Rejector module at the final branch (see Section 4.1).
In such a case, the goal of the multi-objective optimization is to find
𝑁 − 1 associated 𝑡𝑏 branches thresholds, along with a 𝑡𝑟𝑒 𝑗 Rejector
threshold. Hence, we consider two objectives based on the system’s
processing costs and accuracy. We assume that the first objective is
a direct result of accepting an additional number of events at earlier
branches, whereas the second objective relates to increasing the
rejection rate, which, in turn, raises processing costs due to more
events reaching the final branch. Therefore, we can conduct the
multi-objective by solving the following equation.

argmin
𝑡𝑟𝑒 𝑗 ,{𝑡1𝑏 ,...,𝑡

𝑁 −1
𝑏

}
𝑡𝑖𝑚𝑒 (ℎ(D, 𝑡𝑟𝑒 𝑗 , {𝑡1𝑏 , ..., 𝑡

𝑁−1
𝑏

}))

and

argmin
𝑡𝑟𝑒 𝑗 ,{𝑡1𝑏 ,...,𝑡

𝑁 −1
𝑏

}
𝑒𝑟𝑟𝑜𝑟 (ℎ(D, 𝑡𝑟𝑒 𝑗 , {𝑡1𝑏 , ..., 𝑡

𝑁−1
𝑏

}))
(4)

where ℎ denotes the DNN model with multiple branches, coped
with our Rejector (see Fig. 1). Here, the 𝑡𝑖𝑚𝑒 measures the model ℎ
computational inference time on a given dataset D when using a
rejection threshold 𝑡𝑟𝑒 𝑗 and a set of 𝑡𝑏 branches thresholds. In turn,
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Figure 2: Representation of the tabular to matrix conversion
used in theMAWIFlow Dataset samples.

the 𝑒𝑟𝑟𝑜𝑟 measures the error rate with the same set of thresholds.
As a result, our proposed scheme aims to identify the optimal sys-
tem thresholds that enhance computational inference time while
minimizing error rates.

5 Evaluation
In this section, we delve deeper into the performance of DNN tech-
niques in relation to accuracy and processing requirements when
confronted with changes in network traffic behavior. More specifi-
cally, we initially introduce the dataset utilized in the experiments
conducted in this paper, followed by an assessment of the perfor-
mance of DNN techniques on this dataset. Later, we evaluate the
results from our proposed model, comparing with the results from
the traditional approach.

The conducted set of evaluations aims to answer the following
Research Questions (RQs):

• (RQ1)What is the intrusion detection performance of widely
used DNN techniques?

• (RQ2) How does our proposed multi-objective optimization
improves system reliability?

• (RQ3) How can our rejector technique improve classification
performance?

• (RQ4)What is the computational costs of our proposed scheme?

5.1 MAWIFlow
To ensure a realistic evaluation, we utilize MAWIFlow dataset, a
publicly available intrusion dataset containing real, valid, and la-
beled network traffic from production environments spanning an
extended period. To achieve these characteristics, the dataset is built
upon MAWI [14] working group traffic archive. It includes network
traffic from MAWI samplepoint-F, a transit link between Japan and
the USA, collected in 15-second intervals daily. The network data is
collected daily, resulting in a network PCAP file for each day over
the evaluation period, totaling over 7TB of data and encompassing
more than 70 billion network flows. For this research, the network
data collected throughout the entire year 2016 was employed. This
collected data is organized into network flows based on the hosts
and services involved in each communication. Each network flow
represents a 15-second segment of client/service and server/service
data, which is subsequently summarized into an associated fea-
ture set. For the purpose of this work, we extract 58 features from
Moore [17] work. To assign labels, our study employs the MAW-
ILab [5] unsupervised machine learning algorithms, which identify
network anomalies subsequently labeled as attacks in our dataset.
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Figure 3: Accuracy trend over a year with AlexNet without
periodic model updates. The classifier is trained in January
and evaluated in subsequent months without updates.

5.2 Chasing a moving target
To evaluate the performance of our proposed method, we selected
the widely used AlexNet DNN architecture. This architecture was
originally designed for image classification tasks, requiring input
data in a multi-channel image format. However, the MAWIFlow
dataset is tabular. To address this, we preprocessed the data by
transforming each 58-feature sample into an 8x8 single-channel
image, padding with zeros as needed. Figure 2 demonstrates this
transformation. We then employed average pooling to reshape the
input into a 48x48x1 format suitable for the subsequent convolu-
tional layers, which remained unmodified.

The DNN was trained using adam optimizer, running for 1, 000
training epochs. We utilized categorical cross-entropy as the loss
function. The learning rate was 0.001 with a learning rate scheduler
that stops training if there is no improvement in the validation
accuracy over 50 epochs. These models were implemented using
PyTorch API version 2.1.0. The classifier was evaluated in terms of:

• False Negative (FN): number of samples that represent an
attack, incorrectly classified as normal traffic.

• False Positive (FP): number of samples with normal traffic
which are incorrectly classified as an attack.

The initial experiment is designed to address RQ1 and assess
the classification performance of the chosen intrusion detection
techniques on theMAWIFlow dataset when it encounters changes in
network traffic behavior over time. To achieve this goal, we train the
selected DNN architecture using the MAWIFlow data from January.
We then evaluate the model’s performance over the remaining year
without periodic model updates. Figure 3 displays the monthly
accuracies of the chosen DNN architecture. There is a significant
decline in classification accuracies over time. As an example, it
experiences an increase in its FP rate of up to 25% when compared
to the training period (Jan. vs. Nov.). Evaluated intrusion detection
techniques struggle to address the evolving network traffic patterns
over time.

The second experiment examines the computational costs associ-
ated with the selected techniques. We assess the average inference
computational costs on a Raspberry. It is a Raspberry Pi 3 Model B,
with a 4-core Broadcom CPU and 1 GB of memory running on top
of Raspberry Pi OS with kernel version 6.1. It is possible to note
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Table 1: Average event inference time of each introduced
AlexNet exit.

Model 1st Exit 2nd Exit
AlexNet 2.67ms 135.46ms
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Figure 4: Error vs Proc Time in the multi-objective optimiza-
tion for evaluated architecture. Processing time was mea-
sured on a Raspberry PI Model B. Error rate was measured
on MAWIFlow Feb. and March.

a significant decrease in the detection throughput on a resource-
constrained device. In this scenario, an average throughput of ≈ 7.3
events per second proves insufficient for handling the thousands
of network events that a device may encounter when deployed
on a real network. Hence, in addition to addressing changes in
network traffic behavior over time, proposed schemes must also be
capable of accomplishing this task while placing minimal demands
on processing resources.

5.3 Early Exits for Intrusion Detection
We implement our proposed model using the same DNN architec-
ture evaluated previously (see Section 5.2). Given that we make
use of early exits, we added an intermediate branch, introduced
between the 1st and 2nd convolutional layers. The early exit flattens
the preceding layer output and applies a fully connected layer with
1600 input neurons with a 2 neurons output. Hence, the evaluated
DNN architecture consists of two branches encompassing the added
layers from the first branch, while the last branch comprises the
traditional DNN output. The modified model is trained through the
joint loss function (see Eq. 1) with categorical loss for each branch,
with a 1.0 branch layer weight𝑤 . The learning rate was set at 0.001.
This model was implemented using PyTorch API version 2.1.0.

With the selected placement for the early exit, we measured the
inference time of each exit individually. The early exit has a shorter
path, and, whatsoever, should have a faster response time. That can
be verified by the data provided in table 1.

To answer RQ2 we evaluate how our proposed multi-objective
optimization can decrease the inference computational costs while
maintaining the systems’ accuracy. We implement our scheme
through the Non-dominated Sorting Genetic Algorithm (NSGA-II) [4]
on top of pymoo API. The NSGA-II uses a 100 population size, 1000
generations, a crossover of 0.9, and a mutation probability of 1.0.

Table 2: Threshold levels at the selected operation points for
AlexNet (see Fig. 4).

Model Normal
(1st Exit)

Attack
(1st Exit)

Normal
(2nd Exit)

Attack
(2nd Exit)

AlexNet 90.28% 83.74% 92.14% 87.76%

Ja
n

Fe
b

M
ar Ap
r

M
ay Ju
n Ju
l

Au
g

Se
p

O
ct

N
ov

D
ec

0

10

20

30

R
at

e 
(%

)

FPR
FNR
Rejection

Figure 5: Accuracy trend over a year of our proposed scheme.
The classifier is trained in January and evaluated in subse-
quent months without updates.

The multi-objective feature selection aims at solving equation 4
while optimizing the used first branch threshold (𝑡1

𝑏
) and the Re-

jector threshold (𝑡𝑟𝑒 𝑗 ), by considering two objectives, namely time
and error. We measure time by normalizing the processing time
measured on a test dataset between the minimum (first branch)
and the maximum (last branch) processing time, as determined
by the DNN architecture. Similarly, we measure the error as the
average between the measured FP and FN rates. We also consider
an optimization constraint of at least 90% acceptance rate at the
final branch (Fig. 1, Rejector).

Figure 4 shows the Pareto curve for the proposed multi-objective
optimization technique. It is possible to note a direct trade-off be-
tween model accuracy 𝑣𝑠. detection throughput. As an example,
the multi-objective optimization enables the network operator to
reach an error rate of only 6.6% while demanding only ≈ 16% of
computational costs (Fig. 4, Operation Point for AlexNet). Our multi-
objective optimization can reduce the system error rate by up to
3.3 while decreasing the average processing time by up to 82%
(AlexNet). As a reference, table 2 shows the confidence thresholds
for each exit at the operation points selected.

To answer RQ3, we investigate how our scheme with the added
Rejector at the final branch performs onMAWIFlow dataset. In such
a case, we set the used first branch threshold (𝑡1

𝑏
) and the Rejector

threshold (𝑡𝑟𝑒 𝑗 ) at the Operation Points highlighted on Fig. 4. The
DNNs are then evaluated throughout MAWIFlow dataset without
model updates. Figure 5 shows the accuracy performance of our
scheme without periodic model updates with the Rejector module.
Our proposed scheme provides better accuracy rates as time passes.
Figure 6a further investigates the accuracy benefits of our model
with AlexNet compared to the traditional approach. Our scheme
can improve the F1 by an average of 0.03, with an improvement of
up to 0.06 in August for the AlexNet DNN.
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Figure 6: Accuracy and processing time comparison of AlexNet with and without our scheme on MAWIFlow dataset.

To answer RQ4 we investigate the processing benefits of our
scheme. Therefore, we measure the average monthly event process-
ing cost, recalling that it varies based on the ratio of events that
are accepted at the early branch. Figure 6b shows the processing
costs of our scheme 𝑣𝑠. the traditional approaches on AlexNet. On
average, our proposed model requires only ≈ 25% of processing
compared to the traditional approach. In practice, our model can de-
crease the error rate while also significantly improving the average
processing costs, paving the way for DNN-based network-based
intrusion detection application on resource-constrained devices.

6 Conclusion
This work addressed the limitations of DNN-based intrusion de-
tection techniques on resource-constrained devices. Traditional
approaches struggle to maintain high accuracy and reliability when
confronted with the evolving nature of network traffic, all while
minimizing processing demands. To tackle this challenge, we intro-
duced a novel intrusion detection model based on early exits and
a classification with a reject option. The former reduces inference
time by enabling premature termination of processing for confident
classifications. The latter enhances reliability by rejecting poten-
tially inaccurate classifications caused by evolving network traffic
patterns.

Our evaluation on the MAWIFlow dataset demonstrated the ef-
fectiveness of our approach. Through multi-objective optimization,
we achieved a significant reduction in processing costs, in some
cases by up to 82%, while maintaining or even improving classi-
fication accuracy. This highlights the potential of our scheme to
enhance the security of resource-constrained IoT devices without
compromising performance.

Future work will investigate the incorporation of active learning
strategies that leverage rejected events to continuously update the
model and further adapt to evolving threats.
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